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Sec 3.5 Nonhomogeneous Equations

Method - Variation of Parameters

• If the nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x)

• has complementary function:

yc(x) = c1y1(x) + c2y2(x)

• The particular solution is :

yp(x) = u1(x)y1(x) + u2(x)y2(x)

• To find u1 and u2, we first solve the following system of equations for u′
1 and u′

2:

u′
1y1 + u′

2y2 = 0 (1a)

u′
1y

′
1 + u′

2y
′
2 = f(x). (1b)

• We the find u1 and u2 via integration:

u1(x) =

∫
u′
1(x)dx

u2(x) =

∫
u′
2(x)dx.

• The determinant of (1) is the Wronksian of the two linear independent solutions y1
and y2: W (y1, y2) = W (x).
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Theorem - Variation of Parameters

• If the nonhomogeneous equation:

L[y] := y′′ + P (x)y′ +Q(x)y = f(x)

• has complementary function:

yc(x) = c1y1(x) + c2y2(x)

• Then a particular solution is given by:

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y1(x)f(x)

W (x)
dx

• where W (x) = W (y1, y2) is the Wronskian of the two independent solutions y1 and
y2 of the associated homogeneous equation L[y] = 0.
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Example 1. Find the particular solution of

y′′ + 9y = sin 3x.

• Complementary solution:

• The Wronksian W (x) is

• The desired functions are then

• Particular solution:
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Example 2. Find the particular solution of

y′′ − 4y = xex.

• Complementary solution:

• The Wronksian W (x) is

• The desired functions are then

• Particular solution:
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Sec 3.6 Forced Oscillations

Forced Mass-Spring System

• In a previous lecture, we derived the differential equation

that models the motion of a mass m that is attached to a spring (with constant k) and
a dashpot (with constant c) and is also acted on by an external force F (t).

• Machines with rotating components commonly involve mass-spring systems (or their
equivalents) in which the external force is simple harmonic:
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Undamped Forced Oscillations

Undamped Forced Oscillations

• Consider the external force F (t) = F0 cosωt and let c = 0. Then, we have:

mx′′ + kx = F0 cosωt,

• The complementary function is:

xc(t) = c1 cosω0t+ c2 sinω0t.

• The (circular) natural frequency of the mass–spring system is:

ω0 =

√
k

m

• Assuming ω ̸= ω0, the particular solution is:

xp(t) =
F0/m

ω2
0 − ω2

cosωt.

• The general solution x = xc + xp is given by:

x(t) = c1 cosω0t+ c2 sinω0t+
F0/m

ω2
0 − ω2

cosωt,

where the constants c1 and c2 are determined by the initial values x(0) and x′(0).

• As we saw earlier, this can be rewritten as

x(t) = C cos(ω0t− α) +
F0/m

ω2
0 − ω2

cosωt.
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Example 3. Use the method of undetermined coefficients to find the particular solution xp(t)
of:

mx′′ + kx = F0 cosωt.

• The trial particular solution is:

• Note: No sine term is needed in xp because there is no term involving x′ on the L.H.S.

of .

• This gives

• So,

• Particular solution:
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Example 4. Find the solution x(t) = xc(t) + xp(t) of the following initial value problem:

L[x] := x′′ + 4x = 5 sin 3t, x(0) = 0, x′(0) = 0.

• The complementary solution:

• The trial particular solution:

• L[xp] = 5 sin 3t gives:

• The general solution x = xc + xp is:

• Using the ICs, we find c1 and c2:
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Damped Forced Oscillations

Damped Forced Oscillations

• Consider the external force F (t) = F0 cosωt and let c ̸= 0. Then, we have:

mx′′ + cx′ + kx = F0 cosωt,

• The complementary function takes one of the three forms depending on:

c > ccr :=
√
4km, c = ccr, or c < ccr.

Transient solution

• In our previous lectures, we demonstrated that:

xc(t) → 0 as t → +∞.

• Thus, xc(t) is the transient solution of the damped forced motion.

• =⇒ xc(t) dies out with the passage of time.

Particular solution

• The particular function is:

x(t) = A cosωt+B sinωt

where

A =
(k −mω2)F0

(k −mω2)2 + (cω)2
, B =

cωF0

(k −mω2)2 + (cω)2
.

• We can show that the resulting xp(t) corresponds to the steady periodic oscillation:

xp(t) = C cos(ωt− α)

has amplitude C =
√
A2 +B2 = F0√

(k−mω2)2+(cω)2

• Phase angle α:

α =

{
tan−1 cω

k−mω2 if k > mω2,

π + tan−1 cω
k−mω2 if k < mω2
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Example 5. Find the particular solution xp(t) of:

mx′′ + cx′ + kx = F0 cosωt.

• The method of undetermined coefficients indicates =⇒ the trial particular function:

• Replacing L[xp] = F0 cosωt gives:

• Two equations:

• The undetermined coefficients:

• If we write:

• Results in the steady periodic oscillation:
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Example 6. Find the steady state periodic solution of the differential equation:

x′′ + 3x′ + 5x = −4 cos 5t.

• Trial particular solution:

• Replacing into the differential equation gives:

• The undetermined coefficients are:

• Write as steady periodic solution:

• Amplitude and angle:
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Example 7. Find the transient solution and the steady periodic solution of the initial value
problem:

x′′ + 8x′ + 25x = 200 cos t+ 520 sin t, x(0) = −30, x′(0) = −10.

• Transient solution:
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• Steady periodic solution:
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