
Lecture 13: Gauge Transformations

Let 𝑁𝑎𝑏𝑐 be the fusion coefficients of a fusion ring on the label set 𝐿.
Two sets of 𝐹 -symbols [𝐹𝑎𝑏𝑐𝑑 ](𝑚,𝛼,𝛽),(𝑛,𝛾 ,𝛿) and [𝐹𝑎𝑏𝑐𝑑 ](𝑚,𝛼,𝛽),(𝑛,𝛾 ,𝛿) on describe the same fusion

category with fusion rules 𝑁𝑎𝑏𝑐 if they are related by a gauge transformation.
A gauge transformationwill consist of a collection of invertible matrices Γ𝑎𝑏𝑐 for each 𝑎, 𝑏 , 𝑐 ∈𝐿. When (𝑁 , 𝐹) describes a unitary fusion category, we will see that the Γ𝑎𝑏𝑐 should be unitary

matrices.
We will now give a derivation of the data of a gauge transformation by exploring the gauge

degrees of freedom in writing down a skeletal description of a fusion category with respect to a
fixed fusion rule. Whenwe introduce the formal definition of a fusion category, where the right
notion of “isomorphism” is that of amonoidal autoequivalence functor, we will be able to return
to this subject and understandwhat we are doing as “writing down amonoidal autoequivalence
functor in coordinates”.

Gauge degrees of freedom on trivalent fusion spaces

Recall that our skeletal category consists ofHom spaces with bases given by admissibly labeled
fusion trees. These bases were induced from an initial choice of basis for 𝑉 𝑎𝑏𝑐 = Hom(𝑎⊗𝑏 , 𝑐).

𝑉 𝑎𝑏𝑐 = spanC
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We could equally well have chosen some other basis, whose vectors would be linear combi-

nations of these trivalent fusion graphs:𝑎𝜇 𝑐
𝑏 ↦ [Γ𝑎𝑏𝑐 ]𝜇,𝜇′

𝑎𝜇′ 𝑐
𝑏

At the moment all we require of the [Γ𝑎𝑏𝑐 ]𝜇,𝜇′ is that they assemble into a change-of-basis
matrix, so that in particular the matrix Γ𝑎𝑏𝑐 ∈ GL(𝑁𝑎𝑏𝑐 ,C) for each triple 𝑎, 𝑏 , 𝑐 ∈ 𝐿. We want
our trivalent splitting basis of 𝑉 𝑐𝑎𝑏 to be dual to that of 𝑉 𝑎𝑏𝑐 , so there are no additional degrees
of freedom that arise from considering trivalent Hom spaces.
Of course, this basis change propagates downstream and induces changes of bases forHom(𝑎⊗𝑏 ⊗ 𝑐, 𝑑).
Now the induced left-associated basis transforms by𝑎

𝑑
𝑏 𝑐𝛼 𝛽𝑚 ↦ ∑𝛼′,𝛽′[Γ𝑎𝑏𝑚 ]𝛼𝛼′[Γ𝑚𝑐𝑑 ]𝛽𝛽′

𝑎
𝑑
𝑏 𝑐𝛼′ 𝛽′𝑚
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Similarly, the right-associated basis transforms𝑎
𝑑
𝑏 𝑐𝛾𝛿𝑛 ↦ ∑𝛾′,𝛿′[Γ𝑎𝑛𝑑 ]𝛿𝛿′[Γ𝑏𝑐𝑛 ]𝛾𝛾 ′

𝑎
𝑑
𝑏 𝑐𝛾′𝛿′𝑛 .

Gauge Transformed 𝐹 -symbols

Comparing our two gauge-transformed bases of Hom(𝑎 ⊗ 𝑏 ⊗ 𝑐, 𝑑) we see that the original𝐹 -symbols transform as

[𝐹𝑎𝑏𝑐𝑑 ](𝑚,𝛼,𝛽),(𝑛,𝛾 ,𝛿) ↦ ∑𝛼′,𝛽′,𝛾 ′,𝛿′[Γ𝑎𝑏𝑚 ]𝛼′𝛼[Γ𝑚𝑐𝑑 ]𝛽′𝛽[𝐹𝑎𝑏𝑐𝑑 ](𝑚,𝛼′,𝛽′),(𝑛,𝛾 ′,𝛿′)[(Γ𝑎𝑛𝑑 )−1]𝛿,𝛿′[(Γ𝑏𝑐𝑛 )−1]𝛾 ,𝛾 ′

Multiplicity-free case

When the category is multiplicity-free the gauge transformations are greatly simplified. Now
the gauge degree of freedom is just the ability to rescale a basis element of 𝑉 𝑎𝑏𝑐𝑎

𝑐
𝑏 ↦ Γ𝑎𝑏𝑐

𝑎
𝑐

𝑏
where Γ𝑎𝑏𝑐 ∈ C×, or in the unitary case Γ𝑎𝑏𝑐 ∈ 𝑈 (1).
The 𝐹 -symbols then transform by a ratio of four gauge symbols,

[𝐹𝑎𝑏𝑐𝑑 ]𝑚,𝑛 ↦ Γ𝑎𝑏𝑚 Γ𝑚𝑐𝑑Γ𝑎𝑛𝑑 Γ𝑏𝑐𝑛 [𝐹𝑎𝑏𝑐𝑑 ]𝑚,𝑛.
In the exercises you will show that the gauge-transformed 𝐹 -symbols automatically satisfy

the pentagon equations.

Gauge Invariants

We have established that there are many degrees of freedom involved in describing a fusion
category via 𝐹 -symbols. But often times you will look at some tables of data in a physics paper
and see that the 𝐹 -symbols take a particularly nice form. This is because someone has made a
wise choice in fixing a gauge so that the 𝐹 -symbols are easy to work with and are defined over
a nice subfield of 𝑈 (1).
However, with the exception of special gauge invariant 𝐹 -symbols, the 𝐹 -symbols themselves

do not have an intrinsic value. That is, most 𝐹 -symbols are not invariants of our fusion category
under monoidal autoequivalence.
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Certain values of the 𝐹 -symbols will be manifestly gauge invariant though. For example, the
symbol [𝐹𝑎𝑏𝑐𝑏 ]𝑏 ,𝑏 is gauge invariant, since it transforms like

[𝐹𝑎𝑏𝑐𝑏 ]𝑏 ,𝑏 ↦ Γ𝑎𝑏𝑏 Γ𝑏𝑐𝑏Γ𝑎𝑏𝑏 Γ𝑏𝑐𝑏 [𝐹𝑎𝑏𝑐𝑏 ]𝑏 ,𝑏 = [𝐹𝑎𝑏𝑐𝑏 ]𝑏 ,𝑏 .
2.0.1 Frobenius-Schur indicators

Nowwe can return to our discussion of Frobenius-Schur indicators, and showwhy their defini-
tion as the sign of a certain 𝐹 -symbol [𝐹𝑎𝑎∗𝑎𝑎 ]1,1 only has gauge-invariant meaning for self-dual
objects.
Under a gauge transformation,

[𝐹𝑎𝑎∗𝑎𝑎 ]1,1 ↦ Γ𝑎𝑎∗1 Γ1𝑎𝑎Γ𝑎1𝑎 Γ𝑎∗𝑎1 [𝐹𝑎𝑎∗𝑎𝑎 ]1,1.
You’ll recall that we already declared an identification of the pictures1

𝑎
𝑎 = 𝑎

𝑎 and
𝑎

𝑎
1 = 𝑎

𝑎
For this reason we’ll want to make the gauge choice Γ1𝑎𝑎 = Γ𝑎1𝑎 = 1 for all 𝑎 ∈ 𝐿. One can

actually prove that there is no loss of generality in doing so.
That leaves us with [𝐹𝑎𝑎∗𝑎𝑎 ]1,1 ↦ Γ𝑎𝑎∗1Γ𝑎∗𝑎1 [𝐹𝑎𝑎∗𝑎𝑎 ]1,1.
There is nothing enforcing that Γ𝑎𝑎∗1 = Γ𝑎∗𝑎1 , so in general the 𝐹 -symbol is not gauge invariant.

However, if 𝑎 = 𝑎∗, these gauge symbols cancel, and we see that the value of [𝐹𝑎𝑎𝑎𝑎 ]1,1 is
independent of gauge, and in particular its sign (the Frobenius-Schur indicator of a self-dual
object) is an invariant of the category.

Invariants of fusion categories from skeletal data

Because most 𝐹 -symbols are not gauge invariant, there are not a ton of simple but also mean-
ingful invariants of unitary fusion categories that aren’t actually just invariants of the under-
lying fusion ring (like the rank, Frobenius-Perron dimensions, global dimension, etc.) outside
of the Frobenius-Schur indicators.19 However, by taking clever combinations of (monomials
in) 𝐹 -symbols one can cook up more gauge invariants.
We’ll see that for unitarymodular fusion categories there will be many more invariants that

will be accessible to us and also have a more direct physical interpretation in terms of an anyon
model.
19Since the quantum dimensions are positive and equal to the Frobenius-Perron dimensions by fiat, they don’t

contain additional information in the unitary case even though they needed the higher structure to be defined.
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