A Project on Circles in Space

Carl C. Cowen*
Purdue University

Preliminary Version
June 22, 1995

Abstract

This project asks students to decide if a collection of points in space do
or do not lie on a circle. The project is accessible to linear algebra students
who have studied Gram—Schmidt orthogonalization and the application of
linear algebra to least squares regression. Several pedgogical aspects of the
project are discussed including two successful approaches for the solution of
the problem. Matlab code for generating data points is included.

The project of deciding if a collection of points in space do or do not lie on
a circle has been very successful in my recent linear algebra classes. Students
understand the problem and, given the background of the problem, the moti-
vation for solving it. The project forces them to integrate their knowledge of
several parts of the course and some earlier work in other courses. Moreover,
since it sounds easier than it usually turns out to be, students get hooked
on the problem. I believe they come to understand to some extent how the
mathematics they know could be useful in a “real world” setting.

The project was inspired by a presentation given by Michael A. Lachance,
University of Michigan at Dearborn, at the Tri-section Meeting of the Michi-
gan, Illinois, and Indiana Sections of the Mathematical Association of Amer-
ica held at Saint Mary’s College (Notre Dame, Indiana) in the spring of 1993.
Professor Lachance described this and other problems he had learned of in his
consulting work with Ford Motor Company. I would like to thank Professor
Lachance and Dr. Edward Moylan, Ford Motor Company, for their assistance
in preparing this note.

*(©Carl C. Cowen. Permission is granted for use of this material, with attribution, for
instruction, but publication of this material requires prior written consent of the author.

1 The Project

In modern manufacturing plants, much of the work is done by robots. While
robots are very efficient, they are less cognizant than humans of errors that
have been made. To combat this, as part of the quality control process, mea-
surements are taken to compare the actual outcome with the desired outcome.
In this instance, the coordinates of ten points on the cut edge of the fuel tank
filler tube (that is, a circular cylinder) have been measured. If the part is well
made, these ten points will lie on a circle whose radius is the radius of the
cylinder. If the part has been cut crookedly, these points are on an ellipse
and if the piece has been bent, the points are on a bent circle. The question,
therefore, is to determine whether ten points whose coordinates are given lie
on a circle or whether they do not.

I have used this project in a second course in linear algebra for math
majors, in a first course for sophomore engineering students, and in a graduate
course for engineering students, a course that assumes no prior knowledge of
linear algebra but moves quickly through material to culminate with quadratic
forms and Jordan Canonical Form. In my class, each student receives her or
his own data set but I encourage students to work together. Nevertheless,
I ask that each problem be solved; that is, if Maria works alone, she needs
to solve her own problem, but if Maria and John work together, they need
to solve both Maria’s problem and John’s problem and they each get the
average grade for the two submissions. The data sets I use are either circles,
ellipses with eccentricity nearly 1, or circles that have been “bent”, with a
preponderance of circles.

Some kind of numerical software is essential for attacking this problem:;
students in my classes have access to MATLAB [1]. Ultimately, some numerical
issues come up, in particular, the data points are given as numbers with four
digit precision and it is quite unlikely that they lie on a circle to infinite
precision. On this issue, I ask them to realize that in the “real world”, they
will be working with imprecise numbers and to use their own judgement as
to whether the points “nearly” lie on a circle or whether they are “far” from
being on a circle. We do not formally address the issue of “tolerance” to ask,
for example, if the points are within .001" of being on a circle but I believe
they could address that issue with more time. For the most part, however, the
issues the students dwell on are the mathematical issues, not the numerical
ones.

When the project is assigned, we will have covered least square approxi-
mations and the Gram-Schmidt orthogonalization algorithm and its relation

Circle Project

Decide if the following points in space lie on a circle. If they
do, find the center, the radius, and describe the location of
the circle in space. In any case, provide some supporting
calculations and explain how your calculations justify your
answer.

Data Set 38

T Yy z
point 1 0.4155 1.4804 —4.1936
point 2 2.5749 7.7438 2.6115
point 3 | —0.8669 7.1880 1.0171
point 4 5.3092 6.7052 2.4255
point 5 1.4171 1.0525 —4.3084
point 6 6.4762 5.6856 1.7804
point 7 4.7269 7.0463 2.5828
point 8 | —1.7171 6.4185 0.0029
point 9 1.7591 0.9468 —4.3078
point 10 6.4560 5.7093 1.7975

Figure 1: A typical assignment sheet for the circle project.

to QR—factorization. In more advanced courses, we also will have covered uni-
tary transformations of R"™ and C". I typically give the students two weeks
to think about the problem and we discuss various issues as students have
questions. On the class after the assignment is made, I ask the students to
discuss the question “What is a circle?” among themselves. Frequently, this
question is asked of me at the beginning of that class, but I do not answer it
directly. The first major hurdle is passed when the students consciously state
that a circle is a plane curve.

Students must eventually realize that in linear algebra we have thought
only of planes as two dimensional subspaces, that is, we have thought only
about planes through the origin. In particular, finding the rank of the matrix
whose columns are the data points is not a good way to decide if the points lie
on a plane! Eventually, student questions lead us to discuss ways to translate
the data so that, if the points lie on a plane, the translated data will lie on a
plane through the origin. We usually compare the merits of the most obvious
technique of subtracting one of the points from each of the points with the
more subtle technique of subtracting the average of the points. Additionally,
I expect students to remember that planes in R? have an equation of the form
ax + by + cz + d = 0, to realize that this is too flexible a formulation, and to
consider using a least squares technique to find the best plane of the form

ax+by+cz+1=0

Students usually get this far with little assistance from me beyond providing
time in class for the discussion.

The next step is frequently more problematic. Most students do not have
a firm grasp on the idea that orthogonal coordinate systems are essential for
distinguishing circles from ellipses. That is, to decide whether the points on
the plane are on a circle, it is important to get an orthonormal basis for the
plane, not just any basis, because circles are defined in terms of distances
and coordinates with respect to an orthonormal coordinate system allow one
to compute the distances with the new coordinates. To make this point,
one can give examples of a circle described in a non-orthogonal basis giving
coordinates that form an ellipse if interpreted as points in the plane in the
usual way. This discussion is more easily carried out if the students have
covered changing coordinates and especially orthogonal change of coordinates
before the project. We will have done so for our more advanced students,
but not for the sophomore engineering course. After describing the points in
terms of an orthonormal coordinate system, I expect them to use least squares
to find the circle that fits best.

Students find this a challenging but interesting project. In my experience,
most students choose to work in small groups, and most groups are fairly
successful in developing a suitable technique to attack the problem, although
not all carry out the computations carefully enough to get correct answers. In
the past, I have given some data sets whose points did not all lie in a plane,
but students regarded this as unfair because it meant that those students had
much less work to do to finish the project; in the future, all the data sets I use
will have points that are coplanar. I regard this as one of the most successful
projects I have included in courses because it asks students to use a variety
of tools to attack an easily understood problem whose practical significance
they can appreciate.

2 A Solution

The following is an outline of a solution to the problem in Figure 1 typical
of the approach used in my more elementary class. It is based on translation
of the data points to a plane through the origin and using an orthogonal
coordinate system in that plane to fit a circle to the data. The calculations
are from a MATLAB session on a Macintosh.

First, the data must be entered, most conveniently as the 3 x 10 matrix
whose columns are the data points.

data =
Columns 1 through 7
0.4155 2.5749 -0.8669 5.3092 1.4171 6.4762 4.7269
1.4804 7.7438 7.1880 6.7052 1.05625 5.6856 7.0463
-4.1936 2.6115 1.0171 2.4255 -4.3084 1.7804 2.5828
Columns 8 through 10
-1.7171 1.7591 6.4560
6.4185 0.9468 5.7093
0.0029 -4.3078 1.7975

To move the plane to the origin, we will subtract from each point, the average
of the points.

> avgpt=data*ones(10,1)/10
avgpt =

2.6551

4.9976

-0.0592

> trdata=data-diag(avgpt) *ones(3,10)
trdata =
Columns 1 through 7
-2.2396 -0.0802 -3.5220 2.6541 -1.2380 3.8211 2.0718
-3.5172 2.7462 2.1904 1.7076 -3.94b1 0.6880 2.0487
-4.1344 2.6707 1.0763 2.4847 -4.2492 1.8396 2.6420
Columns 8 through 10
-4.3722 -0.8960 3.8009
1.4209 -4.0508 0.7117
0.0621 -4.2486 1.8567

If the translated data points actually lie on a plane, then the rank of trdata
should be 2. In fact, the rank is given as 3, but if eps is changed from the
default value of 2 x 10716 to about 1075 ,then the rank is reported as 2; in
other words, the matrix is nearly rank 2, but not rank 2 to the accuracy
MATLAB usually expects. Use of the QR—factorization makes the situation
much clearer!

> [Q Rl=gr(trdata)

Q =
-0.3814 0.8996 -0.2125
-0.5990 -0.4156 -0.6844
-0.7041 -0.1338 0.6974
R =

Columns 1 through 7
5.8720 -3.4948 -0.7265 -3.7846 5.8271 -3.1647 -3.8775
0 -1.5707 -4.2229 1.3457 1.0943 2.9057 0.6590
0 0 -0.0001 0.0000 -0.0001 -0.0000 0.0000
Columns 8 through 10
0.7728 5.7595 -3.1833
-4.5323 1.4458 2.8754
0.0000 0.0000 -0.0000

The columns of the matrix Q are an orthonormal basis for R? and trdata =
QR. In particular, since the last row of R is (nearly) zero, each of the columns
of trdata is (nearly) a linear combination of the first two columns of Q. In
other words, the first two columns of Q form an orthonormal basis for the
plane containing the data points. Moreover, since the j?* column of trdata is
R1;q1+Rojg2 where g1 and g2 are the first two columns of Q, the data points will
lie on a circle in space if and only if the points of the plane whose coordinates
are {(Ri;,R2;)} lie on a circle.

Now points in the plane that lie on the circle with center (zg,yo) and

radius r satisfy the equation (z — z0)? + (y — yo)?> = r? or

ax +by +c =z +9° (1)

where a = 279, b = 2yo, and ¢ = 72 — 23 — y3. We find the best circle for
the coordinate data by finding the least squares approximation for a, b, and
c. Recall that in MATLAB, the \ command gives the least squares solution to
the system and that v.~2 gives the vector of the same size as v whose entries
are the squares of the entries of v, so the vector coefs below is the best set
of coefficients (a,b,c) in Equation (1).

> coord=R(1:2,:)
coord =
Columns 1 through 7
5.8720 -3.4948 -0.7265 -3.7846 5.8271 -3.1647 -3.8775
0 -1.5707 -4.2229 1.3457 1.0943 2.9057 0.6590
Columns 8 through 10
0.7728 5.7595 -3.1833
-4.5323 1.4458 2.8754
> coefs=[coord’ ones(10,1)]\(coord(1l,:)."2 +coord(2,:)."2)’
coefs =
1.9969
0.6968
22.7537

This enables us to find the center and radius of the best circle in the plane
and move this back to the original data.

> x0=coefs(1)/2
x0 =
0.9985
> yO0=coefs(2)/2
yo =
0.3484
> ctr=x0*Q(:,1)+y0*Q(:,2)+avgpt
ctr =
2.5877
4.,2548
-0.8088
> rad=sqrt(coefs(3)+x0"2+y0~2)
rad =
4.8859

The center in the coordinate plane is (x0, y0) which corresponds to x0q; +y0g2
in the translated plane and the center in the original plane is x0q; + yOg2 +
avgpt = (2.5877,4.2548, —0.8088). The radius, which is the same in each
plane, is 4.8859. It is not difficult to check that the distance from each of the
data points to the computed center is, to four places, 4.8859. This, together

with the QR—factorization showed the points lie (nearly) on a plane, and since
the third column of Q is perpendicular to g; and g, it must be a normal to
the plane. Moreover, the point avgpt lies on the plane, so its equation is

—0.2125(x — 2.6551) — 0.6844(y — 4.9976) + 0.6974(z + 0.0592) = 0

Thus, these data points lie on a circle in this plane with radius 4.8859 and
center (2.5877,4.2548, —0.8088).

3 A Second Solution

The following is an outline of a solution to the problem in Figure 1 using
a more sophisticated approach based on unitary coordinate transformations.
The goal is to find the plane on which the data lies, then rotate the plane to be
horizontal so that the x and y coordinates of the rotated data are coordinates
in “the” z,y—coordinate system. The calculations are from a MATLAB session
on a Macintosh.

Again, the data must be first be entered; it is stored as the 3 x 10 matrix
data as before. We begin by fitting a plane to the data points by finding
the best A, B, and C for the equation Az + By + Cz = 1. Recalling that in
MATLAB, \ finds the least squares solution of a system, we compute

> N=data’\ones(10,1)
N =

0.0528

0.1700

-0.1732

Checking, we get

> data’*N
ans
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

i e i i e i i |

Thus, the data points (nearly) lie on the plane 0.05282+0.1700y—0.1732z = 1
and N is a normal to this plane. Now, we want to rotate this plane in space,
rigidly, so that it is horizontal, because, then, the usual z, y—coordinate system
will apply. That is, we want to find a unitary U so that UN is vertical. Now,
computing the QR-factorization of N will give a unitary V so that V*N =
V*VS = S is a multiple of (1,0,0)

> [V 8]=qr(N)

vV =
-0.2125 -0.6844 0.6974
-0.6844 0.6136 0.3937
0.6974 0.3937 0.5989
g =
-0.2484
0
0

and rearranging the rows of V* gives a unitary that takes N to a vertical vector.

> U=[V(:,2:3) V(:,1)]’

U=
-0.6844 0.6136 0.3937
0.6974 0.3937 0.5989
-0.2125 -0.6844 0.6974
> UxN
ans =
-0.0000
0.0000
-0.2484
> UxU’
ans =
1.0000 0.0000 -0.0000
0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000

The final two calculations are, of course, unnecessary because we have con-
structed U to map N to a vertical vector and to be unitary, but I encourage
my students to check their work constantly. When doing calculations in class
(the class meets in an ordinary lecture room, but we have a portable com-
puter and LCD plate for demonstrations), I use questions about checking as
an opportunity to reinforce the theory by asking the students to tell me how
we can check a calculation. For example, in this case, I might ask “How do
we know that U is unitary?” and wait for the students to come up with the
defining property that U* is U~! which we then check. Since U is unitary and
maps N to a vertical vector, U is a rigid motion of space that should take the
data points onto a horizontal plane.

> rotdata=U*data
rotdata =
Columns 1 through 7
-1.0268 4.0176 5.4046
-1.6389 6.4082 2.8342
-4.0262 -4.0262 -4.0262
Columns 8 through 10
5.11561 -2.3188 -0.2077
1.3310 -0.9803 7.8265
-4.0262 -4.0261 -4.0262

1.4356
7.7948
-4.0262

-2.0201 -0.2428 2.1054
-1.1776 7.8210 7.6172
-4.0262 -4.0262 -4.0262

The rotated data points (nearly) lie on the plane z = —4.0262 and the z,y—

coordinates of these data points are

> Coord=rotdata(1:2,:)
Coord =
Columns 1 through 7
-1.0268 4.0176 5.4046
-1.6389 6.4082 2.8342
Columns 8 through 10
5.1151 -2.3188 -0.2077
1.3310 -0.9803 7.8265

1.4356
7.7948

-2.0201 -0.2428 2.1054
-1.1776 7.8210 7.6172

These points should lie on a circle in the x,y—plane; we fit a circle to these

points as in the previous solution.

> Coefs=[Coord’ ones(10,1)]\(Coord(1,:)."2 +Coord(2,:).72)’

Coefs =
1.0427
5.9905
14.6288
> X0=Coefs(1)/2
X0 =
0.5214
> Y0=Coefs(2)/2
YO =
2.9952
> Rad=sqrt(Coefs(3)+X0"2+Y0"2)
Rad =
4.8859

Thus, (0.5214,2.9952, —4.0262) is the center of the fitted circle in the rotated
plane; to find center in the original plane, we must rotate back by multiplying

by U* =U"1L.

10

> Ctr=U’*[X0 YO -4.0262]"
Ctr =

2.5877

4.2548

-0.8088

As before, we can check that the data points are indeed equidistant from
Ctr and we find that the data points line on the circle with radius 4.8859
and center (2.5877,4.2548, —0.8088) in the plane with equation 0.0528z +
0.1700y — 0.1732z = 1.

4 (Generating the Data

In order to individualize the assignment, I created the data using MATLAB
programs. It is essential, unless you as the instructor wish to work 30 or 40
such problems, that the answer key be generated at the same time as the
problems. The following MATLAB programs generate data and answers for
each type of problem. In each case, the data points and the answers are stored
in a single matrix with the top 10 x 3 submatrix being the data and the last
few rows being the answer key. To produce the necessary output one only
needs to turn the “diary” on and use a small loop to create the data. For
example

diary ClassData

for j=1:10
[’Data Set’ int2str(j)]
CirclePts
¢ 7]

end

diary

will create ten data sets labeled “Data Set 17, “Data Set 2”7, etc. and put
them in the file “ClassData” on your disk (the [> ’] puts some blank space
after each data set). You can then print the contents of the diary twice, once
for your files and once with the answers cut off of the bottom of the matrices
for the students. A somewhat more elegant way of handling the data sets
is to import the information from the diary file into a database then format
the output more neatly (one way with answers for yourself and another way
without answers for the students), add instructions for the assignment, add
the students’ names, and so forth, before printing.

The sizes and positions of the figures are randomized within certain limits.
In MATLAB, random numbers are generated by the commands rand and randn

11

where the first command produces uniformly distributed numbers from the
interval [0,1] and the second produces random numbers that are normally
distributed with mean 0 and standard deviation 1. Both depend on a ‘seed’
to create the numbers and at startup, at least on my machine, MATLAB begins
with the same seed each time. Thus, if you create half of your data on Tuesday
and half of your data on Wednesday, the data sets should be the same both
days. The scripts first produce random points in the interval [0,27], then
get points on a circle or ellipse using cosine and sine, a random multiplier
for the radius, and a random translation for the center. The matrix rot is
a random unitary that moves the data points out of a horizontal plane into
general position.

There is a small probability that the data created by these scripts will be
difficult to work with because all the points might end up in a small sector;
I have not done anything special to prevent that from happening but I have
also not experienced difficulty because of such an occurrence.

Random Circle in Space

% CirclePts.m

% This script generates 10 points on a random circle in space;

% the points, the radius and center of the circle, and the normal to
% the plane of the circle are saved in the 13 x 3 matrix CircleData.
% The points are arranged by rows in the top 10 x 3 submatrix,

% the center is the 11th row, the normal to the plane of the circle

% is the 12th row, and [radius O 0] is the last row.

% The radius is between 2 and 5 and each component of the center

% is a random variable with mean 1 and standard deviation 3.

theta=6.2832*rand(1,10);

rad=(3*rand(1)+2);

circ=rad*[cos(theta); sin(theta); zeros(1,10)];

[rot s]=qr(randn(3,3));

ctr=3*rand(3,1) + ones(3,1);

CircleData=(rot*[circ [0 0 0;0 0 0;0 1 O0]]+[diag(ctr)*ones(3,11)
[0 rad;0 0;0 0]11)°

12

Random Ellipse in Space

% EllipsePts.m

% This script generates 10 points on a random ellipse in space;

% the points, the center of the ellipse, and the normal to the

% plane of the ellipse are saved in the 12 x 3 matrix EllipseData.
% The points are arranged by rows in the top 10 x 3 submatrix,

% the center is the 11th row, and the normal to the plane of the
% ellipse is the 12th row. The length of the major axis of the

% ellipse is between 4 and 10 and each component of the center

% is a random variable with mean 1 and standard deviatiomn 3.

theta=6.2832*rand(1,10);

SMaxis=(3*rand(1)+2);

ellps=SMaxis*[cos(theta); .85*sin(theta); zeros(1,10)];

[rot s]=qr(randn(3,3));

ctr=3*rand(3,1) + ones(3,1);

EllipseData=(rot*[ellps [0 0;0 0;0 1]]+[diag(ctr)*ones(3,11)
[0;0;011)°

Random Bent Circle in Space

% BentPts.m

% This script generates 8 points on a random circle in space

% and 2 points that are nearly on, but not on, the circle;

% the points, the radius and center of the circle, and the normal to
% the plane of the circle are saved in the 13 x 3 matrix BentData.

% The points are arranged by rows in the top 10 x 3 submatrix,

% the center is the 11th row, the normal to the plane of the circle
% is the 12th row, and [radius O 0] is the last row.

% The radius is between 2 and 5 and each component of the center

% is a random variable with mean 1 and standard deviation 3.

theta=5*rand(1,8);

rad=(3*rand(1)+2);

bentl=rad*[cos(theta(1,1:3)); sin(theta(1,1:3)); zeros(1,3)];

bent2=.85*rad*[cos(5.5) cos(6); sin(5.5) sin(6); 0 0];

bent3=rad*[cos(theta(1,4:8)); sin(theta(1,4:8)); zeros(1,5)];

bent=[bentl bent2 bent3];

[rot sl=qr(randn(3,3));

ctr=3*rand(3,1) + ones(3,1);

BentData=(rot*[bent [0 0 0;0 O 0;0 1 0]]+[diag(ctr)*ones(3,11)
[0 rad;0 0;0 011)’

13

Bibliography

[1] THE MATHWORKS, INC., MATLAB, Version 4.2c, Natick, Massachusetts,
1995.

Department of Mathematics

Purdue University

West Lafayette IN 47907-1395

email: cowen@math.purdue.edu

Web: http://www.math.purdue.edu/ cowen

14

