MA 266 Lecture 18

Christian Moya, Ph.D.

Sec 3.5-1 Nonhomogeneous Equations

- Consider the nonhomogeneous *n*th-order linear equation with constant coefficients:
- Recall the following theorem:

Theorem (Solutions Nonhomogeneous Equations)

- Let y_p be a particular solution of the nonhomogeneous equation on an open interval I where the functions p_i and f are continuous.
- Let y_1, y_2, \ldots, y_n be linearly independent solutions of the associated homogeneous equation

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$$

• If Y is any solution whatsoever of the equation nonhomogeneous equation on I, then there exist numbers c_1, c_2, \ldots, c_n such that

$$Y(x) = \underbrace{c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)}_{=:y_c(x)} + y_p(x)$$

for all x in I.

• Question: How to find _____?

Undetermined Coefficients

- Suppose that _____ is a polynomial of degree _____.
- Note that the derivatives of a polynomial are themselves polynomials of lower degree.
- Thus it is reasonable to *guess* a particular solution has the form

Example 1. Find a particular solution of

$$y'' + 3y' + 4y = 3x + 2.$$

• Here ______ is a polynomial of degree ______, so our guess is:

• Then

• Solve for the *undetermined coefficients* ______ and _____.

- Similarly, suppose that
- Then it is reasonable to expect a particular solution of the same form:

a linear combination with undetermined coefficients ______ and _____.

• Any derivative of the linear combination of $\cos kx$ and $\sin kx$ has the same form.

Example 2. Find a particular solution of

$$3y'' + y' - 2y = 2\cos x.$$

- We try the *guess*:
- Then

• Solve for the *undetermined coefficients* ______ and _____.

Eligible Functions

• The method of *undetermined coefficients* applies whenever the function f(x) in

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = f(x).$$

is a linear combination of (finite) products of functions of the following three types:

Example 3. Find a particular solution of

$$y'' + y' + y = \sin^2 x.$$

- We try the *guess*:
- Then

• Solve for the *undetermined coefficients* ______ and _____.

Caution!!!

Example 4. Find a particular solution of

$$y'' - 4y = 2e^{2x}.$$

- We try the *guess*:
- Then

• Solve for the *undetermined coefficient:*

Rule 1 Method of Undetermined Coefficients

- Suppose that Ly = f(x) is a nonhomogeneous linear equation with constant coefficients and that f(x) is a linear combination of finite products of *eligible* functions.
- Also suppose that no term appearing either in f(x) or in any of its derivatives satisfies the associated homogeneous equation Ly = 0.
- Then take as a guess/trial solution for y_p a linear combination of all linearly independent such terms and their derivatives.
- Then determine the coefficients by substitution of this trial solution into the nonhomogeneous equation Ly = f(x).

Example 5. Find a particular solution of

$$y'' + 9y = 2x^2e^{3x} + 5.$$

• We try the *guess*:

• Then

• Solve for the *undetermined coefficients:*

Remarks on Rule 1

- In practice we check the supposition made in Rule 1 by first using the characteristic equation to find the complementary function y_c .
- Then we make a list of all the terms appearing in f(x) and its successive derivatives.
- If none of the terms in the list duplicates a term in y_c , then we use Rule 1.

The Case of Duplication

- Consider the case in which *Rule* 1 does not apply.
- That is, some of the terms involved in f(x) and its derivatives satisfy the associated homogeneous equation.
- For instance, suppose that we want to find a particular solution for:
- Proceeding as in Rule 1, our first guess would be

• This form of $y_p(x)$ will not be adequate because the complementary function is

so substitution would yield zero rather than $(2x - 3)e^{rx}$.

Amending Our Initial Guess

• To amend our first guess, we observe that

by our earlier discussion of differential operators.

• If y(x) is any solution of our differential equation and we apply the operator $(D-r)^2$ to both sides, we see that y(x):

• The general solution of this *homogeneous* equation is:

Form of the General Solution

- Thus *every* solution of our original equation is:
- Note that the RHS can be obtained by multiplying each term of our first guess

 ${\rm by}$

that is, the least positive power of x (in this case, x^3) that eliminates duplication between the terms of the resulting trial solution $y_p(x)$ and the complementary function $y_c(x)$.

The General Case

• To simplify the general statement of Rule 2, we observe that to find a particular solution of the nonhomogeneous linear differential equation

it suffices to find *separately* particular solutions $Y_1(x)$ and $Y_2(x)$ of the two equations

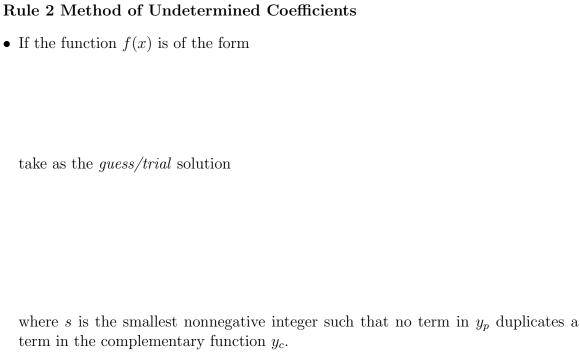
respectively.

• Linearity then gives

and therefore ______ is a particular solution of

- (This is a type of "superposition principle" for nonhomogeneous linear equations.)
- Now our problem is to find a particular solution of the equation Ly = f(x), where f(x) is a linear combination of products of the elementary functions listed earlier.
- Notation: f(x) can be written as a sum of terms each of the form

where $P_m(x)$ is a polynomial in x of degree m.



• Then determine the coefficients in y_p by substituting y_p into the nonhomogeneous equation.

The next table lists the form of y_p in various common cases:

y_p
$x^s(A_0 + A_1x + A_2x^2 + \dots + A_mx^m)$
$x^s(A\cos kx + B\sin kx)$
$x^s e^{rx} (A\cos kx + B\sin kx)$
$x^{s}(A_{0} + A_{1}x + A_{2}x^{2} + \dots + A_{m}x^{m})e^{rx}$
$x^{s}[(A_0 + A_1x + \dots + A_mx^m)\cos kx +$
$(B_0 + B_1 x + \dots + B_m x^m) \sin kx]$

Example 6. Determine the appropriate form for a particular solution of

 $y'' - 6y' + 13y = xe^{3x}\sin 2x.$

- Characteristic equation:
- The complementary solution is:
- We examine:

• Eliminate duplication terms:

• Particular solution:

Example 7. Determine the appropriate form for a particular solution of

 $y^{(4)} + 5y'' + 4y = \sin x + \cos 2x.$

- Characteristic equation:
- The complementary solution is:
- We examine:

• Eliminate duplication terms:

• Particular solution: