
Lecture 6

In the process of reviewing some basic aspects of the representation theory of finite groups we
saw that the data of how the tensor product of irreps of a finite group decompose into a direct
sum of irreps can be encoded in what we called a fusion table. These fusion tables looked a lot
like the multiplication table for a finite group (and for abelian groups they simply are), except
that each entry in the table could be a sum of the row and column labels instead of just a single
one of them. Fusion tables make sense beyond finite groups and their representations, and we
can draw them for any fusion ring. A fusion ring is the most basic part of a fusion category so
we’ll devote some time to understanding them on their own terms.
This entire lecture is going to be about fusion rules, which boils down to understanding

equations that look like

𝑎 × 𝑏 = ∑𝑐∈𝐿 𝑁 𝑎𝑏𝑐 𝑐
where the 𝑁 𝑎𝑏𝑐 are just nonnegative integers and 𝐿 is a finite set with 𝑎, 𝑏 , 𝑐 ∈ 𝐿. We call 𝐿 the
label set and 𝑁 𝑎𝑏𝑐 the fusion coefficients. You’ve seen much more complicated equations in your
life, these are pretty nice.

Remark 5. There is something important we should address. Depending on where you’re reading
about fusion rules, you may see 𝑎, 𝑏 , 𝑐 ∈ 𝐿 called particles or particle types. This is valid when they
are describing the fusion of point-lile particles or quasiparticles like anyons. But it is *not* always
correct to interpret the elements of the label set as particles. Depending on the context they may
instead be interpreted (rather abstractly) as quantum degrees of freedom, as symmetry operators,
or as very general topological defects.

We are interested in each of these contexts in this course, so we will try to be very general
when discussing fusion rules for now. Since they are most intuitive to understand when in-
tepreting them as particles, this is the language that we’ll default to at times as a conceptual
aid to learn definitions.
Generally speaking though we should try to be very careful delineating between the various

roles that fusion rings (and later categories) play.
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Examples of fusion rules

Example 2.1: Toric code anyon fusion rules

Recall that there are four 2-particle excitations in the toric code model, which we de-
noted by {1, 𝑒,𝑚, 𝑓 }.
We saw that they fuse like Z2 ×Z2, so (a generating list of) their fusion rules look like⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑒 × 𝑒 = 1𝑚 × 𝑚 = 1𝑓 × 𝑓 = 1𝑒 × 𝑚 = 𝑚 × 𝑒 = 𝑓 .
Example 2.2: Group rings as fusion rings

If 𝐺 is a finite group, then the group multiplication gives fusion rules{𝑔 × ℎ = 𝑔ℎ .
Example 2.3: Fusion ring of Rep(𝐺)
If 𝐺 is a finite group, we’ve seen that the decomposition of the tensor product of irreps
into irreps gives fusion rules. For example, for 𝑆3 we have:⎧⎪⎪⎪⎨⎪⎪⎪⎩

sgn × sgn = 1
sgn × std = std × sgn = std
std × std = 1 + sgn + std

Remark 6. (Feel free to ignore this for now if it doesn’t make sense) We say that a fusion rule
categorifies if there is a fusion category whose (isomorphism classes of) simple objects fuse like
the elements of the label set 𝐿. We’ll be able to make this more precise once we’ve given a careful
definition of a fusion category.
The group fusion rules categorify to the fusion categories Vec(𝐺) called 𝐺-graded vector spaces.

And, as you already know, the Rep(𝐺) fusion rules categorify to Rep(𝐺). 12 We’ll see Vec(𝐺) and
Rep(𝐺) are definitely non-isomorphic fusion rings: the former has invertible fusion rules and the
latter does not. However, they are Morita equivalent. It will be a while before we have built up
enough theory to explain what that means. For now, what this means for us is that if we were to try
to build a lattice Hamiltonian using the quantum degrees of freedom afforded by these categories,
we would actually get the same topological phase of matter. It will also mean that both Vec(𝐺)
and Rep(𝐺) will generate the same Turaev-Viro-Barrett-Westbury TQFT.

12Both these fusion rules admit some “twisted” categorifications, as you’ll show in the exercises for Unit 3.
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Wewill talk about this more at length next time, but there are four different – but not terribly
different – ways to communicate the data of a fusion ring: by listing the fusion coefficients, by
listing the fusion matrices, by giving the fusion table, or by listing the fusion rules.

Definition 2.1

Given fusion rules, the fusion matrices 𝑁𝑎 for 𝑎 ∈ 𝐿 are the matrices defined by(𝑁𝑎)𝑏𝑐 = 𝑁 𝑎𝑏𝑐 .
The smallest example of a fusion ring that does not come from finite groups in one of the

two ways mentioned above is called the Fibonacci fusion ring. We will give the fusion matrices
and fusion table along with fusion rules in the next few examples so you can get the hang of
the different (but admittedly very closely related) ways to encode fusion ring data.

Example 2.4: Fibonacci fusion rules

Fusion matrices Fusion rules Fusion table

(1 00 1) , (0 11 1) {𝜏 × 𝜏 = 1 + 𝜏 1 𝜏1 1 𝜏𝜏 𝜏 1 + 𝜏
These fusion rules come from anyonmodels in that setting 𝜏 is called a Fibonnaci anoyn.

Example 2.5: Ising fusion rules

It is standard to write the basis of the Ising fusion ring as 𝐿 = {1,𝜎,𝜓}.
Fusion matrices Fusion rules Fusion table⎛⎜⎜⎝

1 0 00 1 00 0 1⎞⎟⎟⎠ ,
⎛⎜⎜⎝
0 1 01 0 10 1 0⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 10 1 01 0 0⎞⎟⎟⎠

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎 × 𝜎 = 1 + 𝜓𝜎 × 𝜓 = 𝜓 × 𝜎 = 𝜎𝜓 × 𝜓 = 1

1 𝜎 𝜓1 1 𝜎 𝜓𝜎 𝜎 1 + 𝜓 𝜎𝜓 𝜓 𝜎 1
These fusion rules category to anyon models. We call 𝜓 the Majorana fermion and 𝜎
the Ising anyon.

Fusion rings

Fusion rules on a fixed label set 𝐿 have more going on than just the equation above, they form
a special kind of ring called a fusion ring. So let’s very briefly recall what a ring is.
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Definition 2.2

A ring (𝑅, +, ⋅) is a set 𝑅 with two binary operations called addition and multiplication
such that

1. (𝑅, +) is an abelian group

2. the multiplication ⋅ is associative
3. the left and right distributive properties hold:𝑟 ⋅ (𝑠 + 𝑡) = 𝑟 ⋅ 𝑠 + 𝑟 ⋅ 𝑡(𝑟 + 𝑠) ⋅ 𝑡 = 𝑟 ⋅ 𝑡 + 𝑠 ⋅ 𝑡

All the rings we care about will be unital rings: there exists a multiplicative identity 1 ∈ 𝑅
with 1 ⋅ 𝑟 = 𝑟 ⋅ 1 = 𝑟 for all 𝑟 ∈ 𝑅. When we say ring from here on out we mean a unital ring.
You should be able to guess what a ring homomomorphism and ring isomorphism must be.

Definition 2.3

A fusion ring is a unital ring (𝐹 , +, ×)which is free as aZ-modulewith finite basisa 𝐿 ⊂ 𝐹
together with an involution ⋆ ∶ 𝐿 → 𝐿 called duality that lifts to an anti-involution on𝐹 satisfying

• 1 ∈ 𝐿 and 1∗ = 1,
• 𝑎 ⊗ 𝑏 = ∑𝑐∈𝐿 𝑁 𝑐𝑎𝑏 𝑐 with 𝑁 𝑐𝑎𝑏 ∈ Z≥0 for all 𝑎, 𝑏 ∈ 𝐿
• 𝑁 1𝑎𝑏 = 𝑁 1𝑏𝑎 = 𝛿𝑎∗𝑏 for all 𝑎, 𝑏 ∈ 𝐿.

a“Free as a Z-module over 𝐿 just means that every element in 𝐹 can be written as a finite integer linear
combination of elements of 𝐿

One can show that there are some additional constraints on the 𝑁 𝑎𝑏𝑐 that follow from this
definition, sometimes called Frobenius reciprocity:𝑁 𝑎𝑏𝑐 = 𝑁 𝑎∗𝑐𝑏 = 𝑁 𝑐𝑏∗𝑎 .
Other similar identities follow from these, and we will give a conceptual derivation of these in
the next lecture.
From now on when we want to talk about a fusion ring we will just specify the label set 𝐿

and the fusion coefficients 𝑁 𝑎𝑏𝑐 for 𝑎, 𝑏 , 𝑐 ∈ 𝐿.
It should be clear that commutativity of the fusion rules (the multiplication among basis

elements) implies commutativity of the full fusion ring. We care about both commutative and
noncommutative fusion rings.

Remark 7. Fusion rings that describe anyons are always commutative.
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We haven’t seen an example of noncommutative fusion ring with a multi-fusion channel
yet. You’ll explore one in the Unit 2 Exercises called the Haagerup fusion category, sometimes
denoted 3.

Definition 2.4

The rank of a fusion ring is the number of elements in the label set 𝐿.
There is some additional terminologywe should introduce. A fusion ring is calledmultiplicity-

free if 𝑁 𝑎𝑏𝑐 ∈ {0, 1} for all 𝑎, 𝑏 , 𝑐 ∈ 𝐿. Otherwise we say the fusion ring has multiplicity. The
set (or you could take the multi-set) of nonzero 𝑁 𝑎𝑏𝑐 as you range over 𝑎, 𝑏 , 𝑐 ∈ 𝐿 is sometimes
called its multiplicities. An element of a fusion ring 𝑎 ∈ 𝐿 is called self-dual if 𝑎∗ = 𝑎, i.e. if it is
fixed by the duality involution on 𝐿. Otherwise 𝑎 is called nonself-dual.
Since the fusion matrices are nonnegative integer matrices there is a nice theorem that ap-

plies from linear algebra called the Frobenius-Perron theorem. We will not state it very care-
fully here, and in fact it really requires slightly stronger hypotheses than are given below.

Theorem 2.1

Let 𝐴 be a matrix with nonnegative integer entries. Then 𝐴 has a positive real eigen-
value 𝜆 which is larger than all of its other eigenvalues.

This largest eigenvalue of a nonnegative integer matrix 𝐴 is called its Frobenius-Perron
eigenvalue.

Definition 2.5

The Frobenius-Perron dimension aka FP dimension of 𝑎 ∈ 𝐿 is the Frobenius-Perron
eigenvalue of 𝑁𝑎.

Note that dim(1) = 1 in any fusion ring.

Example 2.6: I

ing has rank 3 and Frobenius-Perron dimensions 1,√2, 1.
Definition 2.6: A

isomorphism of fusion rings (𝐹 , 𝐿, ×) and (𝐹 , 𝐿̃, ×̃) is a bijection of 𝜙 ∶ 𝐿 → 𝐿̃ such that𝑁 𝜙(𝑎)𝜙(𝑏)𝜙(𝑐) = 𝑁 𝑎𝑏𝑐 .
A fusion ring isomorphism is basically a relabeling of the label set that preserves the fusion

rules.
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Example 2.7

When 𝐺 is a finite nonabelian group, the Vec(𝐺) and Rep(𝐺) fusion rings we saw
earlier are nonisomorphic.

The rank, multiplicities, and FP dimensions are all fusion ring invariants. So is e.g. the
number of self-dual elements.

Remark 8. The assignment of FP dimensions to elements of a label set is a ring homomorphism
from the fusion ring to (C, +, ⋅).
This fact can be used to turn the linear algebra problem of computing the eigenvalues of

the fusion matrices into the problem of solving a system of quadratic equations in several
variables. Sometimes the latter is easy enough to solve by inspection for small examples, and
this is typically how folks read off the dimensions if they aren’t already listed. Let’s see an
example:

Example 2.8

Recall the 12𝐸6 fusion rules ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥2 = 1 + 2𝑥 + 𝑦𝑥𝑦 = 𝑦𝑥 = 𝑥𝑦2 = 1

and put 𝑑𝑥 , 𝑑𝑦 for the FP dimensions of 𝑥 and 𝑦. Then they satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑2𝑥 = 1 + 2𝑑𝑥 + 𝑑𝑦𝑑𝑥 𝑑𝑦 = 𝑑𝑦 𝑑𝑥 = 𝑑𝑥𝑑2𝑦 = 1

The last equation tells us 𝑑𝑦 = 1, and then the first equation tells us that𝑑2𝑥 − 2𝑑𝑥 − 2 = 0.
The positive solution is 𝑑𝑥 = 1 + √3.
For most of us this is faster than factoring the characteristic polynomial of the fusion
matrix

𝑁𝑥 = ⎛⎜⎜⎝
0 1 01 2 10 1 0⎞⎟⎟⎠ ,

but to each their own!

Next time we’ll see lots more examples, and talk about the classification of fusion rings,
start drawing some pictures to help us visualize fusion rules, and talk about fusion rings as
they appear in anyon models.
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