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Practical Resonance - Forced Damped Oscillations

• Consider the damped system:

mx′′ + cx′ + kx = F0 cosωt

• Note that if c > 0, then the “forced amplitude” C(ω):

C(ω) =
F0√

(k −mω2)2 + (cω)2
< +∞,

always remains finite.

• However, the forced amplitude may attain a maximum for some value of ω, in
which case we speak of practical resonance.

Example 1. Show that if c ≥
√
2km the amplitude C(ω) decreases for all ω > 0;

otherwise C(ω) attains a maximum value.

1. Use C ′(ω):

2. If c ≥
√
2km:

3. But if c <
√
2km:

1



Example 2. Find the amplitude C(ω) and the practical resonance frequency ω of the fol-
lowing forced mass-spring-dashpot system:

x′′ + 10x′ + 650 = 100 cosωt.

• Particular solution:

• Solving for the coefficients A and B

• The amplitude C(ω) of the steady periodic forced oscillations with freq. ω :

• Find the practical resonance by solving C ′(ω) = 0:
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4.1 First-Order Systems

• We have discussed methods for solving an ordinary differential equation that involves
only one dependent variable.

• Many applications, however, require the use of two or more dependent variables, each
a function of a single independent variable (typically time).

• Such a problem leads naturally to a system of simultaneous ODEs.

Notation:

• We will usually denote the independent variable by and the dependent
variables (the unknown functions of t) by:

• We will restrict our attention to systems in which the number of equations is the same
as the number of dependent variables (unknown functions).

Solutions:

• For instance, a system of two first-order equations in the dependent variables x and y
has the general form

where the functions f and g are given.

• A solution of this system is a pair of functions of t that
satisfy both equations identically over some interval of values of t.
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First-Order Systems

• Consider a system of differential equations that can be solved for the highest-order
derivatives of the dependent variables.

• For instance, in the case of a system of two second-order equations:

• These can be transformed into an equivalent system of first-order equations.

First-Order Systems

• Consider first the “system” consisting of the single n th-order equation

• We introduce the dependent variables x1, x2, . . . , xn defined as follows:

• Note that

and so on.

Equivalent System

• Substitution then yields the system

of n first-order equations.
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Example 3. Transform the following differential equation into an equivalent system of first-
order differential equations:

x′′ + 4x− x3 = 0.

• The above equation is of the form:

• Substitution:

• yields the system:

Example 4. Transform the following system of differential equations into an equivalent
system of first-order differential equations:

2x′′ = −6x+ 2y

y′′ = 2x− 2y + 50 sin 5t.

• Substitution:

• yields the system:
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Example 5. Transform the following differential equation into an equivalent system of first-
order differential equations:

x(3)− 2x′′ + x′ = 1 + tet.

• Substitution:

• yields the system:

Example 6. Transform the following system of differential equations into an equivalent
system of first-order differential equations:

x′′ = (1− y)x

y′′ = (1− x)y.

• Substitution:

• yields the system:
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Example 7. Solve the following IVP:

x′ = −2y, y′ = 2x; x(0) = 1, y(0) = 0.
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