MA 266 Lecture 11
Christian Moya, Ph.D.
Sec 2.2-b Bifurcation Points

Sec 2.3 Acceleration-Velocity Models

Review example from Lecture 10

Example 1. Consider:
dx 3

—=kxr—=x

dt
a) Let k < 0. Show that the only critical point is stable.
Solution: Note that if k& < 0, then we can let k := —a?. The first step is to find critical
points. To this end, we solve the following algebraic equation:

fz)=0 <= (k—2%)r=—(a*+2%)2=0.
——
>0
So, the only critical point is:
c=0.

The second step is to compute the solution of the above differential equation. Observe that
this equation is separable. Let a > 0. Then by separating variables, we obtain:

dx
/m—/‘d’f”

2
T —_ C€—2a2t

(a® + %)
By solving the above for 22, we obtain the general solution of the differential equation:
) a2Ce—20%t
1 — Ce2%
In the third step, we use the above general solution to determine the stability of the critical

point ¢ = 0. To this end, we check what happens with the solution as ¢ — oco. Clearly, if we
let t — 0o, Ce™20°t 5 (). As a result:

X

z(t) > 0=cast— 0.

Thus, we conclude that the critical point ¢ = 0 is stable.
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b) Let k > 0. Analyze the stability of critical point(s).

Solution: Note that if k& > 0, then we can let k = a? with a # 0. As before, the first step
is to find the critical points by solving the following algebraic equation:

fz)=0 <= (k—a2Hx = (a* —2*)x =0.

——
>0
So, when k > 0, we have three critical point:
C1 = 0
Cy = +a = —|—\/E

C3 = —a = —\/E

The second step is to compute the solution of the differential equation. Note that we can
write the differential equation as follows:

dz
e —z(x —a)(z + a).

This is a separable equation. Thus, by separating variables, we obtain:

2a* 9
dr = — [ 2a°dt + C.
z(z —a)(x + a)

The partial fractions method yields:

2 1 1
/__+ + dx:—/2a2dt+0
r x—a xT+a

< —2In(z) +In(z — a) + In(z + a) = —2a*t + C

ZL’Q—(IQ

2
— C«ean t.
I‘Q

By solving for z, we obtain the general solution:

+vk

For this example, it is convenient to also compute the particular solution for the initial
condition z(0) = z,. Using this initial condition, we find that is C' =1 — k/z2. As a result,
the particular solution is:

+Vk

V== ke

x(t) =

(t)
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In the third step, we use the above particular solution to determine the stability of the
three critical points. To this end, we analyze four cases.

(Case 1) Let z, € (0,vk) and use the particular solution:

_ +Vk
V1= (1= k/aZ)e

e Note that for this case (1 — k/z2) < 0.

()

e Hence the denominator satisfies: /1 — (1 — k/22)e~20"t \ 1.
e As a result, z(t) increases towards +Vk, i.e., z(t) 7 +Vk as t — oo.

(Case 2) Let x, > vk and use the particular solution:

_ +Vk
V1= (1= k/aZ)e

e Note that for this case (1 — k/z2) > 0.

()

e Hence the denominator satisfies: /1 — (1 — k/22)e~20°t 1.

e As a result, z(t) decreases towards +vk, i.e., z(t) \, +Vk as t — oo.

Case 1) and 2) show that the critical point c; = +V/k is stable.
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(Case 3) Let z, € (—Vk,0) and use the particular solution:

_ VE
VI (L= kfag)e

e Note that for this case (1 — k/z2) < 0.

x(t)

e Hence the denominator satisfies: /1 — (1 — k/22)e=20"t \ 1.

e As a result, z(t) becomes more negative ; x(t) decreases towards —v/k, i.e., z(t) \,
—Vkast— oo.

(Case 4) Let z, < —V'k and use the particular solution:

_ vk
N

e Note that for this case (1 — k/x2) > 0.

()

e Hence the denominator satisfies: /1 — (1 — k/22)e=20°t 1.

e As a result, z(t) becomes less negative; z(t) increases towards —v/k, i.e., z(t) /' —Vk
as t — oo.

Case 3) and 4) show that the critical point ¢ = —Vk is stable.
Finally, Case 1) and Case 3) show that the critical point ¢; = 0 is unstable.
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Bifurcation points

e As we gradually increase the value of the parameter

e We have seen that the differential equation has

e The value , for which the qualitative nature of the solutions changes

as the parameter increases, is called a for the differential
equation containing the parameter.

Bifurcation diagram

e A common way to visualize the corresponding “bifurcation” in the solutions is to plot
the bifurcation diagram for the equation.

e This diagram consists of all points , Where ¢ is a critical
point of the equation
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Example 2. Construct the bifurcation diagram of the following logistic equation with har-

vesting:
dx

= sd—2)—h
i C)

Critical points:

Bifurcation diagram:
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Acceleration-velocity models

e In chapter 1, we studied vertical motion of a mass m without considering air resistance.

e Newton’s second law:

° is the (downward-direction) force of gravity.

In section 2.3, we want to take into account air resistance.

° . force exerted by air resistance on the moving mass m.

e Newton’s second law:

e For many problems, it suffices to model the force as:

where and depends on the size and shape of the body, as
well as the density and viscosity of the air.

Generally speaking, we have:

° for relatively low speeds.
° for high speeds.
° for intermediate speeds.
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Example 3. Consider the vertical motion of an object near the surface of the earth.

L] . mass.

Subject to two forces:

° . downward gravitational force.

° : air resistance force, where

Find the particular solutions v(t) and y(t) for the initial conditions v(0) = v, and y(0) = y,.

e Newton’s law of motion:

e Separating variables:

e Velocity equation:
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o Q: limy o v(t)?

e Position equation:
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Example 4. Consider a body that moves horizontally with resistance —kv? such that:
dv
— = —kv*.
dx
Show that the velocity and position equations are:

14wkt

v(t)

1
and x(t) = x, + % In(1 + vokt).

where x(0) = x, and v(0) = v,.

e Separating variables:

e Velocity equation:

e Position equation:

o Q: limy o, v(t),z(t)?
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Variable Gravitational Acceleration

e Consider a body (m) in vertical motion.

e Unless the body remains in the immediate vicinity of the earth’s surface, the gravita-
tional acceleration acting on the body is not constant.

e According to Newton’s law of gravitation,

— the gravitational force between two point masses

— located at a distance is:

Example 5. Escape velocity. Consider a body with mass m and let

° : body’s distance from earth’s center at time t.
° : earth’s radius.
° : earth’s mass.

Find such that v(t) > 0 for all t.
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e Velocity equation:

e Escape velocity v, = v(R) :
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