MA 266 Lecture 29

Christian Moya, Ph.D.

Sec 5.6 Matrix Exponentials and Linear Systems

• Consider the *single* equation linear system IVP:

• The corresponding *solution*:

• Now consider the n equations linear system IVP:

• We expect the *solution* to be of the form:

• We can verify ______ is the solution of ______.

Series definition of $e^{\mathbf{A}t}$

How to compute $e^{\mathbf{A}t}$?

- 1. Series definition^{*}.
- 2. Fundamental matrix solution $\mathbf{\Phi}(t)$.
- 3. n linearly independent eigenvectors.

Properties of $e^{\mathbf{A}t}$

1. If $\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_n)$, then

2. If **0** is the $n \times n$ zero matrix, then

3. If **A** and **B** are two $n \times n$ matrices that _____, i.e.,

then

4. The inverse of $e^{\mathbf{A}}$

Computing $e^{\mathbf{A}t}$ using the *series* definition

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2!} + \ldots + \mathbf{A}^n \frac{t^n}{n!} + \ldots$$

Q: When can we use this series?

Definition -Nilpotent matrix

• A $n \times n$ matrix is said to be *nilpotent* if

Example 1. Show that the following matrix \mathbf{A} is nilpotent and then use this fact to find the matrix exponential $e^{\mathbf{A}t}$.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Solution.

• so $\mathbf{A}^n = \mathbf{0}$ for _____. It therefore follows from the series definition of the matrix exponential that

Example 2. Solve the following IVP

$$\mathbf{x}' = \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}}_{=\mathbf{A}} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

Solution.

• Show that $\mathbf{A} = \mathbf{I} + \mathbf{B}$.

• Show **B** is nilpotent.

• Compute $e^{\mathbf{A}t}$.

• Solve the IVP:

Fundamental Matrix Solutions

• The general solution of the linear system $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

can be written in the form

where

• To solve the IVP for a given initial condition

it suffices to find _____

• Conclusion:

Example 3. Compute the matrix exponential $e^{\mathbf{A}t}$ for the system

 $x_1' = 5x_1 - 3x_2, x_2' = 2x_1.$

Solution.

• Characteristic equation:

• Case 1:

• Case 2:

• The fundamental matrix is then

• The matrix exponential $e^{\mathbf{A}t}$:

n linearly independent eigenvectors

Example 4. Compute the matrix exponential $e^{\mathbf{A}t}$ for the system

$$x_1' = 5x_1 - 3x_2, x_2' = 2x_1.$$

Solution with the alternative method.