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Sec 5.2 Eigenvalue Method for Homogeneous Systems

The Eigenvalue Method

• To solve the n× n homogeneous constant-coefficient linear system:

x′ = Ax.

1. Solve the characteristic equation

det(A− λI) = 0.

for the eigenvalues λ1, λ2, . . . , λn of the matrix A.

2. Attempt to find n linearly independent eigenvectors v1,v2, . . . ,vn associated
with these eigenvalues using

(A− λI)v = 0.

3. Step 2 is not always possible, but when it is, we get n linearly independent
solutions:

x1(t) = v1e
λ1t,x2(t) = v2e

λ2t, . . . ,xn(t) = vne
λnt.

• In this case, the general solution of x′ = Ax is a linear combination

x(t) = c1x1(t) + c2x2(t) + . . .+ c1xn(t).

of these n solutions.
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Distinct Real Eigenvalues

• If the eigenvalues λ1, λ2, . . . , λn are real and distinct, then we substitute each of
them in turn in the equation

(A− λI)v = 0

and solve for the associated eigenvectors v1, v2, . . . , vn.

• Then, the particular solution vectors

x1(t) = v1e
λ1t, x2(t) = v2e

λ2t, . . . , xn(t) = vne
λnt.

are always linearly independent.

Example 1. Find the solution of the IVP:

x′
1 = 9x1 + 5x2, x′

2 = −6x1 − 2x2, x1(0) = 1, x2(0) = 0.

Solution

• The matrix form of the system is

x′ =

(
9 5
−6 −2

)
︸ ︷︷ ︸

=:A

x.

• The characteristic equation of the coefficient matrix is

det

(
9− λ 5
−6 −2− λ

)
= (9− λ)(−2− λ) + 30

= λ2 − 7λ+ 12 = (λ− 4)(λ− 3) = 0,

so we have the distinct real eigenvalues λ1 = 4 and λ = 3.

• For the coefficient matrix A, the eigenvector equation (A− λI)v = 0 is(
9− λ 5
−6 −2− λ

)(
a
b

)
=

(
0
0

)
.

• Case 1: λ1 = 4. Substitution of the first eigenvalue λ1 = 4 in (A− λI)v = 0 yields(
5 5
−6 −6

)(
a
b

)
=

(
0
0

)
.
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• The choice a = 1 yields b = −1, and thus v1 =

(
1
−1

)
.

• Case 2: λ1 = 3. Exercise - Answer: v2 =

(
5
−6

)
• The general solution:

x(t) = c1v1e
λ1t + c2v2e

λ2t

therefore takes the form:

x(t) = c1

(
1
−1

)
e4t + c2

(
5
−6

)
e3t

• The resulting scalar equations are

x1(t) = c1e
4t + 5c2e

3t

x2(t) = −c1e
4t − 6c2e

3t.

• When we impose the initial conditions x1(0) = 1 and x2(0) = 0, we get(
1 5
−1 −6

)(
c1
c2

)
=

(
1
0

)
.

that is readily solved (in turn) for c1 = 6 and c2 = −1. Thus, finally, the solution of
the initial value problem is:

x(t) = 6

(
1
−1

)
e4t −

(
5
−6

)
e3t

or equivalently

x1(t) = 6e4t − 5e3t

x2(t) = −6e4t + 6e3t.
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Example 2. The amounts x1(t) and x2(t) of salt in two brine tanks satisfy the differential
equations

dx1

dt
= −k1x1 + k2x2,

dx2

dt
= k1x1 − k2x2,

where
ki =

r

Vi

, i = 1, 2.

Find the general solution assuming that r = 10 (gal/min), V1 = 25 (gal), and V2 = 40 (gal).

Solution

• If r = 10 (gal/min), V1 = 25 (gal), and V2 = 40 (gal), then

• The matrix form of the system is

• The characteristic equation is

• Thus, the coefficient matrix A has

MA 266 Lecture 26 page 4 of 14



• Case 1. λ = . Substituting

• Case 2. λ = . Exercise - Answer

• The general solution:
x(t) = c1v1e

λ1t + c2v2e
λ2t

therefore takes the form:
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Distinct Complex Eigenvalues

• Even if some eigenvalues are complex, so as long as they are distinct the eigenvalue
method yields n linearly independent solutions.

• Problem: The eigenvectors associated to complex eigenvalues are .

• Thus, we will have complex-valued solutions.

• Suppose by solving characteristic equation

• we get the pair of complex-conjugate eigenvalues

Eigenvectors

• v is the eigenvector associated to λ, so that

• Similarly, v̄ is the eigenvector associated to the complex conjugate λ̄, so that

• v defined componentwise:
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Complex-Valued Solution

• The complex-valued solution associated with λ and v is then

that is,

Real-Valued Solution

• Because the real and imaginary parts of a complex-valued solution are also solutions,
we thus get two real-valued solutions

• It is easy to check that the same two real-valued solutions result from taking real and
imaginary parts of v̄eλ̄t

Procedure for Finding Real-Valued Solutions

1. Find explicitly a single complex-valued solution x(t) associated with the complex
eigenvalue λ;

2. Then, find the real and imaginary parts x1(t) and x2(t) to get two independent
real-valued solutions corresponding to the complex conjugate eigenvalues λ and λ̄.

MA 266 Lecture 26 page 7 of 14



Example 3. Find the solution of the IVP:

x′
1 = 2x1 − 5x2, x′

2 = 4x1 − 2x2, x1(0) = 2, x2(0) = 3.

Solution

• The matrix form of the system is

• The characteristic equation of the coefficient matrix is

so we have the complex eigenvalues:

• Substituting
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• The corresponding complex-valued solution

• The real and imaginary parts of x(t) are the real-valued solutions

• The real-valued general solution is

• The resulting scalar equations are

• When we impose the initial conditions

• Thus, finally, the solution of the IVP is:
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Example 4. Find the the general solution of:

x′
1 = x1 − 5x2, x′

2 = x1 + 3x2.

Solution

• The matrix form of the system

• The corresponding characteristic equation

• Substituting
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• The corresponding complex-valued solution

• The real and imaginary parts of x(t) are the real-valued solutions

• The real-valued general solution is
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Example 5. Find the particular solution of the system

dx1

dt
= 3x1 + x3

dx2

dt
= 9x1 − x2 + 2x3

dx3

dt
= −9x1 + 4x2 − x3

that satisfies the initial conditions x1(0) = 0, x2(0) = 0, and x3(0) = 17.

• The coefficient matrix A is

• The characteristic equation

• Case 1.
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• Case 2.
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• Finally, given the initial conditions yield

• Thus, the solution to the IVP is
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