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Sample Message: 

Public Key: (1503257, 2875189)                  Secret Key: (185465, 2875189)

2338951     1422194          220982       224297         849352          716088

Brief Instructions to decode a message when you know the decoding key:
1.  Find and double-click on "isetl" or "isetl.exe" to open it and start the program.   [image: image1.wmf]
2. At the prompt, type 

       n:= 2875189;

     Then type  <Return> 

3. At the prompt, type 

       d:= 185465;

     Then type  <Return> 

4. Then for each number, x, in the secret message, type 

       power(x,d,n);

     Then type  <Return> 

     For example, typing 

       power(2338951,d,n);

     Results in  

       162118;

5.  Record the answers to get the message in the simple  substitution form.  Every number

      is to be interpreted as a 6 digit number (a leading zero may be needed); each pair of digits

      stands for one letter of the message.    For example,  162118 becomes 16/21/18

  which is  PUR    
Brief Instructions for finding the decoding key when you know the encoding key:
The public key consists of the numbers  e  and  n.  The secret key consists of

the numbers  d  and  n.  To find  d, we need to factor n as a product of two primes,

say,  n = p•q, then, find  m = (p-1)•(q-1).  The number  d  satisfies  d•e  1  mod m,

that is,  d  is the inverse of  e  mod m.  The only hard part of this is factoring  n 

when it is very large.

Finding the decoding key.

1. If the encoding key is (e,n), we must factor n.  For example, if n= 1610303, type:

       factor(1610303);

     Then type  <Return> 

2. After factoring n as a product of two primes, p and q, let  m = (p-1)(q-1) 

3. If the encoding key is (e,n), we must find d  so that de   1  mod m, that is, we are finding the multiplicative inverse of e mod n. For example, if  e = 885577, type

       d:=inverse(885577,m);

     Then type  <Return> 

4. Then the decoding key is (d,n) and we can decode the message using this key.

The Mathematics Behind the Instructions:

The basic ideas for this cryptosystem were developed about 1975 or 1980, but based on hundreds of years of work in number theory on prime factorization and so on.  This particular scheme was developed by Rivest, Shamir, and Adleman (hence RSA).   The choices in these examples are much smaller than typical; the usual choices of integers are 100 or 200 digits long, so that even the fastest computers cannot break the codes.


The number n = 2875189 is the product of two prime numbers,   n = pq 

where  p = 1447 and q = 1987.  The number  m = (p-1)(q-1) = 2871756, by a theorem of Euler,  has the property that  xam+1 = x  mod n for 

all  x.    Now  d = 185465 and e = 1503257 were chosen so that  

          de = (185465)(1503257)= 278801559505 = 97084m + 1

which means that  xde = x  mod n for all  x.


The function   power(x,e,n)  computes  xe mod n and  returns the number 

z satisfying z = xe mod n with 0<z<n.   Similarly,  power(y,d,n) computes  yd mod n; if  y   is  xe then power(y,d,n)  computes 

                                   yd = (xe)d = xed  = x   mod n

for all   x.     Since the code numbers are all non-zero 6 digit numbers that are less than n, the secret key decodes the message that was encoded by the public key.


To create the code, one needs two prime numbers large enough that  n = pq cannot be easily factored, and to be able to find the numbers  d and  e from 

m = (p-1)(q-1).  In order for this to be possible, one must choose  e with no factors in common with m.  Then, d may be found from the Euclidean algorithm.   (The command   inverse(e,m) will find d from e and m.)


To break the code knowing the public key, one needs to factor the number  

n = pq which, it is supposed, cannot be easily factored.   However, if the factorization is possible, we can easily find the number  d from  e and 

m = (p-1)(q-1).   The function factor will find the smallest prime factor of a number as long as that factor is less than 2000, then inverse can be used to find d.

This summary is based on the book "A Course in Number Theory and 

Cryptography" by Neal Koblitz (Springer-Verlag, New York, 1987) which can be profitably read by students with 3 or 4 years of college level mathematics courses, including a course in modern algebra covering group theory.

The  included ISETL subroutines:

"binary" computes the binary expansion of  the exponent to quickly compute powers:

  binary:=func(n);

     bin:=[1..32];

     for j in [1..32] do

        bin(j):= n mod 2;

        n:=floor(n/2);

     end;

     return bin;

   end;

"power" computes be mod n:

   power:=func(b,e,n);

     bin:=binary(e);

     powrs:=[1..32];

     powrs(1):=b;

     for j in [2..32] do

        powrs(j):=powrs(j-1)**2 mod n

     end;

     ans:=1;

     for j in [1..32] do

       if bin(j)=1 then ans:=ans*powrs(j) mod n; end;

     end;

     return ans;

   end;

"primes" is a list of the primes less than 2000.

"factor" gives the smallest prime factor of the number (if that prime is less than 2000):

   factor:=func(n);

     for j in [1..303] do

       if n - floor(n/primes(j))*primes(j) = 0 then return primes(j); end;

     end;

     return 'Unable to factor';

   end;

"inverse" uses the Euclidean algorithm to find the inverse of  d  in the group of integers under multiplication modulo m:

   inverse:=func(d,m);

     r:=[1..34];

     for j in [1..34] do

        r(j):=0;

     end;

     q:=r; s:=r; t:=r; u:=r; v:=r;

     s(1):=1; v(1):=1; 

     r(1):=m;

     r(2):=d;

     j:=2;

     while r(j)>1 do

        q(j-1):=floor(r(j-1)/r(j)); r(j+1):= r(j-1)-q(j-1)*r(j);

        s(j):=u(j-1); t(j):=v(j-1); u(j):=s(j-1)-q(j-1)*u(j-1); 

        v(j):=t(j-1)-q(j-1)*v(j-1); j:=j+1;

     end;

     if r(j)=1 then return v(j-1) mod m; else return 'no inverse, GCD is not 1';

     end;

   end;
