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Sec 3.2 General Solutions of Linear Equations

Review from last class:

• Consider the homogeneous ODE with constant coefficients (a, b, c ∈ R):

ay′′ + by′ + cy = 0

• Look for a solution of the form: y(x) = erx. Then, we find that (ar2 + br + c)erx = 0
results:

ar2 + br + c = 0

• The above equation is called characteristic equation of the differential equation.

• By solving the characteristic equation, we find r (three possibilities):

– roots r1 ̸= r2 are real.

– roots r1 = r2 is real.

– roots r1, r2 are complex.

• (First case) Consider distinct real roots r1 ̸= r2. (Theorem 3) The general solution of
the homogeneous ODE is:

y(x) = C1e
r1x + C2e

r2x

1



• Consider the homogeneous ODE with constant coefficients (a, b, c ∈ R):

ay′′ + by′ + cy = 0

• (Second case) Consider repeated or equal real root r1 = r2. Here, we only one have
solution

y1(x) = er1x

• The problem is to produce the “missing” second solution.

• Note that the equal root r = r1 occurs when the characteristic equation is a constant
multiple of:

(r − r1)
2 = r2 − 2r1r + r21

• Any differential equation with the above characteristic equation is equivalent to:

y′′ − 2r1y
′ + r21 = 0 (1)

• However, it is easy to verify that y(x) = xer1x is a second (linearly independent)
solution of (1).

• Thus, by Theorem 3, the general solution of (1) is:

Example 1. Find the general solution of the differential equation:

9y′′ − 12y′ + 4y = 0

• Characteristic equation:

• Solution:
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Example 2. Let y(x) = c1 + c2e
−10x be a general solution of a homogeneous second-order

differential equation of the form
ay′′ + by′ + c = 0,

with constant coefficients. Find such coefficients.

• Roots:

• Characteristic equation:

• Homogeneous equation:
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General Linear Equations

• Consider the nth-order linear differential equation:

• We assume Pi(x) and F (x) are continuous on some open interval I.

• If , we obtain:

• The homogeneous linear equation associated with this differential equation is:

Theorem (Principle of Superposition for Homogeneous Equations) If
y1, y2, . . . , yn are n solutions of the linear equation on the interval I. If c1, c2, . . . , cn
are constants, then the linear combination

is also a solution on I.

MA 266 Lecture 14 page 4 of 11



Theorem (Existence and Uniqueness of Linear equations) Suppose that the
functions p1, p2, . . . , pn, and f are continuous on the open interval I containing the
point a. Then, given n numbers b0, b1, . . . , bn−1, the nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

has a unique (that is, one and only one) solution on the entire interval I that satisfies
the n initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1.

Example 3. Without solving the ODE, find the existence and uniqueness interval I of the
solution of the IVP:

x(x− 3)y′′ + 2xy′ − (x+ 1) = 0, y(1) = 1, y′(1) = 2.

• Rewrite it in standard form:

• Use Theorem:

Linear Independent Solutions

• Based on our knowledge of general solutions of second-order linear equations, we would
expect that a general solution of the homogeneous nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

will be a linear combination

y = c1y1 + c2y2 + · · ·+ cnyn,

where y1, y2, . . . , yn are particular solutions of

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• However these n particular solutions must be “sufficiently independent” that we can
always choose the coefficients c1, c2, . . . , cn to satisfy arbitrary initial conditions of the
form y(a) = b0, y

′(a) = b1, . . ., y
(n−1)(a) = bn−1.
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Linear Dependence of Two Functions

• Recall that two functions f1 and f2 are linearly dependent if one is a constant multiple
of the other. That is, if either f1 = kf2 or f2 = kf1 for some constant k.

• If we write these equations as

we see that the linear dependence of f1 and f2 implies that there exist two constants
c1 and c2 not both zero such that

• By analogy, we say that n functions f1, f2, . . . , fn are
provided that some nontrivial linear combination of them vanishes identically.

• Nontrivial means that not all of the coefficients c1, c2, . . . , cn are zero (although some
of them may be zero).

Defintion 1. (Linear Dependence of Functions) The n functions f1, f2, . . . , fn are said
to be linearly dependent on the interval I provided that there exist constants c1, c2,
. . . , cn not all zero such that

c1f1 + c2f2 + · · ·+ cnfn = 0

on I, that is,
c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

for all x in I.

Remarks:

• If not all the coefficients in

c1f1 + c2f2 + · · ·+ cnfn = 0

are zero, then clearly we can solve for at least one of the functions as a linear combi-
nation of the others, and conversely.

• Thus the functions f1, f2, . . . , fn are linearly dependent if and only if at least one of
them is a linear combination of the others.
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Example 4. Show that the functions f(x) = 0, g(x) = sin(x) and h(x) = ex are linearly
dependent on R.

Defintion 2. (Linear Independent Functions) The n functions f1, f2, . . . , fn are called
linearly independent on the interval I if they are not linearly dependent there. Equiva-
lently, they are linearly independent on I provided that the identity

c1f1 + c2f2 + · · ·+ cnfn = 0

holds on I only in the trivial case

that is, no nontrivial linear combination of these functions vanishes on I.

• To show that n given functions are linearly independent, we use the Wronksian Deter-
minant.

The Wronskian Determinant

• Suppose that the n functions f1, f2, . . . , fn are each times dif-
ferentiable.

• Then their Wronskian is the determinant

• The Wronskian of n f1, f2, . . . , fn is identically zero.

Example 5. Use the Wronskian to show that the functions y1(x) = ex, y2(x) = cos(x), and
y3(x) = sin(x) are linearly independent on R.
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Wronksians of Solutions

• Provided that , it turns out (Theorem General Solutions
of Homogeneous Equations) that we can always find values of the coefficients in the
linear combination

y = c1y1 + c2y2 + · · ·+ cnyn

that satisfy any given initial conditions of the form

Theorem (Wronksians of Solutions) Suppose that y1, y2, . . . , yn are n solutions of
the homogeneous nth-order linear equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

on an open interval I, where each pi is continuous. Let

(a) If y1, y2, . . . , yn are linearly dependent, then on I.

(b) If y1, y2, . . . , yn are linearly independent, then on I.
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Capturing All Solutions of a Homogeneous Equation

• Given any fixed set of n linearly independent solutions of a homogeneous nth-order
equation, every (other) solution of the equation can be expressed as a linear combina-
tion of those n particular solutions.

Theorem (General Solutions of Homogeneous Equations)

• Let y1, y2, . . . , yn be n linearly independent solutions of the homogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0

on an open interval I where the pi are continuous.

• If Y is any solution whatsoever of this equation, then there exist numbers c1, c2,
. . . , cn such that

for all x in I.
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Nonhomogeneous Equations

Example 6. Solutions of nonhomogeneous equations.

• Consider the nonhomogeneous nth-order linear differential equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

with associated homogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• Suppose that a single fixed particular solution of the above nonhomo-
geneous equation is known

• Let Y is any other solution of this equation.

• Show that if , then is the solution of the associated
homogeneous Equation

• We call a complementary function of the nonhomogeneous equation.
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Theorem (Solutions Homogeneous Equations)

• Let yp be a particular solution of the nonhomogeneous equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = f(x)

on an open interval I where the functions pi and f are continuous.

• Let y1, y2, . . . , yn be linearly independent solutions of the associated homogeneous
equation

y(n) + p1(x)y
(n−1) + · · ·+ pn−1(x)y

′ + pn(x)y = 0.

• If Y is any solution whatsoever of the equation nonhomogeneous equation on I,
then there exist numbers c1, c2, . . . , cn such that

Y (x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x)

for all x in I.

Example 7. We are given (i) the homogeneous IVP:

y′′ + y = 3x, y(0) = 2, y′(0) = −2

(ii) the complementary solution: yc = C1 cos(x)+C2 sin(x), and (iii) the particular solution:
yp = 3x. Find a solution for the IVP.
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