Carl Cowen, Purdue University

RSA Cryptosystems

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

 1 2 3 4 5 6 7 8 9 0 $? ' . , !

 51 52 53 54 55 56 57 58 59 60 94 95 96 97 98 99

Sample Message:

Public Key: (1503257, 2875189) Secret Key: (185465, 2875189)

2338951 1422194 220982 224297 849352 716088

Brief Instructions to decode a message when you know the decoding key:
1. Find and double-click on "isetl" or "isetl.exe" to open it and start the program. [image: image1.wmf]
2. At the prompt, type

 n:= 2875189;

 Then type <Return>

3. At the prompt, type

 d:= 185465;

 Then type <Return>

4. Then for each number, x, in the secret message, type

 power(x,d,n);

 Then type <Return>

 For example, typing

 power(2338951,d,n);

 Results in

 162118;

5. Record the answers to get the message in the simple substitution form. Every number

 is to be interpreted as a 6 digit number (a leading zero may be needed); each pair of digits

 stands for one letter of the message. For example, 162118 becomes 16/21/18

 which is PUR
Brief Instructions for finding the decoding key when you know the encoding key:
The public key consists of the numbers e and n. The secret key consists of

the numbers d and n. To find d, we need to factor n as a product of two primes,

say, n = p•q, then, find m = (p-1)•(q-1). The number d satisfies d•e  1 mod m,

that is, d is the inverse of e mod m. The only hard part of this is factoring n

when it is very large.

Finding the decoding key.

1. If the encoding key is (e,n), we must factor n. For example, if n= 1610303, type:

 factor(1610303);

 Then type <Return>

2. After factoring n as a product of two primes, p and q, let m = (p-1)(q-1)

3. If the encoding key is (e,n), we must find d so that de  1 mod m, that is, we are finding the multiplicative inverse of e mod n. For example, if e = 885577, type

 d:=inverse(885577,m);

 Then type <Return>

4. Then the decoding key is (d,n) and we can decode the message using this key.

The Mathematics Behind the Instructions:

The basic ideas for this cryptosystem were developed about 1975 or 1980, but based on hundreds of years of work in number theory on prime factorization and so on. This particular scheme was developed by Rivest, Shamir, and Adleman (hence RSA). The choices in these examples are much smaller than typical; the usual choices of integers are 100 or 200 digits long, so that even the fastest computers cannot break the codes.

The number n = 2875189 is the product of two prime numbers, n = pq

where p = 1447 and q = 1987. The number m = (p-1)(q-1) = 2871756, by a theorem of Euler, has the property that xam+1 = x mod n for

all x. Now d = 185465 and e = 1503257 were chosen so that

 de = (185465)(1503257)= 278801559505 = 97084m + 1

which means that xde = x mod n for all x.

The function power(x,e,n) computes xe mod n and returns the number

z satisfying z = xe mod n with 0<z<n. Similarly, power(y,d,n) computes yd mod n; if y is xe then power(y,d,n) computes

 yd = (xe)d = xed = x mod n

for all x. Since the code numbers are all non-zero 6 digit numbers that are less than n, the secret key decodes the message that was encoded by the public key.

To create the code, one needs two prime numbers large enough that n = pq cannot be easily factored, and to be able to find the numbers d and e from

m = (p-1)(q-1). In order for this to be possible, one must choose e with no factors in common with m. Then, d may be found from the Euclidean algorithm. (The command inverse(e,m) will find d from e and m.)

To break the code knowing the public key, one needs to factor the number

n = pq which, it is supposed, cannot be easily factored. However, if the factorization is possible, we can easily find the number d from e and

m = (p-1)(q-1). The function factor will find the smallest prime factor of a number as long as that factor is less than 2000, then inverse can be used to find d.

This summary is based on the book "A Course in Number Theory and

Cryptography" by Neal Koblitz (Springer-Verlag, New York, 1987) which can be profitably read by students with 3 or 4 years of college level mathematics courses, including a course in modern algebra covering group theory.

The included ISETL subroutines:

"binary" computes the binary expansion of the exponent to quickly compute powers:

 binary:=func(n);

 bin:=[1..32];

 for j in [1..32] do

 bin(j):= n mod 2;

 n:=floor(n/2);

 end;

 return bin;

 end;

"power" computes be mod n:

 power:=func(b,e,n);

 bin:=binary(e);

 powrs:=[1..32];

 powrs(1):=b;

 for j in [2..32] do

 powrs(j):=powrs(j-1)**2 mod n

 end;

 ans:=1;

 for j in [1..32] do

 if bin(j)=1 then ans:=ans*powrs(j) mod n; end;

 end;

 return ans;

 end;

"primes" is a list of the primes less than 2000.

"factor" gives the smallest prime factor of the number (if that prime is less than 2000):

 factor:=func(n);

 for j in [1..303] do

 if n - floor(n/primes(j))*primes(j) = 0 then return primes(j); end;

 end;

 return 'Unable to factor';

 end;

"inverse" uses the Euclidean algorithm to find the inverse of d in the group of integers under multiplication modulo m:

 inverse:=func(d,m);

 r:=[1..34];

 for j in [1..34] do

 r(j):=0;

 end;

 q:=r; s:=r; t:=r; u:=r; v:=r;

 s(1):=1; v(1):=1;

 r(1):=m;

 r(2):=d;

 j:=2;

 while r(j)>1 do

 q(j-1):=floor(r(j-1)/r(j)); r(j+1):= r(j-1)-q(j-1)*r(j);

 s(j):=u(j-1); t(j):=v(j-1); u(j):=s(j-1)-q(j-1)*u(j-1);

 v(j):=t(j-1)-q(j-1)*v(j-1); j:=j+1;

 end;

 if r(j)=1 then return v(j-1) mod m; else return 'no inverse, GCD is not 1';

 end;

 end;
