MA 266 Lecture 16

Christian Moya, Ph.D.

Sec 3.3-2 Homogeneous Eqs. Constant Coefficients

Theorem (Repeated Roots) If the characteristic equation

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r + a_0 = 0$$

has a repeated root r of multiplicity k, then the part of a general solution of the differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

corresponding to r is of the form:

$$(c_1 + c_2x + \ldots + c_kx^{k-1})e^{rx}$$

Example 1. Find a function y(x) such that $y^{(4)}(x) = y^{(3)}(x)$ for all x and y(0) = 18, y'(0) = 12, y''(0) = 13, and $y^{(3)} = 7$.

- Characteristic equation:
- General solution:
- Particular solution:

Complex-Valued Functions and Euler's Formula

Complex roots

- Any complex (nonreal) roots will occur in complex conjugate pairs:
- This raises the question of what might be meant by an exponential such as
- Recall from elementary calculus the Taylor series for the exponential function
- If we substitute ______ in this series and recall that ______, and so on, we get

Euler's formula

- Because the two real series in the last line are the Taylor series for $\cos \theta$ and $\sin \theta$, respectively, this implies that
- This result is known as *Euler's formula*.
- Because of it, we *define* the exponential function e^z , for z = x + iy an arbitrary complex number, to be

Complex-Valued functions

- Thus it appears that complex roots of the characteristic equation will lead to complexvalued solutions of the differential equation.
- A complex-valued function F of the real variable x associates with each real number x (in its domain of definition) the complex number
- The real-valued functions f and g are called the *real* and *imaginary* parts, respectively, of F.

Complex Exponentials

- The particular complex-valued functions of interest here are of the form:
- We note from Euler's formula that

and

• The most important property of e^{rx} is that

if r is a complex number.

• The proof is straightforward:

Complex Characteristic Roots

• As a result, when r is complex (just as when r is real), e^{rx} will be a solution of the differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

if and only if r is a root of its characteristic equation.

• If the complex conjugate pair of roots $r_1 = a + bi$ and $r_2 = a - bi$ are nonrepeated, then the corresponding part of a general solution of this differential equation is

where the arbitrary constants C_1 and C_2 can be complex.

• For instance, the choice $C_1 = C_2 = \frac{1}{2}$ gives the real-valued solution

while the choice $C_1 = -\frac{1}{2}i$, $C_2 = \frac{1}{2}i$ gives the independent real-valued solution

• This yields the following result.

Theorem (Complex Roots) If the characteristic equation

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_2 r^2 + a_1 r + a_0 = 0$$

has an unrepeated pair of complex conjugate roots $a \pm bi$ (with $b \neq 0$), then the corresponding part of a general solution of the differential equation

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = 0$$

has the form

Polar Form

• We can employ the *polar form*

of the complex number z.

- This form follows from Euler's formula upon writing
- Here r is the modulus

of the number z.

- The argument of z is the angle θ .
- For instance, the imaginary number has modulus and argument ______.
- Similarly, _____.
- Another consequence is the fact that the nonzero complex number $z = re^{i\theta}$ has the two square roots

where \sqrt{r} denotes (as usual for a positive real number) the positive square root of the modulus of z.

Repeated Complex Roots

- Theorem can be extended for repeated complex roots.
- If the conjugate pair ______ has multiplicity _____, then the corresponding part of the general solution has the form

• It can be shown that the 2k functions

appearing above are linearly independent.

Example 2. Find the general solution of the differential equation:

y'' - 6y' + 13y = 0.

• Characteristic equation:

• General solution:

Example 3. Find the general solution of the differential equation:

$$y^{(4)} + 18y'' + 81y = 0.$$

• Characteristic equation:

• General solution:

Example 4. Solve the following initial value problem:

$$9y'' + 6y' + 4y = 0,$$
 $y(0) = 3, y'(0) = 4.$

• Characteristic equation:

- General solution:
- Particular solution:

Example 5. Find a linear homogeneous constant-coefficient equation with the given general solution:

 $y(x) = c_1 \cos 2x + c_2 \sin 2x + c_3 \cosh 2x + c_4 \sinh 2x.$