Lecture 11: Building a fusion category

In this lecture we’ll describe the data structure of a fusion category and its associated graphical
calculus, starting with the data of a fusion ring, namely its fusion coefficients N with respect
to a label set L.

Skeletal fusion categories versus fusion categories

We'll see that the data of a fusion category can be captured by a pair (N, F5] 0 g).(ny.5)
consisting of fusion coefficients and F-symbols. A fusion category presented in this way is
called a skeletal fusion category. A skeletal fusion category is to a fusion category as a group’s
multiplication table is to a group’s definition as a set equipped with a binary operation satsi-
fying some axioms.!® That is, it lets us do concrete calculations with a specific instance of a
fusion category, either by hand or with the help of a computer! On the other hand, we may
not always be so lucky to have our hands on skeletal data (N4, F jb ) m,ap)(ny,8) for a fusion
category of interest, or if the category gets too big it might be an unwieldy way to work with it.
These points will be clearer in due time. For now, we emphasize that what we are introducing
in this lecture is not the definition of a fusion category. A skeletal fusion category is rather a
concrete, combinatorial way to encode a fusion category, which in theory always exists, but
may be hard to find or simply not necessary to have depending on your purposes.

Every fusion category is equivalent to a skeletal fusion category, i.e. admits a descrip-

tion of the form (Ncab, F;bc](m,a,ﬁ),(n’y,cs).

Just like how permuting the rows and columns of the multiplication table of a group will
still describe an isomorphic group, there is a redundacy or degrees of freedom in a skeletal
description of a fusion category which comes from fusion ring isomorphisms and compatible
gauge transformations. We won'’t see gauge transformations until the next lecture though.

Unitary fusion categories versus spherical fusion categories

Most of the time in physics we care about (skeletal) unitary fusion categories, which require
just a bit of extra data to specify. In a later lecture we’ll discuss a slight generalization of
unitary fusion categories called spherical fusion categories, which will empower us to handle
fusion categories which are unitary, anti-unitary, or neither!

The graphical calculus arises from identifying certain morphisms in our fusion category with
graphs whose edges are labeled by elements of L. Properties of morphisms or isomorphisms
between different spaces of morphisms can then be encoded in diagrammatic moves that relate
different graphs. The graphical calculus lets us do rigorous calculations in a (skeletal) fusion
category.

#We’ll continue to lean into this analogy throughout this unit.
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Remark 11. You’ll recall that we introduced string diagrams to encode morphisms and the axioms
they satisfy in a general category way back in Lecture 1. String diagrams and the “trivalent graphs
you’re about to use to encode morphisms of skeletal fusion categories are closely related, and some
of that discussion applies to this lecture. However, string diagrams give a much more general kind
of graphical calculus that works for fusion categories that are not skeletal, or monoidal categories
which lack the kind of nice finiteness properties needed for a fusion category. We’'ll revisit string
diagrams again when we discuss the the abstract definition of a fusion category in a few lectures.

2

Building a fusion category from a fusion ring

Let N2 be the fusion coefficients of a fusion ring on the label set L.

As you know, understanding a category means understanding its objects and its morphisms.
We'll describe a category C whose objects are built out of L and morphisms are built out of the
fusion and splitting spaces of dimension N#* that we introduced to close out our discussion of
fusion rings a few lectures ago.

Objects

An object X in a skeletal fusion category C is of the form

Xz@naa

a€Ll

, where n, € Z>o. You should think of the € symbol as notation that generalizes how we add
representations in the category Rep(G); the objects we’re adding no longer can be interpreted
as representations but they add (and multiply) like representations. It tells us we’re working
in a category now, and not just a ring. For skeletal fusion categories there is no real harm in
just thinking of @ as “+” in a fusion ring and thinking of objects as finite nonnegative integer
linear combinations of elements of L.

The elements of L are called simple objects in C, and they generalize the (isomorphism classes
of) irreducible representations in Rep(G) that form the basis of the Rep(G) fusion ring. We even
use the notation Irr(C) = L. Intuitively, elements of L are simple in the sense that they can’t
be written as a nontrivial direct sum of elements of L, but we’ll see another characterization of
simplicity via morphisms shortly.

Remember that one of the big ideas of category theory is that we want to think of objects
up to isomorphism — and this often gets translated into saying “it’s bad to talk about objects X
and Y being equal, we talk about them being isomorphic”. But a skeletal fusion category is a
safe place to talk about equality of objects. This is because if X = Y in a skeletal category, then
X =Y. There is only one object per isomorphism class.

Definition 2.1

In a general fusion category C, Irr(C) is a set of *representatives™ of isomorphism classes
of simple objects. The rank of C is |Irr(C))|.
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In a skeletal fusion category, since there is only one simple object a per isomorphism class
[a] of simple object, we can safely identify Irr(C) with L and conflate isomorphism classes of
simple objects with their representatives. This is also why we could borrow the terminology
“rank” for |L| when working with fusion rings.

We’ll see a fusion category has a structure ® to multiply objects that generalizes the ten-
sor product in Rep(G), which again in the skeletal case you can think of as coming from the
multiplication on the fusion ring generated by L.

Now we write the fusion rules of C as

a®b = @Nc’lbc.

ceEL

Since arbitary objects are built out of simple ones under @ we will be able to understand
arbitrary morphisms as built out of morphisms between simple objects under ® and ®. We
will continue to use lowercase Latin letters 1, a, b, c, ... for simple objects and captial X, Y, Z, ...
Latin letters for more general objects.

Morphisms

All morphisms in a fusion category form finite-dimensional C-vector spaces, Hom(X, Y) = C"
for some n. In a skeletal fusion category specifically, all morphisms form finite-dimensional
C-vector spaces *with basis*. Briefly, these bases will be given by admissibly labeled “trivalent
graphs”, but we’ll build up to that general understanding from simple objects step-by-step.

Morphisms between simple objects

For a € L we have Hom(a, a) = spang ({idx}). In particular Hom(a, a) = C is one-dimensional
as a vector space.

Definition 2.2

An object X in a fusion category over C is simple if Hom(X, X) = C.

If a = b, then Hom(a, b) = 0. In summary,
Hom(a, b) = §,,C

for simple a and b. This is a categorical version of Schur’s Lemma in representation theory,
which we sadly did not have time to cover.

Fusion and splitting spaces

Recall the definition of the fusion and splitting spaces V*® and V¢, as C-linear combinations
of the “trivalent fusion and splitting vertices”
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a b c

Vcllb = spang ﬁf{ and Vacb = spang ;\K

¢ b
p=1.2,..,Nab a v=1,2,..,Nab

These are our Hom(a ® b, ¢) and Hom(c, a ® b).
[clarify what happens when N = 0]
Recall that id; has a special picture,

idl =

Q-----9

We may call these vaccuum lines, borrowed from skeletal unitary modular fusion categories,
although they may not always be able to be interpreted that way.

Now the fusion rules 1 ® a = a ® 1 = a of the multiplicative identity 1 € L give us the
pictures

This gives us the beginnings of a limited notion of isotopy in our graphical calculus. We can
bend/straighten lines by adding/removing vaccuum lines. We’re starting to see where topology
enters the picture.

Hom(a® b,a® b)
[transition]

[completeness relation]

F-symbols

Moving on to a three-fold product of simples, we observe that there are two equally natural
choices of bases for Hom(a® b ® c, d), each of which is induced from the bases of our trivalent
Hom spaces. There’s a left-associated basis

meL,1<a<Ngb,1<f<NMe
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and a right-associated basis

d

neL,1<y<Nbe1<5<NG"

If we use a change of basis to express the left basis as a linear combination of the right basis,
we’ll get an equation of vectors that looks like

a b ¢ a b ¢
W = Z[Fc?bc]m,n \QX\Y‘ .
mg n 5"
d d

where m, n, a, B, y, § index each set of basis vectors for Hom(a ® b ® ¢, d). The F-symbols are
sometimes called the 10j-symbols because of the 10 indices that appear.

[F-move]

In the multiplicity-free case, we can ignore the vertex labels and the F-move becomes

a b ¢ a b ¢
*{/ = SIF I \}*
m n n
d d

Similarly, F-symbols of a multiplicity-free fusion category these are sometimes called 6 j-symbols.
If we had more time we’d discuss the origin of the terminology of 6 j-symbols in physics, which
predates fusion categories.

Pentagon equations

To simplify what follows for anyone seeing this for the first time, we assume that our fusion
rules are multiplicity-free.

[add exposition transitioning ]

[add pentagon diagrams ]

We see that the F-symbols must satisfy the pentagon equations

[FL gl EEP Nk = YIS DS RIE ] g [ FE D
hel

foralla,b,c,d,e, f, g, k, 1 € L.
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Triangle equations

When any one of the three leaves of the fusion trees that define the F-symbols are labeled by
1 € L it implies the triviality of a certain F-symbol. For example, if a = 1, the F-matrix [F1¢¢]
only has one entry, namely [F3°¢]; 4.

b c b c
. = [F}**]} 4 “J\

N

b d
d d

It follows from straightening the diagrams on both sides uses the identity from the previous
section that [F (}b lp.a = 1. This is one of three similar triangle equations; you’ll work out the
remaining two as an exercise.
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