MA 266 Lecture 25

Christian Moya, Ph.D.

Sec 5.1 Linear Systems

Conclusion - Theorem: General Solutions of Homogeneous Linear Systems

- It suffices to find ______ *linearly independent* solution vectors:
- The linear combination

with arbitrary coefficients will then be a general solution of our system

$$\mathbf{x}' = \mathbf{A}\mathbf{x}.$$

Example 1. Write a general solution of the following Linear System:

$$\mathbf{x}' = \left(\begin{array}{cc} -3 & 2\\ -3 & 4 \end{array}\right) \mathbf{x}.$$

• The general solution obtained was:

$$x(t) = c_1 \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} 2e^{-2t} \\ e^{-2t} \end{pmatrix}.$$

Example 2. Find a particular solution of the following Linear System Initial Value Problem (IVP):

$$\mathbf{x}' = \begin{pmatrix} -3 & 2 \\ -3 & 4 \end{pmatrix} \mathbf{x}, \qquad x_1(0) = 0, x_2(0) = 5.$$

• Recall the general solution is:

$$x(t) = c_1 \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix} + c_2 \begin{pmatrix} 2e^{-2t} \\ e^{-2t} \end{pmatrix}.$$

• Use the initial conditions:

Sec 5.2 Eigenvalue Method for Homogeneous Systems

Q: How to find the n needed *linearly independent* solution vectors?

• To find these *linearly independent* solution vectors, we proceed by analogy with the characteristic root method for solving a single homogeneous equation with constant coefficients.

Form of the Solution Vectors

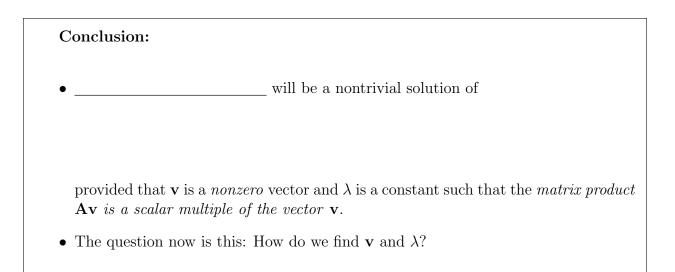
• It is reasonable to anticipate solution vectors of the form

where ______ are appropriate scalar constants.

Matrix Form

- Consider the Homogeneous System in matrix form:
- Verify the trial solution:

• We cancel the nonzero scalar factor $e^{\lambda t}$ to get



Finding v and λ

• To answer this question, we rewrite the equation $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ in the form

• By a standard theorem of linear algebra, it has a nontrivial solution if and only if the determinant of its coefficient matrix vanishes; that is, if and only if

The Eigenvalue Method

The Eigenvalue Method	
• For solving the homogeneous system:	
• consists of finding	so that
and next solving	
with this value of	_ to obtain
• Then	will be a solution vector.
• The name of the method comes from the following definition.	

Definition Eigenvalues and Eigenvectors

• The number λ (either zero or nonzero) is called an **eigenvalue** of the $n \times n$ matrix **A** provided that

$$|\mathbf{A} - \lambda \mathbf{I}| = 0.$$

• An eigenvector associated with the eigenvalue λ is a *nonzero* vector **v** such that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, so that

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}.$$

Example 3. Find the eigenvalues and eigenvectors of the matrix

$$A = \left(\begin{array}{cc} 3 & -1 \\ 4 & -2 \end{array}\right)$$

• Eigenvalues:

• Eigenvectors:

Characteristic Equation

• The equation

$$|\mathbf{A} - \lambda \mathbf{I}| =$$

is called the **characteristic equation** of the matrix \mathbf{A} .

- Its roots are the eigenvalues of **A**.
- Expanding this determinant, we evidently get an nth-degree polynomial of the form

$$(-1)^n \lambda^n + b_{n-1} \lambda^{n-1} + \dots + b_1 \lambda + b_0 = 0.$$

- By the fundamental theorem of algebra, this equation has n roots.
- Possibly some are complex, possibly some are repeated.
 - Thus an _____ matrix has _____ eigenvalues (counting repetitions).

Outline of the Eigenvalue Method

Steps for the Eigenvalue Method

- In outline, this method for solving the $n \times n$ homogeneous constant-coefficient system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ proceeds as follows:
 - 1. Solve the characteristic equation for the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of the matrix **A**.
 - 2. Attempt to find *n* linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ associated with these eigenvalues.
 - 3. Step 2 is not always possible, but when it is, we get n linearly independent solutions:

• In this case the *general solution* of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is a linear combination

of these n solutions.

Distinct Real Eigenvalues

• If the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are real and distinct, then we substitute each of them in turn in the equation

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

and solve for the associated eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.

• Then it can be proved that the particular solution vectors

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda_1 t}, \quad \mathbf{x}_2(t) = \mathbf{v}_2 e^{\lambda_2 t}, \quad \dots, \quad \mathbf{x}_n(t) = \mathbf{v}_n e^{\lambda_n t}.$$

are always linearly independent.

Example 4. Use the eigenvalue method to find the general solution of:

$$x_1' = 2x_1 + 3x_2, \ x_2' = 2x_1 + x_2.$$

- Linear system in matrix form:
- Characteristic equation:

• Eigenvector equation:

• General solution:

Example 5. Use the eigenvalue method to find the general solution of:

$$x_1' = 4x_1 + x_2, \ x_2' = 6x_1 - x_2.$$

- Linear system in matrix form:
- Characteristic equation:

• Eigenvector equation:

• General solution:

Example 6. Find the solution of the IVP:

$$x'_1 = 9x_1 + 5x_2, \ x'_2 = -6x_1 - 2x_2, \ x_1(0) = 1, x_2(0) = 0.$$

- Linear system in matrix form:
- Characteristic equation:

• Eigenvector equation:

- General solution:
- Particular solution:

Example 7. The amounts $x_1(t)$ and $x_2(t)$ of salt in two brine tanks satisfy the differential equations

$$\frac{dx_1}{dt} = -k_1 x_1 + k_2 x_2, \quad \frac{dx_2}{dt} = k_1 x_1 - k_2 x_2,$$

where $k_i = r/V_i$. Find the general solution assuming that r = 10 (gal/min), $V_1 = 25$ (gal), and $V_2 = 40$ (gal).