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Sec 2.4 Numerical Approximation: Euler’s method

Explicit solutions

• It is the exception rather than the rule when a differential equation of the general form

can be solved exactly and explicitly by elementary methods.

• For example, consider the simple equation

• A solution of this equation is just an antiderivative of . However,
every antiderivative of this function is known to be a nonelementary function—one
that cannot be expressed as a finite combination of the familiar functions of elementary
calculus.

Alternative approach

• Construct a solution curve that starts and follows the slope field of the
given differential equation y′ = f(x, y).
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Euler’s Method

• To approximate the solution of the initial value problem:

• We first select a fixed (horizontal) step size to use in making each step
from one point to the next.

• Suppose we’ve started at the initial point (x0, y0) and after n steps have reached the
point (xn, yn). How do we compute the coordinates of the new point (xn+1, yn+1)?

• Thus, the coordinates of the new point are given in terms of the
old coordinates by

• Given the above initial value problem, Euler’s method with step size h consists of
starting with the initial point (x0, y0) and applying the above iterative formulas

x1 = x0 + h y1 = y0 + h · f(x0, y0)

x2 = x1 + h y2 = y1 + h · f(x1, y1)

x3 = x2 + h y3 = y2 + h · f(x2, y2)
...

...
...

...
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Algorithm: Euler’s method

• Given the initial value problem

dy

dx
= f(x, y), y (x0) = y0,

• Inputs - Euler’s method: the step size h and the initial condition (x0, y0).

• Apply the iterative formula

yn+1 = yn + h · f (xn, yn) (n ≥ 0)

• Results successive approximations:

to the [true] values:

of the [exact] solution at the points:
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Example 1. Apply Euler’s method to approximate the solution of the following IVP on the
interval [0, 1/2]:

dy

dx
= y + 1, y(0) = 1,

a) first with h = 0.25.

b) then with h = 0.1.

Note that the particular solution of this IVP is: y(x) = 2ex − 1.

Solution a) With x0 = 0 and y0 = 1, f(x, y) = y + 1, and h = 0.25 the Euler’s iterative
formula yields the approximate values at the points x1 = 0.25 and x2 = 0.5:

y1 = y0 + h · [y0 + 1] = (1) + (0.25) [1 + 1] = 1.5

y2 = y1 + h · [y1 + 1] = (1.5) + (0.25) [1.5 + 1] = 2.125

• Note how the result of each calculation feeds into the next one.

• The resulting table of approximate values is

x 0 0.25 0.5
Approx. y 1 1.5 2.125

Solution b) With x0 = 0 and y0 = 1, and h = 0.1 the Euler’s iterative formula yields the
approximate values at the points x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.4, and x5 = 0.5:

y1 = y0 + h · [y0 + 1] = (1) + (0.1) [1 + 1] = 1.2

y2 = y1 + h · [y1 + 1] = (1.2) + (0.1) [1.2 + 1] = 1.42

y3 = y2 + h · [y2 + 1] = (1.42) + (0.1) [1.42 + 1] = 1.662

y4 = y3 + h · [y3 + 1] = (1.662) + (0.1) [1.662 + 1] = 1.9282

y5 = y4 + h · [y4 + 1] = (1.9282) + (0.1) [1.9282 + 1] = 2.221

• The resulting table of approximate values is

x 0 0.1 0.2 0.3 0.4 0.5
Approx. y 1 1.2 1.42 1.662 1.9282 2.221
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• The next figure shows the graph of the true solution y(x) = 2ex − 1, together with the
graphs of the Euler approximations obtained with step sizes h = 0.25 and 0.1.

Remarks:

• the step size h the accuracy.

• the step size h the number of operations.

• Yet with any single approximation, the accuracy decreases with distance from the
initial point.
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Local and Cumulative Errors

• There are several sources of error in Euler’s method that may make the approximation:

unreliable for large values of n, those for which xn is not sufficiently close to x0.

• The error in the linear approximation formula:

is the amount by which the tangent line at (xn, yn) departs from the solution curve
through (xn, yn).

Defintion 1. The error introduced at each step in the process, is called the
in Euler’s method.

• Note that yn itself is merely an approximation to the actual value y(xn).
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Defintion 2. The at yn is a measure of all the accumu-
lated effects of all the local errors introduced at the previous steps

x0 x1 x2 x3 x
n

Exact values

Approximate

values

x

y

(x0, y0)

(x1, y1)

(x
n
, y

n
)

Cumulative error

Reducing Cumulative Error

• The usual way of attempting to reduce the cumulative error in Euler’s method is to
decrease the step size h.

• However, if h is too small, then (i) the number of operations may be too large, (ii) we
may have to deal with computer precision/roundoff errors.
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Example 2. Consider the following logistic initial value problem:

dy

dx
= y cosx, y(0) = 1

The exact solution of the above equation is the periodic function: y(x) = esinx. Use
Euler’s method to approximate the solution in the interval 0 ≦ x ≦ 6π and using n ∈
{50, 100, 200, 400} subintervals.

• Euler’s iterative formula for this examples is:

• Computing the step size h from n:

• Next figure shows the exact solution curve and approximate solution curves obtained
by applying Euler’s method.

MA 266 Lecture 12 page 8 of 17



A Common Strategy

• The computations in the preceding example illustrate the common strategy of applying
a numerical algorithm, such as Euler’s method, several times in succession.

• We begin with a selected number n of subintervals for the first application, then double
n for each succeeding application of the method.

• Visual comparison of successive results often can provide an “intuitive feel” for their
accuracy.

Cumulative Error vs. Number of Intervals

• Next figure illustrates a graph comparing the cumulative error ϵ with the number of
subintervals n.
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A Word of Caution

Example 3. Use Euler’s method to approximate the solution of the initial value problem

dy

dx
= x2 + y2, y(0) = 1

on the interval [0, 1].

• The iterative formula of Euler’s method:

• With step size h = 0.1 we obtain

y1 = 1 + (0.1) · [(0)2 + (1)2] = 1.1,

y2 = 1.1 + (0.1) ·
[
(0.1)2 + (1.1)2

]
= 1.222,

y3 = 1.222 + (0.1) ·
[
(0.2)2 + (1.222)2

]
≈ 1.3753,

and so forth.

• Rounded to four decimal places, the first ten values obtained in this manner are

y1 = 1.1000 y6 = 2.1995

y2 = 1.2220 y7 = 2.7193

y3 = 1.3753 y8 = 3.5078

y4 = 1.5735 y9 = 4.8023

y5 = 1.8371 y10 = 7.1895

• We could naively accept these results as accurate approxmations.

• We instead can use a computer to repeat the computations with smaller values of h.

• The table on the next page shows the results obtained with step sizes h = 0.1, h = 0.02,
and h = 0.005.
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x
y with
h = 0.1

y with
h = 0.02

y with
h = 0.005

0.1 1.1000 1.1088 1.1108

0.2 1.2220 1.2458 1.2512

0.3 1.3753 1.4243 1.4357

0.4 1.5735 1.6658 1.6882

0.5 1.8371 2.0074 2.0512

0.6 2.1995 2.5201 2.6104

0.7 2.7193 3.3612 3.5706

0.8 3.5078 4.9601 5.5763

0.9 4.8023 9.0000 12.2061

1.0 7.1895 30.9167 1502.2090

• Observe that now the “stability” of the numerical procedure is missing.

• Indeed, it seems obvious that something is going wrong near x = 1.
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• Next figure provides a clue to the difficulty for approximating the solution.
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• It appears that this solution curve may have a vertical asymptote near x = 0.97.

• Indeed, an exact solution using Bessel functions can be used to show that y(x) → +∞
as x → 0.969811 (approximately).

• Although Euler’s method gives values (albeit spurious ones) at x = 1, the actual
solution does not exist on the entire interval [0, 1].

• Moreover, Euler’s method is unable to “keep up” with the rapid changes in y(x) that
occur as x approaches the infinite discontinuity near 0.969811.
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• As the figure shows, Euler’s method is rather unsymmetrical.

x

y

x x + h

(x + h, y (x + h))

Error

Predicted

y-value

Slope y' (x)

Solution

y = y(x)

• It uses the predicted slope k = f(xn, yn) of the graph of the solution at the left-hand
endpoint of the interval [xn, xn + h] as if it were the actual slope of the solution over
that entire interval.

• To increase the accuracy of our approximation, we can use the improved Euler Method.
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Improved Euler Method

• Given the initial value problem

dy

dx
= f(x, y), y(x0) = y0,

suppose that after carrying out n steps with step size h we have computed the approx-
imation yn to the actual value y(xn) of the solution at xn = x0 + nh.

• We can use the Euler method to obtain a first estimate—which we now call un+1 rather
than yn+1—of the value of the solution at xn+1 = xn + h:

• Now that un+1 ≈ y(xn+1) has been computed, we can take

as a second estimate of the slope of the solution curve y = y(x) at x = xn+1.

• Note that, the approximate slope

has already been calculated.

• Why not average these two slopes to obtain a more accurate estimate of the average
slope of the solution curve over the entire subinterval [xn, xn+1]?

• This idea is the essence of the improved Euler method.

• The algorithm for this method is presented next.
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Algorithm: The Improved Euler Method

• Given the initial value problem

dy

dx
= f(x, y), y(x0) = y0,

the improved Euler method with step size h consists in applying the iterative formulas:

k1 = f(xn, yn),

un+1 = yn + h · k1,

k2 = f(xn+1, un+1),

yn+1 = yn + h · 1
2
(k1 + k2).

• These formulas compute successive approximations y1, y2, y3, . . . to the [true] values
y(x1), y(x2), y(x3), . . . of the [exact] solution y = y(x) at the points x1, x2, x3, . . .,
respectively.
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Example 4. Consider the following logistic initial value problem:

dy

dx
= y cosx, y(0) = 1

The exact solution of the above equation is the periodic function: y(x) = esinx. Use the
improved Euler’s method to approximate the solution in the interval 0 ≦ x ≦ 6π and using
n ∈ {50, 100, 200, 400} subintervals.

• Improved Euler’s iterative formula for this example is:

• Next figure shows the exact solution curve and approximate solution curves obtained
by applying the Improved Euler’s method.
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Cumulative Error vs. Number of Intervals

• Next figure illustrates a graph comparing the cumulative error ϵ with the number of
subintervals n.
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