MA 266 Lecture 36

Christian Moya, Ph.D.

Transforms of Periodic Functions

Definition - Periodic Function

• A nonconstant function f(t) defined for $t \ge 0$ is said to be **periodic** if there is a number p > 0 such that

$$f(t+p) = f(t),$$

for all $t \ge 0$. The least positive value of p (if any) is called the **period** of f.

Theorem - Transforms of Periodic Functions

• Let f(t) be periodic with period p and piecewise continuous for $t \ge 0$. Then the transform $F(s) = \mathcal{L}{f(t)}$ exists for s > 0 and is given by

$$F(s) = \frac{1}{1 - e^{-ps}} \int_0^p e^{-st} f(t) dt$$

Example 1. The square-wave function is given by $f(t) = (-1)^{\lfloor t/a \rfloor}$ of period p = 2a, where $\lfloor x \rfloor$ denotes the greatest integer not exceeding x. Find its Laplace transform.

Solution.

• Applying the above theorem yields

$$\begin{split} F(s) &= \frac{1}{1 - e^{-2as}} \int_0^{2a} e^{-st} f(t) dt = \frac{1}{1 - e^{-2as}} \left(\int_0^a e^{-st} dt - \int_a^{2a} e^{-st} dt \right) \\ &= \frac{1}{1 - e^{-2as}} \left(\left[-\frac{1}{s} e^{-st} \right]_0^a - \left[-\frac{1}{s} e^{-st} \right]_a^{2a} \right) \\ &= \frac{(1 - e^{-as})^2}{s(1 - e^{-2as})} \\ &= \frac{1 - e^{-as}}{s(1 + e^{-as})}. \end{split}$$

Sec 7.6 Impulses and Delta Functions

- Consider a force f(t) that acts only during a very short time interval $a \leq t \leq b$, with f(t) = 0 outside this interval.
- A typical example would be a quick surge of voltage applied to an electrical system.
- In such a situation, the effect of f(t) depends on the value of

• The number p is called the _ the impulse force f(t) over the interval [a, b].

Modeling Impulsive Forces

- Suppose for simplicity that f(t) has impulse 1 and acts during some brief time interval beginning at time $t = a \ge 0$.
- Then we can select a fixed number $\epsilon > 0$ that approximates the length of this time interval and replace f(t) with the specific function

• If $b \ge a + \epsilon$, then the impulse of $d_{a,\epsilon}$ over [a, b] is

Dirac Delta Function

• The limit in the equation

gives

Meaning of $\delta_a(t)$

- The following computation motivates the meaning that we will attach here to the symbol $\delta_a(t)$.
- If g(t) is a continuous function, then the mean value theorem for integrals implies that

for some point \overline{t} in $[a, a + \epsilon]$.

• It follows that

by continuity of g at t = a.

• If $\delta_a(t)$ were a function in the strict sense of the definition, and if we could interchange the above limit and integral, we therefore could conclude that

The Laplace Transform of $\delta_a(t)$

- If we take $g(t) = e^{-st}$ in our definition of $\delta_a(t)$, the result is
- $\bullet\,$ We therefore define the Laplace transform of the delta function to be

Note that $\mathcal{L}{\delta(t)}$ is

External Force

- Consider the response of a linear differential equation to a unit impulse at the instant time t = a:
- We will call x(t) a solution provided that
- Because
- Using the Laplace Transform

• Taking the limit as $\epsilon \to 0$

• Note that this is precisely the same result we would obtain by using:

Example 2. (Spring - 2019;p11) Solve $y'' + 4y = 2\delta(t - \pi)$ with the initial conditions y(0) = 0 and y'(0) = 0.

Example 3. (Spring - 2017;p16) Solve the IVP

$$y'' + 2y' - 15y = \delta(t - 1), \ y(0) = y'(0) = 0.$$

System Analysis and Duhamel's Principle

- Consider the linear system
- The constant coefficients a, b, and c are determined by the physical parameters of the system and are independent of f(t).
- Then the transform of our differential equation is

• so

Transfer Function

• The function

is called the *transfer function* of the system.

• Thus the transform of the response to the input f(t) is the product of W(s) and the transform F(s).

Weight function and Duhamel's Principle

• The function

is called the *weight function* of the system.

• From the fact that X(s) = W(s)F(s) we see by convolution that

• This formula is *Duhamel's principle* for the system.

Example 4. Apply Duhamel's principle to write an integral formula for the solution of the *IVP*:

$$x'' + 4x = f(t); \ x(0) = x'(0) = 0.$$

Example 5. Apply Duhamel's principle to write an integral formula for the solution of the *IVP*:

$$x'' + 6x' + 9x = f(t); \ x(0) = x'(0) = 0.$$