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Sec 2.2-b Bifurcation Points

Sec 2.3 Acceleration-Velocity Models

Review example from Lecture 10

Example 1. Consider:
dx

dt
= kx− x3

a) Let k ≤ 0. Show that the only critical point is stable.

Solution: Note that if k ≤ 0, then we can let k := −a2. The first step is to find critical
points. To this end, we solve the following algebraic equation:

f(x) = 0 ⇐⇒ (k − x2)x = − (a2 + x2)︸ ︷︷ ︸
>0

x = 0.

So, the only critical point is:
c = 0.

The second step is to compute the solution of the above differential equation. Observe that
this equation is separable. Let a > 0. Then by separating variables, we obtain:∫

dx

(a2 + x2)x
=

∫
−dt+ C

⇐⇒ x2

(a2 + x2)
= Ce−2a2t

By solving the above for x2, we obtain the general solution of the differential equation:

x2 =
a2Ce−2a2t

1− Ce−2a2t

In the third step, we use the above general solution to determine the stability of the critical
point c = 0. To this end, we check what happens with the solution as t → ∞. Clearly, if we
let t → ∞, Ce−2a2t → 0. As a result:

x(t) → 0 ≡ c as t → ∞.

Thus, we conclude that the critical point c = 0 is stable.
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b) Let k > 0. Analyze the stability of critical point(s).

Solution: Note that if k > 0, then we can let k = a2 with a ̸= 0. As before, the first step
is to find the critical points by solving the following algebraic equation:

f(x) = 0 ⇐⇒ (k − x2)x = (a2 − x2)︸ ︷︷ ︸
≥0

x = 0.

So, when k > 0, we have three critical point:
c1 = 0

c2 = +a = +
√
k

c3 = −a = −
√
k.

The second step is to compute the solution of the differential equation. Note that we can
write the differential equation as follows:

dx

dt
= −x(x− a)(x+ a).

This is a separable equation. Thus, by separating variables, we obtain:∫
2a2

x(x− a)(x+ a)
dx = −

∫
2a2dt+ C.

The partial fractions method yields:∫
−2

x
+

1

x− a
+

1

x+ a
dx = −

∫
2a2dt+ C

⇐⇒ −2 ln(x) + ln(x− a) + ln(x+ a) = −2a2t+ C

⇐⇒ x2 − a2

x2
= Ce−2a2t.

By solving for x, we obtain the general solution:

x(t) =
±
√
k√

1− Ce−2a2t

For this example, it is convenient to also compute the particular solution for the initial
condition x(0) = xo. Using this initial condition, we find that is C = 1− k/x2

o. As a result,
the particular solution is:

x(t) =
±
√
k√

1− (1− k/x2
o)e

−2a2t
.
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In the third step, we use the above particular solution to determine the stability of the
three critical points. To this end, we analyze four cases.

(Case 1) Let xo ∈ (0,
√
k) and use the particular solution:

x(t) =
+
√
k√

1− (1− k/x2
o)e

−2a2t
.

• Note that for this case (1− k/x2
o) < 0.

• Hence the denominator satisfies:
√

1− (1− k/x2
o)e

−2a2t ↘ 1.

• As a result, x(t) increases towards +
√
k, i.e., x(t) ↗ +

√
k as t → ∞.

(Case 2) Let xo >
√
k and use the particular solution:

x(t) =
+
√
k√

1− (1− k/x2
o)e

−2a2t
.

• Note that for this case (1− k/x2
o) > 0.

• Hence the denominator satisfies:
√

1− (1− k/x2
o)e

−2a2t ↗ 1.

• As a result, x(t) decreases towards +
√
k, i.e., x(t) ↘ +

√
k as t → ∞.

Case 1) and 2) show that the critical point c2 = +
√
k is stable.
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(Case 3) Let xo ∈ (−
√
k, 0) and use the particular solution:

x(t) =
−
√
k√

1− (1− k/x2
o)e

−2a2t
.

• Note that for this case (1− k/x2
o) < 0.

• Hence the denominator satisfies:
√

1− (1− k/x2
o)e

−2a2t ↘ 1.

• As a result, x(t) becomes more negative ; x(t) decreases towards −
√
k, i.e., x(t) ↘

−
√
k as t → ∞.

(Case 4) Let xo < −
√
k and use the particular solution:

x(t) =
−
√
k√

1− (1− k/x2
o)e

−2a2t
.

• Note that for this case (1− k/x2
o) > 0.

• Hence the denominator satisfies:
√

1− (1− k/x2
o)e

−2a2t ↗ 1.

• As a result, x(t) becomes less negative; x(t) increases towards −
√
k, i.e., x(t) ↗ −

√
k

as t → ∞.

Case 3) and 4) show that the critical point c3 = −
√
k is stable.

Finally, Case 1) and Case 3) show that the critical point c1 = 0 is unstable.
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Bifurcation points

• As we gradually increase the value of the parameter .

• We have seen that the differential equation has

• The value , for which the qualitative nature of the solutions changes

as the parameter increases, is called a for the differential
equation containing the parameter.

Bifurcation diagram

• A common way to visualize the corresponding “bifurcation” in the solutions is to plot
the bifurcation diagram for the equation.

• This diagram consists of all points , where c is a critical
point of the equation
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Example 2. Construct the bifurcation diagram of the following logistic equation with har-
vesting:

dx

dt
= x(4− x)− h

Critical points:

Bifurcation diagram:
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Acceleration-velocity models

• In chapter 1, we studied vertical motion of a mass m without considering air resistance.

• Newton’s second law:

• is the (downward-direction) force of gravity.

In section 2.3, we want to take into account air resistance.

• : force exerted by air resistance on the moving mass m.

• Newton’s second law:

• For many problems, it suffices to model the force as:

where and depends on the size and shape of the body, as
well as the density and viscosity of the air.

Generally speaking, we have:

• for relatively low speeds.

• for high speeds.

• for intermediate speeds.
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Example 3. Consider the vertical motion of an object near the surface of the earth.

• : mass.

Subject to two forces:

• : downward gravitational force.

• : air resistance force, where .

Find the particular solutions v(t) and y(t) for the initial conditions v(0) = vo and y(0) = yo.

• Newton’s law of motion:

• Separating variables:

• Velocity equation:
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• Q: limt→∞ v(t)?

• Position equation:
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Example 4. Consider a body that moves horizontally with resistance −kv2 such that:

dv

dx
= −kv2.

Show that the velocity and position equations are:

v(t) =
vo

1 + vokt
and x(t) = xo +

1

k
ln(1 + vokt).

where x(0) = xo and v(0) = vo.

• Separating variables:

• Velocity equation:

• Position equation:

• Q: limt→∞ v(t), x(t)?
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Variable Gravitational Acceleration

• Consider a body (m) in vertical motion.

• Unless the body remains in the immediate vicinity of the earth’s surface, the gravita-
tional acceleration acting on the body is not constant.

• According to Newton’s law of gravitation,

– the gravitational force between two point masses

– located at a distance is:

Example 5. Escape velocity. Consider a body with mass m and let

• : body’s distance from earth’s center at time t.

• : earth’s radius.

• : earth’s mass.

Find such that v(t) > 0 for all t.
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• Velocity equation:

• Escape velocity vo = v(R) :
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