
Lecture 10: Kramers-Wannier duality

There are many different incarnations of what is called Kramers-Wannier duality, which is the
smallest example of non-invertible symmetry. We’ll see that this is very closely related to –
but not always precisely given by – the idea of symmetry operators satisfying a non-invertible
fusion rule.
The flavor of Kramers-Wannier duality most accessible to us is a 1d Hamiltonian lattice

model. We follow Section 3.3 in Shu-Heng Shao’s TASI lecture notes very closely.
The transverse-field Ising lattice model is defined on a 1d lattice with periodic boundary con-

ditions. We put a qubit𝑗 = C2 on the 𝑗th site of the lattice where for sites 𝑗 = 1, 2, … ,𝑁 . The𝑁 + 1st site is identified with the 1st site, and so on, so that we can think of the 1d lattice as
living on the circle 𝑆1.17 Similarly, 𝑋𝑁+1 = 𝑋1 and 𝑍𝑁+1 = 𝑍𝑁 .

0 1 2 ⋯ ⋯𝑗 𝑁 1 2 ⋯
The total Hilbert space is 𝑡𝑜𝑡𝑎𝑙 =⨂𝑁𝑗=1𝑗 , with dim() = 2𝑁 . We work in the Hadamard

basis of 𝑡𝑜𝑡𝑎𝑙 , i.e. the eigenbasis of the Pauli 𝑋 operators acting on each of the 𝑁 sites.
Recall a basis state looks like a string of 𝑁 plusses and minuses | +−−+⋯+⟩ = |+⟩ ⊗ |−⟩ ⊗|−⟩|+⟩⊗⋯⊗ |+⟩, where the local basis is related to the standard qubit basis by |+⟩ = 1√2 (|0⟩+|1⟩)

and |−⟩ = 1√2 (|0⟩ − |1⟩).
The Hamiltonian of this model is given by

𝐻 = −𝑔 𝑁∑𝑗=1 𝑋𝑗 − 𝑁∑𝑗=1 𝑍𝑗𝑍𝑗+1.
Previously when we’ve written down Hamiltonians, the name of the game is to find their

ground state space. Today thoughwe’re more interested in the symmetries of this lattice model.

Unitary symmetry operators

Traditionally we think of symmetries as being implemented by unitary operators, which are
in particular invertible. In order for a unitary to qualify as a symmetry on the lattice, one may
require it to act in certain ways (locally, or on-site).
In this discusion we will not worry about these kinds of details and be content to think of a

conventional symmetry as some unitary 𝑈 acting on 𝑡𝑜𝑡𝑎𝑙 that commutes with the Hamilto-
nian 𝐻 , i.e. [𝑈 ,𝐻 ] = 𝑈𝐻 −𝐻𝑈 = 0. Since 𝑈 is invertible, commuting with the Hamiltonian is
equivalent to saying that 𝐻 is fixed under conjugation, 𝑈𝐻𝑈−1 = 𝐻 (this is how symmetries
act on operators).

17This is just like putting our 2d lattice on a torus, but one dimension down!

67



Z2 “spin flip” symmetry

Our model has a Z2 symmetry enacted by the operator

𝜂 = 𝑁∏𝑗=1 𝑋𝑗 .
To see that 𝜂 is a symmetry, we compute [𝜂,𝐻 ] = 𝜂𝐻−𝐻𝜂 = 0, since 𝜂 commutes with the𝑋

terms in 𝐻 and commutes with each 𝑍𝑖𝑍𝑖+1 term. To see the latter, note that∏𝑗 𝑋𝑗 commutes
with 𝑍𝑖𝑍𝑖+1 whenever 𝑗 ≠ 𝑖, 𝑗 ≠ 𝑖𝑖+1, and then

(𝑋𝑖𝑋𝑖+1)(𝑍𝑖𝑍𝑖+1) = (𝑋𝑖𝑍𝑖)(𝑋𝑖+1𝑍𝑖+1) = (−𝑍𝑖𝑋𝑖)(−𝑍𝑖+1𝑋𝑖+1) = (𝑍𝑖𝑋𝑖)(𝑍𝑖+1𝑋𝑖+1) = (𝑍𝑖𝑍𝑖+1)(𝑋𝑖𝑋𝑖+1).
Alternatively, we compute {𝜂𝑋𝑖𝜂−1 = 𝑋𝑖𝜂𝑍𝑖𝜂−1 = −𝑍𝑖

and thus 𝜂𝐻𝜂−1 = 𝐻 .
Since 𝜂2 = 1 we see this is an invertible Z2 symmetry.

Z𝑁 lattice translation symmetry

Since our 1d lattice with lives on a circle, there is a symmetry that arises from cyclic permuta-
tion of the 𝑁 sites.
This lattice translation symmetry is implemented by the operator

𝑇 = 𝑁−1∏𝑗=1 𝑇𝑗 ,𝑗+1, where𝑇𝑗 ,𝑗+1 = 12 (𝑋𝑗𝑋𝑗+1 + 𝑌𝑗𝑌𝑗+1 + 𝑍𝑗𝑍𝑗+1 + 1)
In the exercises you will show directly that [𝑇 ,𝐻 ] = 0. We compute that{𝑇𝑋𝑖𝑇−1 = 𝑋𝑖+1𝑇𝑍𝑖𝑇 −1 = 𝑍𝑖+1

(and also 𝑇 𝑘𝑋𝑖(𝑇−1)𝑘 = 𝑋𝑖+𝑘 and 𝑇 𝑘𝑍𝑖(𝑇−1)𝑘 = 𝑍𝑖+𝑘 for 𝑘 < 𝑁 .
and hence

𝑇𝑋𝑖𝑇−1 = − 𝑁∑𝑗=1 𝑋𝑗+1 − 𝑁∑𝑗=1 𝑍𝑗+1𝑍𝑗+2 𝑙→𝑗+1= − 𝑁∑𝑙=1 𝑋𝑙 − 𝑁∑𝑙=1 𝑍𝑙𝑍𝑙+1 = 𝐻 .
Since 𝑇𝑁 = 1 we see this is an invertible Z𝑁 symmetry.
We can check that 𝜂𝑇 = 𝑇𝜂, and so the invertible symmetries form the group Z2 ×Z𝑁 .
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Noninvertible Kramers-Wannier symmetry operator 𝐷
When 𝑔 = 1 and we specialize to the critical Ising model, there is another kind of symmetry
that interchanges the terms in the Hamiltonian

𝑋𝑖 ↦ 𝑍𝑖𝑍𝑖+1𝑍𝑖𝑍𝑖+1 ↦ 𝑋𝑖
and leaves 𝐻 fixed overall.
Suppose that this transformation could be implemented by a unitary – and in particular

invertible – symmetry operator 𝑈 , so that{𝑈𝑋𝑖𝑈−1 = 𝑍𝑖𝑍𝑖+1𝑈𝑍𝑖𝑍𝑖+1𝑈−1 = 𝑋𝑖+1 .
Such an operator would necessarily act trivially on 𝜂, since

𝑈𝜂𝑈−1 = 𝑁∏𝑗=1 𝑈𝑋𝑗𝑈−1 = 𝑁∏𝑗=1 𝑍𝑗𝑍𝑗+1 = (𝑍1𝑍2)(𝑍2𝑍3)⋯ (𝑍𝑁−1𝑍𝑁 )(𝑍𝑁𝑍1) = 1
But then 𝑈𝜂𝑈−1 = 1 ⟹ 𝜂 = 𝑈−1𝑈 = 1, a contradiction.
There exists, however, a unitary 𝑈𝐾𝑊 that *almost* achieves this symmetry, namely it sends𝑋𝑖 ↦ 𝑍𝑖𝑍𝑖+1 and 𝑍𝑖𝑍𝑖+1 ↦ 𝑋𝑖+1 except at the endpoints of our spin chain. It acts on the terms

of the Hamiltonian as {𝑈𝐾𝑊𝑋𝑖𝑈−1𝐾𝑊 = 𝑍𝑖𝑍𝑖+1 1 ≤ 𝑖 ≤ 𝑁 − 1𝑈𝐾𝑊𝑍𝑖𝑍𝑖+1𝑈−1𝐾𝑊 = 𝑋𝑖+1 1 ≤ 𝑖 ≤ 𝑁 − 1,
but there are obstructions to the symmetry being implemented{𝑈𝐾𝑊𝑋𝑁𝑈−1𝐾𝑊 = 𝜂𝑍𝑁𝑍1𝑈𝐾𝑊𝑍𝑁𝑍1𝑈−1𝐾𝑊 = 𝜂𝑋1.
This is definitely not a symmetry, since

𝑈𝐻𝑈−1 = 𝑁−1∑𝑗=1 𝑋𝑗 − 𝑁−1∑𝑗=1 𝑍𝑗𝑍𝑗+1 − 𝜂𝑋1 − 𝜂𝑍𝑛𝑍1 ≠ 𝐻 .
We won’t be concerned with the exact form of 𝑈𝐾𝑊 since its derivation is a bit beyond our

scope for today, but it may interest you to know it doesn’t look too out of the ordinary.
Up to a phase,

𝑈𝐾𝑊 =∏(1 + 𝑖𝑋𝑗√2 )(1 + 𝑖𝑍𝑗𝑍𝑗+1√2 )(1 + 𝑖𝑋𝑁√2 ) .
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Happily there is an operator 𝐷 that commutes with 𝐻 and implements the symmetry in the
sense that {𝐷𝑋𝑖 = 𝑍𝑖𝑍𝑖+1𝐷𝐷𝑍𝑖𝑍𝑖+1 = 𝑋𝑖+1𝐷
for all values of 𝑗 .
You can check that 𝐷 = 𝑈𝐾𝑊 (1 + 𝜂)

has this property using what we already know about how𝑈𝐾𝑊 and 𝜂 act on our local operators.
But it is neither unitary nor invertible, so we can’t talk about 𝐷−1. The quickest way to see

this is to observe that there are some basis states in the kernel of 𝐷: e.g. if 𝑁 = 5 the operator𝜂 sends | + − + −−⟩ ↦ (−1)3| + − + −−⟩,
and hence (1 + 𝜂)| + − + −−⟩ = | + − + −−⟩ − | + − + −−⟩ = 0. In general we see that 𝐷 sends
basis states with odd parity to 0.
We interpret 𝐷 as a non-invertible symmetry of the lattice model.

Algebra of symmetry operators on the lattice

In summary, we have symmetry generators 𝜂, 𝑇 , and 𝐷. They satisfy some relations, which we
list without proof, that appear to be fusion rules at first glance.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂2 = 1𝑇𝑁 = 1𝜂𝑇 = 𝑇𝜂𝜂𝐷 = 𝐷𝜂𝐷𝑇 = 𝑇𝐷𝐷2 = (1 + 𝜂)𝑇
.

We note that 𝐷 is not self dual, since 1 doesn’t appear in 𝐷2. This means we don’t have
enough information at this point to determine whether these correspond to a fusion ring. It
turns out that these symmetries do not give rise to a fusion category symmetry on the lattice
precisely, although we do not give details here.
What is true is that in the thermodynamic limit where we take 𝑁 → ∞ and limit to a con-

tinuum field theory, the translation symmetry operator 𝑇 limits to 1 in a strong enough sense
that we can disregard it.
The continuum theory realized by the limit of the critical Ising model is the Ising conformal

field theory (CFT), and it has symmetry generators⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜂2 = 1𝜂𝐷 = 𝐷𝜂𝐷2 = 1 + 𝜂

which you hopefully recognize as satisfying the Ising fusion rules introduced previously.
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Summary

We say that this 1d lattice model exhibits a non-invertible symmetry. While the symmetry
operators didn’t exactly form a fusion ring on the lattice, they formed the Ising fusion ring in
the thermodynamic (𝑁 → ∞) limit. What we’re seeing is a piece of an Ising fusion category
symmetry of the (1+1)D Ising CFT.
Up until today we had been studying 2d lattice models, and there we saw fusion rings play

two different roles: first as organizing the fusion rules of the quantum degrees of freedom that
decorated the lattice, and second as the fusion rules of the emergent quasiparticles.
Here the role of the fusion ring is to organize the categorical symmetries of a (1+1)D QFT.

After we finally see fusion categories and not just fusion rings, we’ll return to the subject of
non-invertible symmetry and explain the relationship between these different roles that fusion
categories play in different settings and dimensions.
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