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Sec 5.5 Multiple Eigenvalue Solutions

Generalized Eigenvectors

• The vector v2 in the equation

(A− λI)2v2 = 0

is an example of a generalized eigenvector.

Rank of a Generalized Eigenvector

• If λ is an eigenvalue of the matrix A, then a rank r generalized eigenvector associ-
ated with λ is a vector v such that

• A rank 1 generalized eigenvector is an ordinary eigenvector because

• The vector v2 in the equation

(A− λI)2v2 = 0

is a rank 2 generalized eigenvector (and not an ordinary eigenvector).

1



Chains of Generalized Eigenvectors

• The multiplicity 2 method described earlier boils down to finding a pair
of generalized eigenvectors, one of rank 1 and one of rank 2, such that

• Higher multiplicity methods involve longer “chains” of generalized eigenvectors.

Length k Chain

• A length k chain of generalized eigenvectors based on the eigenvector v1 is a set

of k generalized eigenvectors such that

• Because v1 is an ordinary eigenvector, (A− λI)v1 = 0. Therefore,

Length 3 Chain

• Suppose that {v1,v2,v3} is a length 3 chain of generalized eigenvectors associated with
the multiple eigenvalue λ of the matrix A.

• It is easy to verify that three linearly independent solutions of x′ = Ax are given by
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Example 1. In this example, the eigenvalues are given. Find the general solution of

x′ =

 5 −1 1
1 3 0
−3 2 1


︸ ︷︷ ︸

=A

x; λ = 3, 3, 3.

Solution

• The eigenvector equation is

(A− 3I)v =

 2 −1 1
1 0 0
−3 2 −2

a
b
c

 =

0
0
0


The second row implies that a = 0. Then, c = b. Thus, to within a constant multiple,
the eigenvalue λ = 3 has only one single eigenvector (with b ̸= 0)

v1 =

0
b
b

 .

So the defect of λ = 3 is .

• To apply the method described for triple eigenvalues, we first calculate

(A− 3I)2 =

 2 −1 1
1 0 0
−3 2 −2

 2 −1 1
1 0 0
−3 2 −2

 =

and

(A− 3I)3 =

 2 −1 1
1 0 0
−3 2 −2



• Beginning with , for instance, we calculate

v2 = (A− 3I)v3 =

 2 −1 1
1 0 0
−3 2 −2


v1 = (A− 3I)v2 =

 2 −1 1
1 0 0
−3 2 −2
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• The linearly independent solutions are:
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Sec 5.3 Gallery of Solns for Linear Systems

Example 2. Solve the linear system:(
x′

y′

)
=

(
a 0
0 −1

)(
x
y

)
.

Graph the phase portrait/diagram as a varies from −∞ to ∞, showing the qualitatively
different cases.

Solution

• Matrix multiplication yields

• The solution is

• The phase portrait for different values of a are shown next. In each case, y(t) decays
exponentially fast.

• Case a < −1:

• Case a = −1
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• Case a ∈ (−1, 0)

• Case a = 0

• Case a > 1
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Example 3. Solve the linear system:(
x′

y′

)
=

(
1 1
4 −2

)
︸ ︷︷ ︸

=A

(
x
y

)
.

Graph the corresponding phase portrait/diagram.

Solution

• The characteristic equation is

det(A− λI) = λ2 + λ− 6 = 0.

• Hence, the eigenvalues of A are

• The eigenvector equation is:

(A− λI)v =

(
1− λ 1
4 −2− λ

)(
a
b

)
=

(
0
0

)
.

• For λ = 2, this yields

(A− 2I)v =

(
−1 1
4 −4

)(
a
b

)
=

(
0
0

)
.

• The corresponding non-trivial eigenvector is

• Similarly, for λ = −3, this yields

(A+ 3I)v =

(
4 1
4 1

)(
a
b

)
=

(
0
0

)
.

• The corresponding non-trivial eigenvector is
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• The general solution is

• The phase portrait is
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Example 4. Determine the nature of the eigenvalues and eigenvectors associated to the
following phase portrait.
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Example 5. Determine what happens when the eigenvalues of the 2 × 2 linear system are
complex numbers.

Solution

• Let’s write the eigenvalues as

• Case if p = 0, the general solution is

x(t) = c1(a cos qt− b sin qt) + c2(b cos qt+ a sin qt).

• Case if p ̸= 0 , the general solution is

x(t) = ept(c1(a cos qt− b sin qt) + c2(b cos qt+ a sin qt)).
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Example 6. Determine what happens when the eigenvalues of the 2 × 2 linear system are
equal.

Solution

• Complete eigenvalue. If there are two independent eigenvectors, then they span the
plane and so every vector is an eigenvector with this same eigenvalue. To see this, let

• Defective eigenvalue. The eigenspace corresponding to λ is one-dimensional.
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