
Lecture 9: Kitaev’sQuantum Double Model (Part II)

As in the previous lecture we follow Shawn Cui’s notes quite closely and borrow much of his
notation.
Recall the definition of the quantum double Hamiltonian from last lecture𝐻 = −∑𝑣∈𝑉 𝐴(𝑣) −∑𝑝∈𝐹 𝐵(𝑝)

where the vertex operator 𝐴(𝑣) = 1|𝐺|𝐴𝑔(𝑣) is the group average of the vertex gauge transfor-
mations at 𝑣 and 𝐵(𝑝) = 𝐵𝑒(𝑝) projects onto states with zero flux through the plaquette 𝑝.
Recall that the algebra of local operators at a site 𝑠 = (𝑝, 𝑣) generated by the 𝐴𝑔 and 𝐵ℎ form
an 𝑁 -dimensional matrix representation of the quantum double algebra 𝐷𝐺, where 𝑁 = |𝐺||𝐸|,
via the assignment

𝜌𝑠 ∶ 𝐷𝐺 → 𝐺𝐿(𝑁 ,C)𝐷𝑒,𝑔 ↦ 𝐴𝑔(𝑣)𝐷ℎ,𝑒 ↦ 𝐵ℎ(𝑝).
In order to give a careful derivation of the excitations in this model we would need to un-

derstand violations of the terms in teh Hamiltonian and introduce ribbon operators which are
capable of creating pairs of excitations from a ground state. Since we won’t have time to go
through that carefully in class, we will have to get to the punchline.
Kitaev tells us (on page 18 of the 2003 Annals of Physics aricle Fault-tolerant quantum com-

putation by anyons) that we can interpret the irreducible representations of 𝐷𝐺 as the particle
types that will emerge. Recall from last lecture that the irreps of𝐷𝐺 are counted by pairs (𝐶, 𝜒 )
where 𝐶 is a conjugacy class of 𝐺 and 𝜒 is an irrep of 𝑍(𝑔) for a representative 𝑔 ∈ 𝐺. For
now, we’ll just have to take this on faith. But we’ll see that this assertion is corroborated by the
calculation of the ground state degeneracy of the model on the torus, which will be the main
focus of this lecture.
Let’s proceed assuming that we’ve established that 𝐻 is a commuting projector Hamiltonian

(verifying some of the details will be deferred to exercises) and hence the ground state space is
given by

𝑔𝑟𝑜𝑢𝑛𝑑 = {|𝜓⟩ ∈ 𝑡𝑜𝑡𝑎𝑙 |𝐴(𝑣)|𝜓⟩ = |𝜓⟩,𝐵(𝑝)|𝜓⟩ = |𝜓⟩ for all 𝑣 ∈ 𝑉 ,𝑝 ∈ 𝐹 }.
In fact, something stronger is true which is not completely obvious at first: eigenstates of𝐴(𝑣) give eigenstates of 𝐴𝑔(𝑉 ) for all 𝑔 . This comes from the fact that 𝐴𝑔(𝑣)𝐴(𝑣) = 𝐴(𝑣) for all𝑔 .15
Then if 𝐴(𝑣)|𝜓⟩ = 𝜆|𝜓⟩, on the one hand we have𝐴𝑔(𝑣)𝐴(𝑣)|𝜓⟩ = 𝐴𝑔𝜆|𝜓⟩

15This happens because a group 𝐺 always acts freely on itself by left multiplication.
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and on the other hand this is equal to 𝐴(𝑣)|𝜓⟩ = 𝜆|𝜓⟩,
which shows that 𝜓⟩ is an eigenstate of 𝐴𝑔 with eigenvalue 1 for any 𝑔 ∈ 𝐺.
Therefore we also have

𝑔𝑟𝑜𝑢𝑛𝑑 = {|𝜓⟩ ∈ 𝑡𝑜𝑡𝑎𝑙 |𝐴𝑔(𝑣)|𝜓⟩ = |𝜓⟩,𝐵(𝑝)|𝜓⟩ = |𝜓⟩ for all 𝑣 ∈ 𝑉 , 𝑔 ∈ 𝐺,𝑝 ∈ 𝐹 }.
Before digging into𝑔𝑟𝑜𝑢𝑛𝑑 , we can make one observation. Recall from the previous lecture

that the algebra of local operators at a site generated by the 𝐴𝑔(𝑠) and 𝐵ℎ(𝑠) define a repre-
sentation of the quantum double algebra 𝐷𝐺 on 𝑡𝑜𝑡𝑎𝑙 . If we restrict this representation to𝑔𝑟𝑜𝑢𝑛𝑑 it becomes a trivial representation.
To build an understanding of what ground states look like wemust understandwhat it means

for a state to be a +1 eigenstate of 𝐴𝑔(𝑣) and 𝐵(𝑝) for fixed 𝑣 and 𝑝. To emphasize the analogy
of this analyze with our treatment of the toric code, we’ll start with the plaquette operators.

Action of plaquette operators on basis states

From the definition of 𝐵(𝑝) = 𝐵𝑒(𝑠)we see that a basis state |⋯𝑔𝑒1𝑔𝑒2𝑔𝑒3𝑔𝑒4 ⋯⟩ is a+1 eigenstate
of 𝐵(𝑝) if 𝑔𝑜(𝑒1)𝑒1 𝑔𝑜(𝑒2)𝑒2 𝑔𝑜(𝑒3)𝑒3 𝑔𝑜(𝑒4)𝑒4 = 𝑒 ∈ 𝐺, where 𝑜(𝑒𝑖) ∈ {±1} is the orientation of the edge 𝑒𝑖.
For example,

𝑔2 𝑔4𝑔3
𝑔1𝑝 𝐵(𝑝)⟶ 𝛿𝑒,𝑔−11 𝑔−12 𝑔3𝑔−14 𝑔2 𝑔4𝑔3

𝑔1𝑝
Now consider two neighboring plaquettes 𝑝 and 𝑝′ which share an edge. Locally a basis

state looks like the following picture, where we’ve chosen an indexing so that 𝑒4 ∈ 𝜕𝑝 ∩ 𝜕𝑝′.

𝑔2 𝑔4𝑔3
𝑔1𝑝 𝑔6𝑔5

𝑔7
𝑝′

If a state is a +1 eigenstate of both 𝐵(𝑝) and 𝐵(𝑝′), then𝑔𝑜(𝑒1)𝑒1 𝑔𝑜(𝑒2)𝑒2 𝑔𝑜(𝑒3)𝑒3 𝑔𝑜(𝑒4)𝑒4 = 𝑒 and 𝑔−𝑜(𝑒4)𝑒4 𝑔𝑜(𝑒5)𝑒5 𝑔𝑜(𝑒6)𝑒6 𝑔𝑜(𝑒7)𝑒7 = 𝑒.
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Note that the orientation of the edge 𝑒4 is reversed from its orientation in 𝑝′, since it will be
oriented clockwise in one plaquette and counterclockwise in the other.
Combining these equations we get𝑔𝑜(𝑒1)𝑒1 𝑔𝑜(𝑒2)𝑒2 𝑔𝑜(𝑒3)𝑒3 𝑔𝑜(𝑒5)𝑒5 𝑔𝑜(𝑒6)𝑒6 𝑔𝑜(𝑒7)𝑒7 = 𝑒,

which says that the total flux through the cell 𝑝 ∪ 𝑝′ is zero.
This patternwill continue aswe keep adding neighboring plaquettes, provided that there’s no

topology. Stated differently, a basis state |𝜓⟩ will be a +1 eigenstate of all 𝐵(𝑝) simultaneously
if the flux through every contractible loop on  vanishes.
Here’s an example that shows that the flux being zero through contractible loops does not

imply that the non-contractible loops is trivial.
Imagine that our neighboring plaquettes encircle a handle.

𝑔3 𝑔5𝑔1 𝑔6
𝑔2

𝑔4

The zero flux condition around the left plaquette enforces 𝑔1𝑔2𝑔3𝑔4 = 𝑒 and 𝑔−12 𝑔6𝑔−14 𝑔5 = 𝑒.
Now if we look at the flux through a noncontractible loop like the ones formed by the edges 𝑒1
and 𝑒6 or 𝑔3 and 𝑔5 we see that they can have nonzero flux. For example, 𝑔6𝑔1 = 𝑔2𝑔−15 𝑔−13 𝑔−12 ,
and we cannot in general conclude that the right hand side is trivial.
To summarize so far, we’ve established that a 𝑔-bit string basis states are +1 eigenstates of𝐵𝑒(𝑝) for all 𝑝 if the coloring of the edges of by elements of𝐺 conspire so that every plaquette

has zero flux. When this happens all contractible closed loops on the lattice will have zero flux.

Action of vertex operators on basis states

Recall that 𝐴𝑔(𝑣) acts on a basis state |⋯𝑔𝑒1𝑔𝑒2𝑔𝑒3𝑔𝑒4 ⋯⟩ by multiplying each group element on
the left by 𝑔 if 𝑜𝑣(𝑒𝑖) = 1 and on the right by 𝑔−1 if 𝑜𝑣(𝑒𝑖) = −1, like we saw with the example

𝑔3
𝑔1𝑔2 𝑔4𝑣 𝐴𝑔 (𝑣)⟶ 𝑔3𝑔−1

𝑔𝑔1𝑔𝑔2 𝑔4𝑔−1𝑣
|⋯𝑔1𝑔2𝑔3𝑔4⋯⟩ ↦ |⋯𝑔𝑔1 𝑔𝑔2 𝑔3𝑔−1 𝑔4𝑔−1⋯⟩

So certainly our basis states are not generally eigenstates of the 𝐴𝑔(𝑣) for a fixed 𝑔 individu-
ally. But if we take an equal weight superposition of states which can be related by the action
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of 𝐴𝑔(𝑣) operators for some collection of vertices such a state would be invariant under the
action of 𝐴𝑔(𝑣) for all 𝑣 ∈ 𝑉 .
Just like with the toric code, we want to define an equivalence relation ∼ (on the “zero

flux” +1 eigenstates of 𝐵𝑒(𝑝)) where we identity |𝜓⟩ ∼ |𝜓′⟩ if |𝜓′⟩ if they are equal up to the
application of a vertex gauge transformations 𝐴𝑔 at various vertices on the lattice. Then a
ground state is (up to a normalization), given by|[𝜓]⟩ = ∑|𝜓′⟩∼|𝜓⟩ |𝜓′⟩.
Dimension of ground state space

But how many of these ground states are there? This depends on the topology of the surface
where our lattice lives, which we’ve been agnostic about up until now. We’ll state the result
and give a very rough idea of the form that it takes.

Theorem 2.1

The ground state degeneracy of the Kitaev quantum double model for a finite group 𝐺
is given bydim ((Σ𝑔)) = #𝐻𝑜𝑚(𝜋(Σ𝑔),𝐺)up to the conjugation action by 𝐺

Wewill explain where the conjugation action comes in when we hone in on Σ1 = 𝑇 2 shortly,
but we won’t give further details here. Instead we’ll try to give some indications *why* 𝜋1(Σ𝑔)
and its maps to 𝐺 are relevant for this calculation.
Towards this end, we’ve talked about “putting your lattice on a higher genus surface,” but

how do you actually do this?

Topology Interlude

The classification of closed, oriented surfaces from topology tells us what space manifolds we
can put our theory on. Our choices are control by genus, and there is a genus 𝑔 surface Σ𝑔 for
each genus.

Σ0 = 𝑆2 = Σ1 = 𝑇 2 = Σ2 =… Σ3 =…
The easiest way to do “put your theory on Σ𝑔” is by using a fundamental domain of a genus𝑔 surface. The easiest way to describe them is as a regular 4𝑔-gon with sides identified in

adjacent groups of four, creating one genus at a time by gluing the edges in an alternating
pattern. We’re already comfortable with the 𝑔 = 1 case. When 𝑔 = 2 and 𝑔 = 3, we glue up
an octagon by identifying the sides like indicated below in this figure I clipped from Hatcher’s
Algebraic Topology https://pi.math.cornell.edu/hatcher/AT/AT+.pdf.
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Here’s a really nice Math Stack Exchange post where people have shared sequences of pic-
tures to help you visualize the 𝑔 = 2 case:

https://math.stackexchange.com/questions/479371/
how-to-construct-a-genus-2-surface-from-8-gon

So if you put your lattice on one of these polygons with the boundary edges identified in the
right manner you’ll have successful put your theory on a Σ𝑔 .
Fundamental group

We will focus on giving a high level understanding of the fundamental group of a surface
instead of giving the full details of its definition.
We can think of the fundamental group as a functorial assignment of groups to topological

spaces (with basepoint): 𝜋1 ∶ Top → Grp𝑋 ↦ 𝜋1(𝑋)𝑋 𝑓→ 𝑌 ↦ 𝜋1(𝑋) 𝜋1(𝑓 )→ 𝜋1(𝑌 )
In the exercises you showed that isomorphisms are preserved under functors, so you showed

that if 𝑋 ≃ 𝑌 are homeomorphic topological spaces, then 𝜋1(𝑋) ≅ 𝜋1(𝑌 ) as groups. In other
words, 𝜋1(𝑋) is an invariant of topological spaces, and surfaces in particular.
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It is okay to just think about the fundamental group of a surface as some group we assign
to it that “counts the number of holes”, but it will help to have at least a rough idea of the
definition.

Definition 2.1

The fundamental group 𝜋1(𝑋 , 𝑥) of a space 𝑋 with respect to a basepoint 𝑥 is the set of
homotopy classes of loops based at 𝑥 with multiplication inherited from concatenation
of paths.

If 𝑋 is path connected, like when 𝑋 = Σ𝑔 , changing the basepoint from 𝑥 to 𝑥̃ gives an
isomorphic group 𝜋1(𝑋 , 𝑥̃) which is related to 𝜋1(𝑋 , 𝑥) by conjugation with a path 𝑝 from 𝑥 to𝑥̃ .
Since every closed loop on the sphere 𝑆2 is contractible, 𝜋1(𝑆2) = 1. A presentation of

the fundamental group of a genus 𝑔 surface for 𝑔 > 1 can be remembered using the same
alternating pattern used to glue up their fundamental domains,𝜋1(Σ𝑔) = ⟨𝑎1, 𝑎2, … , 𝑎𝑔 , 𝑏1, 𝑏2, … 𝑏𝑔 | [𝑎𝑖, 𝑔𝑖] = 𝑒 for 𝑖 = 1, 2, … 𝑔⟩.
Intuition behind general formula for ground state degeneracy

Returning to the general formula for the ground state degeneracy on a genus 𝑔 surface, we
know explain why our lattice model is a natural source of maps 𝜋1(Σ𝑔) → 𝐺. Suppose that
our lattice L lives on Σ𝑔 , and consider a path 𝑙 ∶ 𝐼 → Σ𝑔 with 𝑙(0) = 𝑥 and 𝑙(1) = 𝑥 , i.e. a
closed loop. We can always use homotopy to pick an equivalent path that lives directly on the
lattice L and do a basepoint change to ensure that 𝑙 has a vertex 𝑣 as basepoint. As we traverse𝑙 starting at time 0, we will encounter a sequence of edges, 𝑒1, 𝑒2, … , 𝑒𝑚. Given a basis state of𝑡𝑜𝑡𝑎𝑙 , which we can think of an a colored of the edges 𝐸 of  by elements of 𝐺,
Then given a loop 𝑙, we assign it the group element given by the product of all the group

elements coloring the edges in the loop, 𝑔1, 𝑔2, … 𝑔𝑚, multiplying by their inverse when the
orientation of the edge is against the direction we traverse 𝑙.
This map will induce a well-defined isomorphism on homotopy classes precisely for the

ground states, but that takes a bit more work to show than we have time to cover. Instead, we
will compute the ground state degeneracy explicitly when 𝑔 = 1.
Ground state degeneracy on the torus

We already know from our discussion of the toric code how to put boundary conditions on 
to put our system on the torus. In this case, 𝜋1(𝑇 2) = Z × Z and the ground state degeneracy
is counted by homomorphisms 𝜙 ∶ Z ×Z → 𝐺 (up to the conjugation action of 𝐺).
If an assignment 𝜙 of group elements to generators𝜙 ∶ Z ×Z → 𝐺(1, 0) ↦ 𝑔(0, 1) ↦ ℎ

62



is a homomorphism then 𝜙((1, 1)) = 𝜙((1, 0))𝜙((0, 1)) = 𝑔ℎ and 𝜙((1, 1)) = 𝜙((0, 1))𝜙((1, 0)) =ℎ𝑔 , i.e. 𝑔 and ℎ commute. There are no other relations in Z × Z besides commutativity – it is
the free abelian group on two generators, so every pair of commuting elements 𝑔 , ℎ ∈ 𝐺 defines
a homomorphism out of Z ×Z. So for a fixed 𝑔 , we count |𝑍(𝑔)|many commuting elements ℎ.
Howmany of these are there up to conjugation? Nowwe identify pairs of the form 𝑥𝑔𝑥−1, 𝑥ℎ𝑥−1

for some 𝑥 ∈ 𝐺 with the pair 𝑔 , ℎ. Now for each conjugacy class 𝐶 = [𝑔], we count the number
of conjugacy classes in 𝑍(𝑔). Remember that the number of irreps of a finite group is given by
its number of conjugacy classes.
In summary, a basis for the ground state space of the Kitaev quantum double model for a

finite group 𝐺 on a torus is in bijection with pairs (𝐶, 𝜒 )where 𝐶 is a conjugacy class of 𝐺 and𝜒 is an irrep of 𝑍(𝑔) for a representative 𝑔 ∈ 𝐺.
We gave a very rough idea of why the ground state degeneracy on a genus 𝑔 surface is

counted by Hom(𝜋1(Σ𝑔),𝐺) up to conjugation.
In order to exhibit how excitations are created in dual pairs from a ground state one needs to

introduce ribbon operators, analogous to the string operators from Lectures 4 and 5. Now our
quasiparticles will live at the endpoint sites of a ribbon on the combined lattice/dual lattice.
We probably don’t have time to appreciate the full details of the ribbon operators, so we will

wrap up this discussion for now by zooming back out to see the big picture. 16
The upshot is that the irreps of the quantum double algebra 𝐷𝐺 classify the kinds of quasi-

particles that can live at a site, and their fusion rules are given by the fusion table of the irreps
of 𝐷𝐺.
When 𝐺 is abelian – let’s call it 𝐴 – you can check that there are no interesting relations

among the generators 𝐷(𝑏 ,𝑎) of the quantum double algebra 𝐷𝐴 = [C[𝐴] ⊗ C[𝐴]. This tells us
that the representation theory of 𝐷𝐴 is given by the representation theory of 𝐴̂ × 𝐴 ≅ 𝐴 × 𝐴.
In other words, when we feed an abelian group 𝐴 into the Kitaev quantum double model,

we will get a topological phase where the anyons fuse like 𝐴×𝐴. We saw the smallest example
of this behavior with the Z2 toric code, where the anyons fuse like Z2 ×Z2. Note in particular
that we will always get abelian anyons – anyons with fusion rules that come from a(n abelian)
group – when we start with 𝐴 abelian.
The smallest nonabelian group is 𝑆3, and it gives rise to nonabelian anyons – anyons with fu-

sion rules that, while commutative, are not all invertible. More generally, when𝐺 is nonabelian
the quantum double will yield nonabelian anyons. This is a place where the terminology lines
up neatly, but remember that nonabelian anyons are more general and need not come from
nonabelian groups via the quantum double construction.

16Hopefully when we cover string-net models we will make up for lost time and talk about ribbon operators in
detail.

63



Nonabelian anyons in the 𝐷𝑆3 model

Recall from the exercises that there are eight irreps of 𝐷𝑆3, which we label as follows:

Irrep of 𝐷𝑆3 Anyon Type({id}, 1) 𝐴({id}, sgn) 𝐵({id}, std) 𝐶({(12), (13), (23)}, 1) 𝐷({(12), (13), (23)}, 𝑠) 𝐸({(123), (132)}, 1) 𝐹({(123), (132)},𝜔) 𝐺({(123), (132)},𝜔∗) 𝐻
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Example 2.1: 𝐷𝑆3 fusion rules

Let 𝐿 = {𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹 ,𝐺,𝐻 }. Then the tensor product of irreps of 𝐷𝑆3 decompose according to the following fusion table:⊗ 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻𝐴 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻𝐵 𝐵 𝐴 𝐶 𝐸 𝐷 𝐹 𝐺 𝐻𝐶 𝐶 𝐶 𝐴 ⊕ 𝐵 ⊕ 𝐶 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐺 ⊕ 𝐻 𝐹 ⊕ 𝐻 𝐹 ⊕ 𝐺𝐷 𝐷 𝐸 𝐷 ⊕ 𝐸 𝐴 ⊕ 𝐶 ⊕ 𝐹 ⊕ 𝐹 ⊕ 𝐻 𝐵 ⊕ 𝐶 ⊕ 𝐹 ⊕ 𝐺 ⊕ 𝐻 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸𝐸 𝐸 𝐷 𝐷 ⊕ 𝐸 𝐵 ⊕ 𝐶 ⊕ 𝐹 ⊕ 𝐺 ⊕ 𝐻 𝐴 ⊕ 𝐶 ⊕ 𝐹 ⊕ 𝐺 ⊕ 𝐽 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸𝐹 𝐹 𝐹 𝐺 ⊕ 𝐻 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐴 ⊕ 𝐵 ⊕ 𝐹 𝐻 ⊕ 𝐶 𝐺 ⊕ 𝐶𝐺 𝐺 𝐹 ⊕ 𝐻 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐻 ⊕ 𝐶 𝐻 ⊕ 𝐶 𝐴 ⊕ 𝐵 ⊕ 𝐺 𝐹 ⊕ 𝐶𝐻 𝐻 𝐻 𝐹 ⊕ 𝐺 𝐷 ⊕ 𝐸 𝐷 ⊕ 𝐸 𝐺 ⊕ 𝐶 𝐹 ⊕ 𝐶 𝐴 ⊕ 𝐵 ⊕ 𝐻
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