MA 266 Lecture 17

Christian Moya, Ph.D.

Midterm Review and Sec 3.4 Mechanical Vibrations

Example 1. Consider a pond that initially contains 10 million gal of water. Water containing a polluted chemical flows into the pond at the rate of 6 million gal/yr, and the mixture in the pond flows out at the rate of 5 million gal/yr. The concentration $\gamma(t)$ of chemical in the incoming water varies as $\gamma(t) = 2 + \sin 2t$ grams/gal. Let Q(t) be the amount of chemical at time t measured by millions of grams. Derive the differential equation of the process.

Example 2. Let y(t) be the solution of the IVP:

$$y''' + y' = 0$$
, $y(0) = 2$, $y'(0) = 1$, $y''(0) = 1$,

then $y(\pi) = ?$

Example 3. Find the particular solution of the IVP:

$$y' = \frac{1-2x}{y}, \quad y(1) = -2,$$

in explicit form.

Example 4. Find the solution of the IVP

$$y'' + y' - 6y = 0$$
, $y(0) = 0$, $y'(0) = 5$.

Mechanical Vibrations

In Sec 3.1, we considered the following mass connected to a spring and a dashpot.

We described the dynamics of this system using the linear equation:

Here

• _____: spring force, _____: spring constant

• _____: dashpot force, _____: damping constant

• _____: external force.
Remarks

• _____: no dashpot ⇔

• _____: if _____.

• Motion is ______ if _____.

The Simple Pendulum

We let

- _____: arc distance from O to m.
- _____: velocity of m

Kinetic Energy:

Potential Energy:

The sum of the kinetic energy T and potential energy V:

Differentiating with respect to t both sides:

Note: We can also obtain the above differential equation using Newton's second law.

Going from nonlinear to linear

• Small angle approximation:

Adding frictional resistance:

FREE Undamped Motion

• Define:

• General solution:

Phase angle

• General solution:

The mass oscillates with:

- Amplitude: _____.
- Circular frequency: _____.
- Phase angle: ______.

- Period:
- Frequency:
- Time lag:

FREE Damped Motion

• Characteristic equation:

• Sign depends on:

• Critical damping:

Overdamped case $c > c_r$

- \implies two *distinct* roots:
- General solution:

Critically damped case $c = c_r$

- \implies repeated roots:
- General solution:

Underdamped case $c < c_r$

- \implies two *complex* roots:
- General solution:

• Using derivation _____:

Example 5. Consider the differential equation of a spring-mass-(dashpot) system:

$$mx'' + cx' + kx = 0.$$

Find the particular solution

- a) with damping: $m = 1, c = 10, k = 125, x_0 = 6, and v_0 = 50.$
- b) without damping: $m = 1, k = 125, x_0 = 6$, and $v_0 = 50$.

Solution a):

- Characteristic equation:
- General solution:
- Particular solution:

Solution b):

- Characteristic equation:
- General solution:
- Particular solution: