
Lecture 8: Kitaev’sQuantum Double Model (Part I)

We follow Shawn Cui’s notes quite closely and borrow much of his notation.
In the next two lectures we’ll introduce Kitaev’s quantum double model.

KitaevQuantum Double Model

The construction should feel very analogous to our procedure for constructing the Z2 toric
code (and you’ll see it is a direct generalization). The discussion will follow the same flow:
we’ll fix a lattice, decorate its edges with some quantum degrees of freedom, write down some
local operators and a Hamiltonian, (and then in the next lecture, hopefully) understand the
ground states and explore the excited states.

The quantum double of a finite group 𝐺
But before we present the lattice model we should get acquainted with the quantum double
algebra of a finite group 𝐷𝐺 so that we recognize it when we see it later. Recall that an algebra
over C is a vector space that is also a ring.

Definition 2.1: Group algebra

The group algebra C[𝐺] is the complex vector space with basis |𝑔⟩, 𝑔 ∈ 𝐺 and multipli-
cation on basis elements induced by group multiplication |𝑔⟩ ⋅ |ℎ⟩ = |𝑔ℎ⟩. Multiplication
on all of C[𝐺] comes from extending the multiplication to arbitrary linear combina-
tions of basis elements. The multiplicative unit is |𝑒⟩, where 𝑒 is the identity element of𝐺.
Definition 2.2: Dual of group algebra

he algebra of linear functions of a finite group [C[𝐺] is the complex vector space with
indicator function basis |𝐼𝑔⟩, 𝑔 ∈ 𝐺 with multiplication of basis elements given by|𝐼𝑔⟩ ⋅ |𝐼ℎ⟩ = 𝛿𝑔 ,ℎ|𝐼𝑔⟩, where 𝛿 is the Kronecker delta function.
By indicator function, we mean the function𝐼𝑔 ∶ 𝐺 → Cℎ ↦ {1 ℎ = 𝑔0 ℎ ≠ 𝑔
The multiplicative unit is ∑𝑔 |𝐼𝑔⟩.

The algebra of functions on 𝐺 is the linear dual of the group algebra, hence the notation.
Both the group algebra and its dual are Hopf algebras, which means they have more going on

than just an associative multiplication and unit (they also have a compatible comultiplication
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and counit, as well as a special map called an antipode. 13 But for now we will be able to keep
busy with just the algebra structure.
We build a “doubled” algebra that has a copy of each of C[𝐺] and [C[𝐺] sitting inside of it.

As a vector space, 𝐷𝐺 = [C[𝐺] ⊗ C[𝐺]. We introduce new notation for the basis vectors and
put 𝐷ℎ,𝑔 = |𝐼ℎ⟩ ⊗ |𝑔⟩. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐷(𝑒,𝑔1)𝐷(𝑒,𝑔2) = 𝐷(𝑒,𝑔1𝑔2)𝐷(ℎ1,𝑒)𝐷(ℎ2,𝑒) = 𝛿ℎ1,ℎ2𝐷(𝑒,ℎ1)𝐷(𝑒,𝑔)𝐷(ℎ,𝑒) = 𝐷(𝑔ℎ𝑔−1,𝑒)𝐷(𝑒,𝑔)
The first two equations are just the multiplication of the group algebra and its dual. The third
will look ad hoc for now; we’ll just take it as given. There are also two expressions for the
multiplicative identity in 𝐷𝐺, namely 1 = 𝐷(𝑒,𝑒) and 1 = ∑ℎ∈𝐺 𝐷(ℎ,𝑒).

Just like C[𝐺] and its dual, 𝐷𝐺 is a Hopf algebra and has additional structure that we won’t
worry about for now.

State space

For simplicitly we’ll build our system on a square lattice , but the lattice can have completely
general connectivity and it should be clear at every step how our discussion generalizes to an
arbitrary lattice. We won’t put any boundary conditions on our lattice just yet, but if you want
you can think of it as living on the sphere 𝑆2, so that there is no boundary.
As with the toric code, we denote by 𝑉 , 𝐸, and 𝐹 the set of vertices, edges, and faces of our

lattice. A deviation from the toric code is that we will need to assign an orientation to each 𝑒 ∈𝐸; while this orientation is arbitrary we’ll see it is also necessary. We will also introduce a new
set of sites 𝑆 consisting of a plaquette and a bounding vertex, that is, 𝑆 = {(𝑝, 𝑣) |𝑝 ∈ 𝐹 , 𝑣 ∈ 𝜕𝑝}.

At every edge 𝑒 ∈ 𝐸, we put a |𝐺|-dimensional qudit 𝑒 = C[𝐺] with computational basis|𝑔⟩ for 𝑔 ∈ 𝐺. The total Hilbert space of states is⨂𝑒∈𝐸 𝑒 and has dim(𝑡𝑜𝑡𝑎𝑙) = |𝐺||𝐸|. We will
work with the induced basis of 𝑔-bit strings of the form |𝑔𝑒1𝑔𝑒2 ⋯𝑔|𝐸|⟩ = |𝑔𝑒1⟩⊗ |𝑔𝑒2⟩⊗⋯⊗ |𝑔|𝐸|⟩⟩.
We can visualize a basis state as a coloring of the edges of  by elements of 𝐺.

Local operators

For every 𝑔 ∈ 𝐺, there is an operator 𝐴𝑔(𝑣) that acts on a 𝑔-bit string as follows. For each𝑒𝑖 ∈ star(𝑣), multiply |𝑔𝑒𝑖⟩ by |𝑔⟩ on the left if the edge 𝑒𝑖 is pointed away from 𝑣, and multiply|𝑔𝑒𝑖⟩ by |𝑔−1⟩ on the right if the edge is oriented pointing towards 𝑣.

13We absolutely care about Hopf algebras in this subject: Kitaev’s quantum double model can be even further
generalized beyond what we’re currently discussing, and instead of building a lattice Hamiltonian using a finite
group one can use a finite-dimensional Hopf algebra 𝐻 , and it will give rise to a topological phase where the
anyons fuse like irreps in Rep(𝐷𝐻 ), where 𝐷𝐻 is something more general than 𝐷𝐺.
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𝑔3
𝑔1𝑔2 𝑔4𝑣 𝐴𝑔 (𝑣)⟶ 𝑔3𝑔−1

𝑔𝑔1𝑔𝑔2 𝑔4𝑔−1𝑣
|⋯𝑔1𝑔2𝑔3𝑔4⋯⟩ ↦ |⋯𝑔𝑔1 𝑔𝑔2 𝑔3𝑔−1 𝑔4𝑔−1⋯⟩

Note that sequential application of these “gauge transformation” operators for different
group elements is the same as applying a single operator with the product of those group
elements: 𝐴𝑔1𝐴𝑔2 = 𝐴𝑔1𝑔2 .
Next we define a vertex operator by averaging over all the 𝐴𝑔 :𝐴(𝑠) ∶= 𝐴(𝑣) = 1|𝐺| ∑𝑔 𝐴𝑔(𝑣).

You will check it is a projector in an exercise.
We also have plaquette operators 𝐵ℎ(𝑠) for each ℎ ∈ 𝐺 which projects on the states with

“flux” ℎ through a plaquette with respect to a vertex, where the flux is the product of the
group elements (or their inverses) on the boundary of the plaquette as we traverse its edge
counterclockwise starting at 𝑣. If an edge 𝑒𝑖 is oriented counterclockwise we pick up a 𝑔𝑖, and
if it’s oriented clockwise we pick up a 𝑔−1𝑖 :

𝑔2 𝑔4𝑔3
𝑔1𝑝 𝐵ℎ(𝑠)⟶ 𝛿ℎ,𝑔−11 𝑔−12 𝑔3𝑔−14 𝑔2 𝑔4𝑔3

𝑔1𝑝
It is immediate that 𝐵ℎ(𝑠) is a projector, and that they satisfy 𝐵ℎ1(𝑠)𝐵ℎ2(𝑠) = 𝛿ℎ1,ℎ2𝐵ℎ1(𝑠).
Note that when ℎ = 𝑒, 𝐵(𝑠) only depends on 𝑝 and not 𝑣 – it doesn’t matter what vertex we

start at because the factors in the left hand side of the equation 𝑔(𝑜(𝑒1)1 𝑔(𝑜(𝑒2)2 𝑔(𝑜(𝑒3)3 𝑔(𝑜(𝑒4)4 = 𝑒
can be cyclically permuted.14
In the exercises youwill check that𝐴𝑔(𝑠) and𝐵ℎ(𝑠) do not commute, but satisfy𝐴𝑔(𝑠)𝐵ℎ(𝑠) =𝐵𝑔ℎ𝑔−1(𝑠)𝐴𝑔(𝑣). This relation should look familiar.
We’ve shown that the 𝐴𝑔 and 𝐵ℎ satisfy the same relations as the generators of the quantum

double algebra. This says that the algebra of local operators at a site 𝑠 = (𝑝, 𝑣) generated by the𝐴𝑔 and 𝐵ℎ form an 𝑁 -dimensional matrix representation of the quantum double algebra 𝐷𝐺,
where 𝑁 = |𝐺||𝐸|, via the assignment
14As was foretold, our notation is overloaded: note that 𝑒 is being used to denote an edge 𝑒 ∈ 𝐸 as well as the

identity element 𝑒 ∈ 𝐺.
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𝜌𝑠 ∶ 𝐷𝐺 → 𝐺𝐿(𝑁 ,C)𝐷𝑒,𝑔 ↦ 𝐴𝑔(𝑣)𝐷ℎ,𝑒 ↦ 𝐵ℎ(𝑝).
Hamiltonian

Putting all the pieces together, we have the quantum double Hamiltonian𝐻 = −∑𝑣∈𝑉 𝐴(𝑣) −∑𝑝∈𝐹 𝐵(𝑝).
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