MA 266 Lecture 27

Christian Moya, Ph.D.

Sec 5.2 Eigenvalue Method for Homogeneous Systems

Distinct Complex Eigenvalues

Formula for distinct complex eigenvalues

• Distinct complex conjugate eigenvalues $\lambda_{1,2} = p \pm iq$ with eigenvectors $\mathbf{v}_{1,2} = \mathbf{a} \pm i\mathbf{b}$ produce two linearly independent *real-valued* vector solutions:

$$\mathbf{x}_1(t) = e^{pt}(\mathbf{a}\cos qt - \mathbf{b}\sin qt)$$
$$\mathbf{x}_2(t) = e^{pt}(\mathbf{b}\cos qt + \mathbf{a}\sin qt)$$

Procedure for Finding Real-Valued Solutions

- 1. Find explicitly a single *complex-valued* solution $\mathbf{x}(t) = \mathbf{v}_1 e^{\lambda_1 t}$ associated with the complex eigenvalue λ_1 and eigenvector \mathbf{v}_1 ;
- 2. Then, find the *real* and *imaginary* parts $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ to get two *independent* real-valued solutions corresponding to the complex conjugate eigenvalues $\lambda_{1,2}$.

Example 1. Find the the general solution of:

$$\mathbf{x}' = \underbrace{\begin{pmatrix} 1 & -5 \\ 1 & 3 \end{pmatrix}}_{=\mathbf{A}} \mathbf{x}$$

Solution

• The corresponding characteristic equation

$$det(\mathbf{A} - \lambda \mathbf{I}) = det \begin{pmatrix} 1 - \lambda & -5\\ 1 & 3 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(3 - \lambda) + 5$$
$$= \lambda^2 - 4\lambda + 8 = 0$$

• Using the quadratic formula, we obtain the pair of complex eigenvalues:

$$\lambda_{1,2} = p \pm iq = 2 \pm 2i.$$

• Substituting $\lambda_1 = 2 + 2i$ into the *eigenvector* equation $(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{v}_1 = \mathbf{0}$ gives

$$\begin{pmatrix} 1-2i & -5\\ 1 & -1-2i \end{pmatrix} \begin{pmatrix} y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

• Note that y and z satisfy

$$-\frac{y}{5}-\frac{2y}{5}-z=0$$

• Choose y = -5, then z = 1 + 2i. Hence, the eigenvector is

 $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b} =$

Method 1.

• Use the formulae:

$$\mathbf{x}_1(t) = e^{pt} (\mathbf{a} \cos qt - \mathbf{b} \sin qt)$$
$$\mathbf{x}_2(t) = e^{pt} (\mathbf{b} \cos qt + \mathbf{a} \sin qt)$$

Method 2.

• Compute the corresponding complex-valued solution

$$\mathbf{x}(t) = \mathbf{v}_1 e^{\lambda_1 t} = \begin{pmatrix} -5\\1+2i \end{pmatrix} e^{(2+2i)t} = \begin{pmatrix} -5\\1+2i \end{pmatrix} e^{2t} (\cos 2t + i\sin 2t) \\ = e^{2t} \begin{pmatrix} -5\cos 2t - 5i\sin 2t\\(\cos 2t + i\sin 2t) + 2i\cos 2t - 2\sin 2t \end{pmatrix}$$

• The real and imaginary parts of $\mathbf{x}(t)$ are the real-valued solutions:

• The general solution is

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$$

= $e^{2t} \begin{pmatrix} -5c_1 \cos 2t - 5c_2 \sin 2t \\ (c_1 + 2c_2) \cos 2t + (-2c_1 + c_2) \sin 2t \end{pmatrix}$.

Sec 5.5 Multiple Eigenvalue Solutions

Repeated Roots

• Suppose the characteristic equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

does not have n distinct roots, and thus has at least one repeated root.

Definition. An eigenvalue is of *multiplicity* k if it is a k-fold root of the characteristic equation.

- An eigenvalue of multiplicity k > 1 may have *fewer* than k linearly independent associated eigenvectors.
- In this case we are unable to find a "complete set" of n linearly independent eigenvectors of \mathbf{A} , as needed to form the general solution of the system.

Complete Eigenvalues

An eigenvalue of multiplicity k is said to be ______ if it has k linearly independent associated eigenvectors.

- If every eigenvalue of the matrix **A** is complete, then—because eigenvectors associated with different eigenvalues are linearly independent—it follows that **A** does have a complete set of *n* linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ associated with the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ (each repeated with its multiplicity).
- In this case a general solution of

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$

is still given by the usual combination

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Example 2. Find a general solution of the system

$$\mathbf{x}' = \underbrace{\begin{pmatrix} 9 & 4 & 0 \\ -6 & -1 & 0 \\ 6 & 4 & 3 \end{pmatrix}}_{=\mathbf{A}} \mathbf{x}.$$

Solution

• The characteristic equation of the coefficient matrix **A** is

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} 9 - \lambda & 4 & 0\\ -6 & -1 - \lambda & 0\\ 6 & 4 & 3 - \lambda \end{pmatrix}$$
$$= (0) \cdot \det\begin{pmatrix} -6 & -1 - \lambda\\ 6 & 4 \end{pmatrix} - (0) \cdot \det\begin{pmatrix} 9 - \lambda & 4\\ 6 & 4 \end{pmatrix} + (3 - \lambda) \cdot \det\begin{pmatrix} 9 - \lambda & 4\\ -6 & -1 - \lambda \end{pmatrix}$$
$$= (5 - \lambda)(3 - \lambda)^2 = 0.$$

- Thus A has
- Case 1. $\lambda_1 = 5$. The eigenvector equation $(\mathbf{A} \lambda_1 \mathbf{I})\mathbf{v}_1 = \mathbf{0}$ is:

$$(\mathbf{A} - 5\mathbf{I})\mathbf{v}_1 = \begin{pmatrix} 4 & 4 & 0 \\ -6 & -6 & 0 \\ 6 & 4 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

- Each of the first two eq'ns imply b = -a. Then, one can reduce the third equation to
- The choice of a = 1 yields the eigenvector:

• Case 2. $\lambda_2 = 3$. Here the eigenvector equation is:

$$(\mathbf{A} - 3\mathbf{I})\mathbf{v}_2 = \begin{pmatrix} 6 & 4 & 0 \\ -6 & -4 & 0 \\ 6 & 4 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

- Here \mathbf{v}_2 is an eigenvector if and only if
- The above does not involve c. Thus c is arbitrary.

• Thus, we have found the complete set \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 of linearly independent eigenvectors associated to the eigenvalues $\lambda_1 = 5$, $\lambda_2 = 3$, and $\lambda_3 = 3$. Thus, the corresponding general solution is

Defective Eigenvalues

We start with an illustrative example.

Example 3. Find the eigenvalues and the eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & -4 \\ 4 & 9 \end{pmatrix}$$

Solution

• The coefficient matrix has characteristic equation

$$det(\mathbf{A} - \lambda \mathbf{I}) = det \begin{pmatrix} 1 - \lambda & -4 \\ 4 & 9 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(9 - \lambda) + 16$$
$$= \lambda^2 - 10\lambda + 25 = 0$$

- $\bullet\,$ Thus ${\bf A}$ has
- The corresponding eigenvector equation is

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \begin{pmatrix} -4 & -4 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Hence

• Thus the multiplicity ______ eigenvalue ______ has _____ independent eigenvector. Hence

Definition. An eigenvalue λ of multiplicity k > 1 is called _________ if it is not complete.

• If λ has only p < k linearly independent eigenvectors, then the number

of "missing" eigenvectors is called the *defect* of the defective eigenvalue λ .

- If the eigenvalues of the $n \times n$ matrix **A** are not all complete, then the eigenvalue method as yet described will produce *fewer* than the needed *n* linearly independent solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- We therefore need to discover how to find the "missing solutions" corresponding to a defective eigenvalue λ of multiplicity k > 1.

The Case k = 2

- Suppose there is a single eigenvector \mathbf{v}_1 associated with the defective eigenvalue λ .
- Then at this point we have found only the single solution

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{\lambda t}$$

of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

The Second Solution

• We explore a second solution of the form

• When we substitute _____ in $\mathbf{x}' = \mathbf{A}\mathbf{x}$, we get

• We obtain the two equations

that the vectors \mathbf{v}_1 and \mathbf{v}_2 must satisfy in order for

$$\mathbf{x}_2(t) = (\mathbf{v}_1 t + \mathbf{v}_2)e^{\lambda t} = \mathbf{v}_1 t e^{\lambda t} + \mathbf{v}_2 e^{\lambda t}$$

to give a solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

- The *first* eq'n confirms that \mathbf{v}_1 is an eigenvector of \mathbf{A} associated with eigenvalue λ .
- Then the *second* equation says that the vector \mathbf{v}_2 satisfies
- To solve the two equations simultaneously, it suffices to find a solution \mathbf{v}_2 of the single equation $(\mathbf{A} \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0}$ such that the resulting vector $\mathbf{v}_1 = (\mathbf{A} \lambda \mathbf{I})\mathbf{v}_2$ is nonzero.

Algorithm Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution \mathbf{v}_2 of the equation

such that

is nonzero, and therefore is an eigenvector \mathbf{v}_1 associated with λ .

2. Then form the two independent solutions

and

of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ corresponding to λ .

Example 4. Find a general solution of the system

$$\mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & 9 \end{pmatrix} \mathbf{x}.$$

Solution

- In the previous example, we showed that **A** has a *defective* eigenvalue:
- Following the Algorithm, we start by calculating

• If we try

• Therefore the two solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are:

• The general solution is:

Generalized Eigenvectors

• The vector \mathbf{v}_2 in the equation

$$(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0}$$

is an example of a generalized eigenvector.

Rank of a Generalized Eigenvector

• If λ is an eigenvalue of the matrix **A**, then a rank r generalized eigenvector associated with λ is a vector **v** such that

- A rank 1 generalized eigenvector is an ordinary eigenvector because
- The vector \mathbf{v}_2 in the equation

$$(\mathbf{A} - \lambda \mathbf{I})^2 \mathbf{v}_2 = \mathbf{0}$$

is a rank 2 generalized eigenvector (and not an ordinary eigenvector).

Chains of Generalized Eigenvectors

- The multiplicity 2 method described earlier boils down to finding a pair ______ of generalized eigenvectors, one of rank 1 and one of rank 2, such that
- Higher multiplicity methods involve longer "chains" of generalized eigenvectors.

Length k Chain

• A length k chain of generalized eigenvectors based on the eigenvector \mathbf{v}_1 is a set

of k generalized eigenvectors such that

• Because \mathbf{v}_1 is an ordinary eigenvector, $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v}_1 = \mathbf{0}$. Therefore,

Length 3 Chain

- Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a length 3 chain of generalized eigenvectors associated with the multiple eigenvalue λ of the matrix **A**.
- It is easy to verify that three linearly independent solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are given by

Example 5. Find three linearly independent solutions of the system

$$\mathbf{x}' = \begin{pmatrix} -1 & 0 & 1\\ 0 & -1 & 1\\ 1 & -1 & -1 \end{pmatrix} \mathbf{x}.$$

Solution

• The characteristic equation of the coefficient matrix **A** is

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{pmatrix} -1 - \lambda & 0 & 1\\ 0 & -1 - \lambda & 1\\ 1 & -1 & -1 - \lambda \end{pmatrix}$$
$$= (-1 - \lambda) \cdot \det \begin{pmatrix} -1 - \lambda & 1\\ -1 & -1 - \lambda \end{pmatrix} + (1) \cdot \det \begin{pmatrix} 0 & -1 - \lambda\\ 1 & -1 \end{pmatrix}$$
$$= (-1 - \lambda)^3 = 0.$$

- Thus **A** has the eigenvalue
- The eigenvector equation is

• To apply the method described for triple eigenvalues, we first calculate

• Beginning with ______, for instance, we calculate

• The linearly independent solutions are:

Example 6. In this example, the eigenvalues are given. Find the general solution of

$$\mathbf{x}' = \underbrace{\begin{pmatrix} 5 & -1 & 1 \\ 1 & 3 & 0 \\ -3 & 2 & 1 \end{pmatrix}}_{=\mathbf{A}} \mathbf{x}; \quad \lambda = 3, 3, 3.$$

Solution

• The eigenvector equation is

$$(\mathbf{A} - 3\mathbf{I})\mathbf{v} = \begin{pmatrix} 2 & -1 & 1\\ 1 & 0 & 0\\ -3 & 2 & -2 \end{pmatrix} \begin{pmatrix} a\\ b\\ c \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$$

The second row implies that a = 0. Then, c = b. Thus, to within a constant multiple, the eigenvalue $\lambda = 3$ has only one single eigenvector (with $b \neq 0$)

$$\mathbf{v}_1 = \begin{pmatrix} 0\\b\\b \end{pmatrix}.$$

So the defect of $\lambda = 3$ is _____.

• To apply the method described for triple eigenvalues, we first calculate

$$(\mathbf{A} - 3\mathbf{I})^2 = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ -3 & 2 & -2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ -3 & 2 & -2 \end{pmatrix} =$$

and

$$(\mathbf{A} - 3\mathbf{I})^3 = \begin{pmatrix} 2 & -1 & 1\\ 1 & 0 & 0\\ -3 & 2 & -2 \end{pmatrix}$$

• Beginning with _____, for instance, we calculate

$$\mathbf{v}_{2} = (\mathbf{A} - 3\mathbf{I})\mathbf{v}_{3} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ -3 & 2 & -2 \end{pmatrix}$$
$$\mathbf{v}_{1} = (\mathbf{A} - 3\mathbf{I})\mathbf{v}_{2} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 0 \\ -3 & 2 & -2 \end{pmatrix}$$

• The linearly independent solutions are: