
Unit 2: Lecture 1

Introduction

Many of the groups that we encounter naturally in physics arematrix groups, where the group
multiplication is just matrix multiplication, like GL(𝑁 ), O(𝑁 ), and U(𝑁 ).
The idea of representation theory is to represent elements of a group as matrices and their

product via matrix multiplication.9
The genesis of the importance of group theory and representation theory in theoretical

physics dates goes back about a century to the work of HermannWeyl, who understood that el-
ementary particles are classified by unitary irreducible representations of the symmetry groups
of quantum field theories, and resulted in the Nobel prize-winning work of Wigner classifying
the unitary representations of the Poincaré group. The role that representation theory plays in
the areas of physics we’re exploring in this course has some connections and analogies to that
story, but it’s really a story in it’s own right.

Definition 2.1: Abstract

A 𝑁 -dimensional representation of a group 𝐺 is a homomorphism𝜌 ∶ 𝐺 → 𝐺𝐿(𝑉 )
where 𝑉 is an 𝑁 -dimensional vector space over the field k.

If we pick a basis of V, so that we can express any linear transformation 𝑇 ∈ 𝐺𝐿(𝑉 ) as an𝑁 × 𝑁 matrix, then we can give a more concrete definition.

Definition 2.2: Concrete

A matrix representation is a homomorphism𝜌 ∶ 𝐺 → 𝐺𝐿(𝑁 ,k).
If k = R or C then the we call the representation real or complex, respectively. If 𝜌(𝐺) ⊂𝑂(𝑁 ) or 𝑈 (𝑁 ) then we call the representation orthogonal or complex, respectively. A repre-

sentation 𝜌 ∶ 𝐺 → 𝐺𝐿(𝑁 ,C) is called faithful if ker(𝜌) is trivial, i.e. if 𝜌 is injective. At times
conflate the defining homomorphism 𝜌 of a representation with the vector space 𝑉 the group
acts on, or give a name to the representation.
Wait a second…

We’re here for physics, so we know we mostly only care about k = C, since quantum me-
chanics happens over C. We also like to be able to do concrete calculations, so you might
wonder why we’re bothering with this distinction between abstract representations and ma-
trix representations. The distinction – whether we have chosen a basis of a vector space – will
be exactly the same distinction we see later between a fusion category and a skeletal fusion

9For infinite groups and representations which are not finite-dimensional the story is more involved, but we’ll
only be interested in finite-dimensional representations in this course.
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category. These distinctions are often conflated in the physics literature, and this can cause a
good deal of confusion for newcomers. It will be worth our while to appreciate the distinction
so that we can be empowered to do physics using a variety of computational, categorical, and
even topological methods!

Examples of group representations

Let’s start with some examples of representations of the smallest nontrivial group.

Example 2.1: Representations of Z2
The trivial representation 𝜌 ∶ Z2 →𝐺𝐿(1,C)𝑔 ↦1
The “sign” representation 𝜌 ∶ Z2 →𝐺𝐿(1,C)𝑔 ↦ − 1
The permutation representation𝜌 ∶ Z2 →𝐺𝐿(2,C)𝑔 ↦(0 11 0)

Representations can be added

Notice that we can add representations together to get higher-dimensional ones by taking the
direct sum.10

10Of course you know from linear algebrawhen and how you can add andmultiplymatrices together, but we should
review how to take the direct sum and tensor product of matrices since in order to do concrete calculations they
require we establish a shared convention. Let 𝐴 and 𝐵 be two square matrices, say 𝑛 × 𝑛 and 𝑚 ×𝑚. Then 𝐴⊕𝐵
is the (𝑛+𝑚)× (𝑛+𝑚)-matrix block-diagonal matrix which we denote by( 𝐴 00 𝐵 ), where the 0 in the upper

right corner is understood to be the 𝑛 × 𝑚 matrix of all zeros and the one in the bottom left is the 𝑚 × 𝑛 matrix
of all zeros.
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Example 2.2: Direct sum of representations of Z2
The direct sum of the permutation and sign representations:𝜌 ∶ Z2 →𝐺𝐿(3,C)

𝑔 ↦ ⎛⎜⎜⎝
0 1 01 0 00 0 −1⎞⎟⎟⎠

It seems quite obvious, but it’s worth pointing out that the dimensions of representations
add under the direct sum.

Definition 2.3

A representation 𝑉 of 𝐺 is called reducible if it can be written as a direct sum (up
to equivalence, which we’ll state more precisely shortly). Otherwise it is called irre-
ducible, and we call 𝑉 an irrep of 𝐺.
Theorem 2.1: Maschke’sTheorem (in characteristic zero)

Let𝑉 be a complex representation of a finite group𝐺. Then if𝑉 has a subrepresentation𝑈 , there is some other subrepresentation 𝑊 of 𝑉 such that 𝑉 = 𝑈 ⊕𝑊 .

It follows that every representation of a finite group𝐺 is a direct sum of irreps. This property
is called semisimplicity and it’s one of the hallmarks of a fusion category. We can also multiply
representations together by taking the tensor product.

Example 2.3

The tensor product of the permutation and sign representations:𝜌 ∶ Z2 →𝐺𝐿(2,C)𝑔 ↦( 0 −1−1 0 )
In representation theory in general one might be interested in how a given reducible rep-

resentation decomposes into irreps. A special case of this problem is to understand how the
tensor product of irreps decomposes into irreps.

Fusion table for irreps of Z2
We’ll see later why it turns out that the trivial representation, let’s call it 1, and the sign repre-
sentation, call it 𝑠, are the only two irreps of Z2 (up to equivalence). You’ll see in the exercises
why the permutation representation of Z2 is reducible, even though the matrix image of the
generator isn’t identically equal to a direct sum of matrices.
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We can assemble the data of how the irreps of Z2 break down into irreps when they are
tensored together with a fusion table.

Example 2.4: Fusion table of Z2
ou can check that the fusion table for Z2 irreps looks like this:⊗ 1 𝑠1 1 𝑠𝑠 𝑠 1

The first row and column of this table will always be determined by the properties of the
trivial representation, just like the first row and column of a multiplication of a group. In this
case the only nontrival fusion rule is 𝑠 ⊗ 𝑠 = 1.
Notice that the fusion table for the irreps of Z2 looks the same as the group multiplication

table for Z2. This is not a coincidence and is true for all finite abelian groups.
So let’s see some examples of representations of a nonabelian group. Of course we have the

trivial (one-dimensional) representation of 𝑆3, but there’s also a nontrivial one-dimensional
representation.

Example 2.5: Sign or alternating representation of 𝑆3
Define 𝜌 ∶ 𝑆3 → 𝐺𝐿(1,C) by sending a permutation 𝜎 to the parity of a transposition
decomposition

id ↦ 1(12) ↦ −1(23) ↦ −1(13) ↦ −1(123) ↦ 1(132) ↦ 1
Notice that the definition we gave works for all 𝑛, and that it will always give an irreducible

representation.
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Example 2.6: Permutation representation of 𝑆3
Define 𝜌 ∶ 𝑆3 → 𝐺𝐿(3,C) by:

id ↦ ⎛⎜⎜⎝
1 0 00 1 00 0 1⎞⎟⎟⎠(12) ↦ ⎛⎜⎜⎝
0 1 01 0 00 0 1⎞⎟⎟⎠(13) ↦ ⎛⎜⎜⎝
0 0 10 1 01 0 0⎞⎟⎟⎠(23) ↦ ⎛⎜⎜⎝
1 0 00 0 10 1 0⎞⎟⎟⎠(123) ↦ ⎛⎜⎜⎝
0 1 00 0 11 0 0⎞⎟⎟⎠(132) ↦ ⎛⎜⎜⎝
0 0 11 0 00 1 0⎞⎟⎟⎠

The permutation representation is not irreducible, but it does have an irreducible two-dimensional
subrepresentation. Rather than identifying this irreducible subrepresentation we’ll construct
it directly by leveraging the isomorphism 𝑆3 ≅ 𝐷6.
Recall that 𝐷6 is the group of rigid motions of the equilateral triangle. If we think of the

triangle as being embedded in the plane with the centroid at the origin, then we can think
about effecting the rotation and reflection generators 𝑟 and 𝑠 using matrices acting on R2.
Under the isomorphism 𝑆3 ≅ 𝐷6 we identify 𝑟 with (123) and 𝑠 with (23).
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Example 2.7: Standard representation of 𝑆3
Define 𝜌 ∶ 𝑆3 → 𝐺𝐿(3,C) on generators by:

id ↦ (1 00 1)(123) ↦ ( 12 √32−√32 12 )(23) ↦ (−1 00 1)
You can multiply in 𝑆3 to generate the matrix images of the other permutations.

Now let’s call the trivial representation, alternating representation, and standard represen-
tation of 𝑆3 1, 𝜓, and std, respectively. Just like for Z2, we can assemble the data of how these
irreps decompose when we take their tensor product, or fuse them.

Example 2.8: Fusion table of 𝑆3
e won’t discuss how to compute these tensor product decompositions; the goal for
now is the appreciate this idea of a fusion table and how it arises very naturally in
representation theory. ⊗ 1 𝜓 std1 1 𝜓 std𝜓 𝜓 1 std

std std std 1 ⊕ 𝜓𝑜𝑝𝑙𝑢𝑠std
Notice that entries of the fusion table may now be a sum of irreps instead of a single
irrep! This shows how fusion tables are definitely more general than multiplication
tables for a group.

Intertwiners of representations and the category of representations of a
finite group

Remember howwhenwe introduced groups we placed a big emphasis on groups and structure-
preserving maps (homomorphisms) between them? We were thinking about group theory as
telling us about what’s happening inside the category Grp.
Now we have a new algebraic gadget (representations) and so have to also think about their

structure-preserving maps (intertwiners).
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Definition 2.4: Abstract

An intertwiner 𝜙 between two representations 𝜌 ∶ 𝐺 → 𝐺𝐿(𝑉 ) and 𝜓 ∶ 𝐺 → 𝐺𝐿(𝑊 )
of 𝐺 is a linear map 𝜙 ∶ 𝑉 → 𝑊 such that 𝜙 ◦ 𝜌(𝑔) = 𝜓(𝑔) ◦ 𝜙. This defining condition
can be expressed in a commutative diagram.

𝑉 𝑊
𝑉 𝑊

𝜙
𝜌(𝑔) 𝜓(𝑔)

𝜙
In other words, 𝜙 “commutes” with the action of 𝐺. For this reason sometimes inter-
twiners are also called 𝐺-equivariant linear maps. If 𝜙 is a vector space isomorphism
then we say the representations 𝜌 and 𝜓 are equivalent.

Definition 2.5: Concrete

An intertwiner between two matrix representations of 𝐺 is the matrix representing a
linear transformation 𝑉 → 𝑊 such that the same condition holds, namely a matrix 𝑇
such that 𝑇𝜌(𝑔) = 𝜓(𝑔)𝑇 for all 𝑔 ∈ 𝐺.
Two matrix representations are equivalent if there is an invertible matrix 𝑃𝑇 such that𝑇𝜌(𝑔)𝑇−1 = 𝜓(𝑔) for all 𝑔 ∈ 𝐺. Note that this is exactly saying there is a change of
basis matrix that relates all of the matrix representations of 𝑔 for all 𝑔 simultaneously.

Just like groups and their homomorphisms, representations of𝐺 and their intertwiners form
a category, called Rep(𝐺). When 𝐺 is finite, Rep(𝐺) is a fusion category! We’ve seen that
we can add and multiply representations (objects in Rep(𝐺)) – this reflects that the category
possesses some additional structure, namely a direct sum⊕ and a tensor product⊗. We’ll learn
a lot more about Rep(𝐺) shortly and about more general fusion categories as time goes on.
One thing about Rep(𝐺) we can appreciate right now is that it is what is called semisimple,

because every representation decomposes into a direct sum of irreducible representations by
Maschke’s theorem.
When we talk about classifying the representations of a finite group𝐺, what we really mean

is classifying its irreps, or the simple objects in Rep(𝐺).
We’ll finish up this discussion by covering some facts about the representation theory of

finite groups that we need to have at least a nodding acquaintance with.
But first, recall the conjugation action of 𝐺 on itself𝐺 × 𝐺 → 𝐺(𝑔 , ℎ) ↦ 𝑔−1ℎ𝑔

that partitions 𝐺 into conjugacy classes, where two elements ℎ and 𝑘 are in the same conjugacy
class (i.e. conjugate) if there exists 𝑔 ∈ 𝐺 such that 𝑘 = 𝑔−1ℎ𝑔 .
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Theorem 2.2

A finite group 𝐺 has 𝑟 distinct irreducible representations, where 𝑟 is the number of
conjugacy classes of 𝐺.
Theorem 2.3

Let 𝑛1, 𝑛2, … , 𝑛𝑟 be the dimensions of the irreps of a finite group 𝐺. Then𝑟∑𝑖=1 𝑛2𝑖 = |𝐺|
.

Since every element of a finite abelian group 𝐴 is in a conjugacy class all by itself, it follows
from the first theorem above that there are |𝐴|many irreps of𝐴. Then the dimension constraint
in the second theorem implies that each of these irreps must be one-dimensional.
Revisiting the definition of a representation, this tells us that understanding the irreps of a

finite abelian group 𝐴 is the same as understanding homomorphisms 𝜌 ∶ 𝐴 → C×.
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