Lecture 10: Kramers-Wannier duality

There are many different incarnations of what is called Kramers-Wannier duality, which is the
smallest example of non-invertible symmetry. We’ll see that this is very closely related to —
but not always precisely given by — the idea of symmetry operators satisfying a non-invertible
fusion rule.

The flavor of Kramers-Wannier duality most accessible to us is a 1d Hamiltonian lattice
model. We follow Section 3.3 in Shu-Heng Shao’s TASI lecture notes very closely.

The transverse-field Ising lattice model is defined on a 1d lattice with periodic boundary con-
ditions. We put a qubit H; = C? on the jth site of the lattice where for sites j = 1,2, ..., N. The
N + 1st site is identified with the 1st site, and so on, so that we can think of the 1d lattice as
living on the circle S'.17 Similarly, X1 = X; and Zy1 = Zy.
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The total Hilbert space is H;otq1 = ®§\]:1 H, with dim(H) = 2V. We work in the Hadamard
basis of H;o41, i.e. the eigenbasis of the Pauli X operators acting on each of the N sites.

Recall a basis state looks like a string of N plusses and minuses |+ ——+ -+ +) = [+) @ |-) ®
|-)|+) ® - ® |+), where the local basis is related to the standard qubit basis by |+) = %GO) +1))
and |-) = 55(10) - [1)).

The Hamiltonian of this model is given by

N N
H = _gZXj - ZZij+1'
j=1 j=1

Previously when we’ve written down Hamiltonians, the name of the game is to find their
ground state space. Today though we’re more interested in the symmetries of this lattice model.

Unitary symmetry operators

Traditionally we think of symmetries as being implemented by unitary operators, which are
in particular invertible. In order for a unitary to qualify as a symmetry on the lattice, one may
require it to act in certain ways (locally, or on-site).

In this discusion we will not worry about these kinds of details and be content to think of a
conventional symmetry as some unitary U acting on H;,;4 that commutes with the Hamilto-
nian H, i.e. [U,H] = UH — HU = 0. Since U is invertible, commuting with the Hamiltonian is
equivalent to saying that H is fixed under conjugation, UHU ! = H (this is how symmetries
act on operators).

"This is just like putting our 2d lattice on a torus, but one dimension down!

67



Z “spin flip” symmetry

Our model has a Z; symmetry enacted by the operator

N
n=11x:
j=1
To see that 7 is a symmetry, we compute [n, H|] = nH—Hn = 0, since  commutes with the X
terms in H and commutes with each Z;Z;,; term. To see the latter, note that [] ; Xj commutes
with Z;Z;,1 whenever j # i, j # ij+1, and then
(XiXi11)(ZiZi1) = (XiZ)(Xir1Zi11) = (CZi X)) (—Zig1 Xiv1) = (ZiXi)(Zig1 Xiv1) = (ZiZi11)(XiXiv1).

Alternatively, we compute

nXin' =X
nZin ' = -2
and thus
nHy' = H.

Since ? = 1 we see this is an invertible Z, symmetry.

Zy lattice translation symmetry

Since our 1d lattice with lives on a circle, there is a symmetry that arises from cyclic permuta-
tion of the N sites.
This lattice translation symmetry is implemented by the operator

N-1

T = H Tj j+1, Where
j=1

Tiji = 5 (XGXjm + Y Yjn + ZiZja +1)

N | -

In the exercises you will show directly that [T, H] = 0. We compute that

TX; T = Xt
TZT ' =Zin

(and also T*X;(T™V)* = X, and T*Z(T~)* = Z .« for k < N.
and hence

N N N N
- I—j+1
TXT ==Y Xp = ), ZimiZpz = =), Xi— ), ZiZin = H.
j=1 j=1 I=1 I=1

Since TN = 1 we see this is an invertible Zy symmetry.
We can check that T = T, and so the invertible symmetries form the group Z, x Zy.
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Noninvertible Kramers-Wannier symmetry operator D

When g = 1 and we specialize to the critical Ising model, there is another kind of symmetry
that interchanges the terms in the Hamiltonian

Xiv> ZiZi
ZiZizy = X;
and leaves H fixed overall.

Suppose that this transformation could be implemented by a unitary — and in particular
invertible — symmetry operator U, so that

UX; U™ =ZiZi
UZiZip U™ = Xipa

Such an operator would necessarily act trivially on 7, since

N N
Unu™ = [JUuxu™ =[] 2121 = (2122)(2%Zs) ~ (Zn1Z6)Zn20) = 1
j=1 j=1

But then UnU™' =1 = n=U"'U = 1, a contradiction.

There exists, however, a unitary Uk that *almost™ achieves this symmetry, namely it sends
Xi — ZiZiy1 and Z;Z;1 — X1 except at the endpoints of our spin chain. It acts on the terms
of the Hamiltonian as

UkwXiUgyy = ZiZin 1<i<N-1
UkwZiZis1Ugyy = Xip1 1<i<N -1,

but there are obstructions to the symmetry being implemented

UKWXNUIE%/V = r]ZNZI
UkwZnZ, UIE%/V = nXj.

This is definitely not a symmetry, since

N-1 N-1
UI‘I(]_1 = Z Xj - Z Zij.H - UXI - 77an1 + H.
=1 =1

We won'’t be concerned with the exact form of Uk since its derivation is a bit beyond our
scope for today, but it may interest you to know it doesn’t look too out of the ordinary.

Up to a phase,
1+iX; 1+iZ;Z4 1+iXN
Uew = J J4g+ .
o H( vz )( vz vz
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Happily there is an operator D that commutes with H and implements the symmetry in the
sense that
DX; = Z;Z;11D
DZiZy1 = Xi1D
for all values of j.
You can check that
D =Ugw(1+n)

has this property using what we already know about how Uk and 7 act on our local operators.

But it is neither unitary nor invertible, so we can’t talk about D™'. The quickest way to see
this is to observe that there are some basis states in the kernel of D: e.g. if N = 5 the operator
n sends

[+ =+ =) > 1+ =+ ),

and hence (1+ n)|+ —+ —) =|+—+ ——) — |+ —+ ——) = 0. In general we see that D sends
basis states with odd parity to 0.

We interpret D as a non-invertible symmetry of the lattice model.

Algebra of symmetry operators on the lattice

In summary, we have symmetry generators 7, T, and D. They satisfy some relations, which we
list without proof, that appear to be fusion rules at first glance.

=1

T™N =1

nT =Tn
nD = Dn
DT =TD
D*=Q1+nT

We note that D is not self dual, since 1 doesn’t appear in D?. This means we don’t have
enough information at this point to determine whether these correspond to a fusion ring. It
turns out that these symmetries do not give rise to a fusion category symmetry on the lattice
precisely, although we do not give details here.

What is true is that in the thermodynamic limit where we take N — oo and limit to a con-
tinuum field theory, the translation symmetry operator T limits to 1 in a strong enough sense
that we can disregard it.

The continuum theory realized by the limit of the critical Ising model is the Ising conformal
field theory (CFT), and it has symmetry generators

=1
nD = Dn
D*=1+n

which you hopefully recognize as satisfying the Ising fusion rules introduced previously.
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Summary

We say that this 1d lattice model exhibits a non-invertible symmetry. While the symmetry
operators didn’t exactly form a fusion ring on the lattice, they formed the Ising fusion ring in
the thermodynamic (N — co) limit. What we’re seeing is a piece of an Ising fusion category
symmetry of the (1+1)D Ising CFT.

Up until today we had been studying 2d lattice models, and there we saw fusion rings play
two different roles: first as organizing the fusion rules of the quantum degrees of freedom that
decorated the lattice, and second as the fusion rules of the emergent quasiparticles.

Here the role of the fusion ring is to organize the categorical symmetries of a (1+1)D QFT.
After we finally see fusion categories and not just fusion rings, we’ll return to the subject of
non-invertible symmetry and explain the relationship between these different roles that fusion
categories play in different settings and dimensions.
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