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Abstract

This is the note for the 10-lecture course ‘Topological Quantum Computation’
(TQC) I taught at Stanford University during Spring 2018. The course is aimed at a
basic introduction to TQC, with a focus on the mathematical side of the theory. Topics
include toric code, quantum double model of finite groups, non-Abelian anyons, braid
groups, modular tensor categories, Jones polynomial, etc. In particular, it contains a
careful treatment of ribbon operators in the quantum double model.

Each section below covers the material for one lecture. Please be aware that the
note has not been proofread, so it may contain typos/errors. Use it at your caution.
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1 Topological quantum computation: an overview

1.1 Some Basics of Quantum Computation (QC)

Let’s start with some basics ingredients in quantum computation. By a qubit is meant a
2-dimensional Hilbert space C2 with a preferred orthonormal basis {|0〉, |1〉}. In general,
one can also talk about qudit, which is the d-dimensional Hilbert space Cd for some integer
d > 2. A (1-qubit) quantum state is a non-zero vector |ψ〉 ∈ C2. Usually, we normalize |ψ〉
so that it has norm 〈ψ|ψ〉 = 1. The space of n-qubits is represented by the n-fold tensor
product (C2)⊗n, and an n-qubit state is a non-zero vector in (C2)⊗n. Quantum gates are
operators that transform quantum states. An n-qubit quantum gate is a unitary operator
U ∈ U(2n). The following are some 1-qubit gates. They are the Pauli matrices.

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y = iXZ =

(
0 −i
i 0

)

A measurement is probabilistic operation on states. Given a normalized 1-qubit state
|ψ〉 = a|0〉 + b|1〉, measuring it (with respect to the standard basis) results in the state |0〉
with probability |a|2 and the state |1〉 with probability |b|2. More generally, we can measure
states with respect to an observable O, which is a Hermitian operator acting on certain
n-qubits, that is, O = O†. The eigenvalues of O are all real and we have the spectral
decomposition:

O =
∑

i

λiPi, (1)

where Pi is the projector onto the λi-eigenspace. Then if we measure an n-qubit state |ψ〉
with respect to O, the probability to get the outcome λi is 〈ψ|Pi|ψ〉, and when the outcome
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is λi, the resulting state becomes Pi|ψ〉. With this notation, the measurement with respect
to the standard basis is equivalent to the measurement with respect to the observable Z.

It is direct to see that the Pi
′s in Equation 1 satisfy

P †i = Pi, PiPj = δi,jPi,
∑

i

Pi = Id. (2)

A set of operators {Pi} satisfying Equation 2 is called a complete set of projectors. Given
an arbitrary complete set of projectors {Pi}, one can define an observable O by Equation 1
by choosing some mutually distinct real numbers {λi}. Thus an equivalent formulation of
measurement is in terms of projectors. That is, given a complete set of projectors P = {Pi},
a measurement of |ψ〉 with respect to P will project |ψ〉 to Pi|ψ〉 with probability 〈ψ|Pi|ψ〉.

The process of quantum computation is illustrated as follows:

|ψ3〉

|ψ2〉

|ψ1〉

|ψ0〉 ?

U3

U2

U1

U0

U4

U6

U5

M

preparation gates measurement

In the circuit above, the flow proceeds from left to right with time. Each wire represents
a qubit, each box represents a quantum gate, and M means the measurement of the first
qubit with respect to the standard basis.

In actual physical systems, the qubits will always interact with the environment which
introduces noises (or errors). Another type of errors happens when applying quantum gates.
Any gate can only be designed to a certain accuracy. There are two approaches to deal
with errors. The ‘software ’ approach is by using error correcting codes, and the ‘hardware
’ approach is topological quantum computing (TQC).

1.2 Error Correcting Code

We will not go into much detail on error correcting code, but will only sketch the general idea.
For references on this aspect, see for instance Chapter 10 [16]. The key to error correction
is distinguishing the notion of logical qubits with physical qubits. We encode a logical qubit
into a subspace of multiple physical qubits. Under certain assumptions, there is a way to
detect errors and according to different syndromes we can even correct them. For instance,
(a toy example), consider the encoding of logical qubit into three physical qubits:

C2 ↪→ C2 ⊗ C2 ⊗ C2

|0〉 7→ |0〉L := |000〉
|1〉 7→ |1〉L := |111〉
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outcome measuring Z1Z2 measuring Z2Z3

no error: a|000〉+ b|111〉 1 1
error X1: a|100〉+ b|011〉 -1 1
error X2: a|010〉+ b|101〉 -1 -1
error X3: a|001〉+ b|110〉 1 -1

Table 1: Outcomes of measurements

Thus a general logical state is |ψ〉L = a|0〉L + b|1〉L. Assume each time the error will only
happen to one of the three physical qubits (we do not know which ,a priori) and the only
type of error is a bit flip, namely, the operator X, then we can detect and correct an error
as follows. Let Zi be the Pauli Z acting on the i-th qubit. It is clear that Z1Z2 has
eigenvalue 1 on the subspace span{|00〉, |11〉} and eigenvalue −1 on span{|01〉, |10〉}. Hence
a measurement of Z1Z2 serves to check if the two qubits are aligned with the same direction.
To detect if there is any error, we make two measurements, one with respect to Z1Z2 and the
other with respect to Z2Z3. The outcomes of the measurements for each possible error are
listed in Table 1. From the table, we see that the outcomes of measurements are different for
each possible error (and the case with no error). Hence, based on the measurement outcome,
we know to which qubit, if any, the error happens, and we can simply correct it by applying
the X operator to that qubit.

Of course, this is only a toy model. More complicated encoding is required in order to
correct other types of errors and also errors involving more than one qubit. For instance,
the following nine-qubit code corrects arbitrary single qubit errors. See Chapter 10.2 [16].

C2 ↪→ (C2)⊗9

|0〉 7→ |0〉L := (|000〉+ |1〉)⊗3

|1〉 7→ |1〉L := (|000〉 − |1〉)⊗3

1.3 Topological Quantum Computing (TQC)

TQC is an approach to realizing quantum computing with non-Abelian anyons/quasi-particles
in certain two dimensional quantum systems. The information is encoded in non-local de-
grees of the system making it fault-tolerant to local errors. The process of information is
achieved by braiding of anyons, which effects a unitary transformation acting as quantum
gates. Measurement of states is performed through fusing anyons. In terms of computational
power, TQC is equivalent to the standard circuit model, but the former has the advantage
of being automatically fault-tolerant to local errors.

The quantum medium to carry out TQC is a two dimensional topological phase of matter
(TPM), the content of the 2016 Nobel Prize in physics. Roughly, a TPM is a quantum system
with certain robust properties that depends on the topology of the underlying material.
TPMs can be found in certain fractional quantum Hall states. As a concrete example, think
of a plane of electrons subject to a strong magnetic field in the vertical direction where the
temperature is lowered to close to absolute zero degree. See Figure 1. An important feature
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Figure 1: A collection of electrons subject to the plane. The anyons are point-like excitations.

of a TPM is that it harbors anyons/quasi-particles.

• They are low energy, point-like excitations.

• They can be locally moved, but can not be localled destroyed or created.

• Each anyon has a topological charge or type.

• The statistics for exchanging two anyons are more general than bosons/fermions.

Consider n anyons separated in space and each of them has type a. Denote the space of
states with such a configuration by Vaa···a. There is an energy gap ∆E > 0 between such a
configuration and other spectral. Hence the system will evolve within itself as long as the
local perturbations are small enough. If dimVaa···a = 1, we call the anyon type a Abelian.
Otherwise, it is called non-Abelian. For a non-Abelian type a, we can encode information
in Vaa···a, which is not accessible by local errors.

When two anyons are swapped, the system undergoes a unitary transformation. See
Figure 2. The world lines of the swap produce a braid diagram. We call such a process
braiding of anyons. The unitary transformation only depends on the isotopy classes of the
braid diagram, which means the only way the system evolves is by braiding anyons. These
unitary transformations act as quantum gates and they form a representation of the n-strand
braid group, which is defined by the presentation:

Bn = 〈σ1, · · · , σn−1 |σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi, |i− j| > 1 〉.

If we bring two anyons close to each other and fuse them, some other anyon will emerge,
and there are different possible outcomes. Abstractly, we denote the fusion by:

a× b = c, d, · · ·

This corresponds to a projection to different superselection sectors, and can be used to
perform measurement.

The general process of TQC is illustrated in Figure 3. We start by creating some anyons
from the vaccum to initialize the state. Then we braid anyons to transform the state. Finally
we fuse the anyons back to vaccum.

The study of TQC is closely related to a number of subjects, such as topological phase of
matter, topological quantum field theories, modular tensor categories, knot invariants, etc.
We will touch some of the relations later in the course.
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Figure 2: Braiding of two anyons
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Figure 3: The process of TQC.
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Figure 4: A L× L square lattice on the torus

2 Toric Code

Toric code [14] is an exactly solvable lattice model defined on a closed surface, i.e., a surface
without boundary. It has a gapped Hamiltonian whose low energy excitations are anyons.
Although all of the anyon types in toric code are Abelian and hence are not useful for TQC,
the toric code is a beautiful theory that illustrates many concepts of topological phases.
Thus it is worth studying the model to some details. Later, we will generalize it to Kitaev’s
quantum double model for any finite groups, where non-Abelian anyons can emerge.

Recall that the Pauli matrices are defined as follows.

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y = iXZ =

(
0 −i
i 0

)

Let L be a square lattice of size L × L with periodic boundaries both in the horizontal
direction and in the vertical direction. See Figure 4. Namely, we identify the two horizontal
boundaries as well the two vertical ones. In another word, L is a lattice on the torus.

Remark 2.1. The Hamiltonian model to be introduced below can be defined on lattices of
any shape on any closed surface. Here we simply choose the square lattice on the torus as
an illustrative example.

Denote by

V = {vertices},
E = {edges},
F = {faces or plaquettes}.

To each edge e ∈ E associate a qubit He = C2. The total Hilbert space Htot is defined as

Htot :=
⊗

e∈E

He.

To define the Hamiltonian, we first introduce some local operators. To each v ∈ V and
p ∈ F , define

Av :=


 ⊗

e∈star(v)

Xe


⊗


 ⊗

e∈E−star(v)

Ide


 , Bp :=

(⊗

e∈∂p

Ze

)⊗( ⊗

e∈E−∂p

Ide

)
,
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where star(v) is the set of edges adjacent to v, ∂p is the set of edges on the boundary of p,
and Xe (resp. Ze) is the operator X (resp. Z) acting on the qubit He. Graphically, Av and
Bp are shown in Figure 4.

The following properties are easy to check. For any v, v′ ∈ V and p, p′ ∈ F , we have

A2
v = Id, B2

p = Id (3)

AvAv′ = Av′Av, BpBp′ = Bp′Bp, AvBp = BpAv. (4)

This means that all the Av
′s and Bp

′s mutually commute with other, and hence they
can be diagonalized simultaneously. Moreover, each Av and each Bp has eigenvalue either 0
or 1.

The Hamiltonian is defined as

H :=
∑

v∈V

(1− Av) +
∑

p∈F

(1−Bp). (5)

Since all the terms in the Hamiltonian are Hermitian operators that commute with each
other, the Hamiltonian can be solved exactly. Moreover, as it will be shown below, the
Hamiltonian is frustration free, namely, the ground states are achieved as the common eigen-
states of all Av

′s and Bp
′s with eigenvalue one. Denote the ground states manifold by Vgs,

then

Vgs = {|ψ〉 ∈ Htot : Av|ψ〉 = |ψ〉, Bv|ψ〉 = |ψ〉, for all v ∈ V, p ∈ F} . (6)

2.1 Ground States

Now we compute the degeneracy of the ground states.
Let L∗ be the dual lattice of L as shown in Figure 5, where solid lines represent the

lattice L and dashed lines L∗. Then a vertex v, edge e, and plaquette p in L correspond to
the plaquette v∗, edge e∗, and vertex p∗, respectively, in L∗. A basis element of Htot is an
assignment {xe : e ∈ E} of 0 or 1 to each edge. Given a basis element, we construct a graph
G in L∗ as follows. Initially, G has the same set of vertices as those of L∗ with no edges.
For each edge e ∈ E, if xe = 1, then we add the dual edge e∗ to G. See Figure 6. By this
procedure, we have a one-to-one correspondence between basis elements of Htot and graphs
in L∗. Denote by |G〉 the basis element corresponding to the graph G.

Note that |G〉 is an eigenstate of Bp for each p, and it has eigenvalue 1 if and only if
the vertex of G inside p has even degree. Thus, an equivalent condition for |G〉 to be an
eigenstate with eigenvalue 1 for all Bp

′s is that G has even degree at all vertices. That is,
G is a collection of loops in L∗, or in another word, a multi-loop. See Figure 7 for a local
configuration of such G. The ground states manifold Vgs is a subspace of the space spanned
by basis elements corresponding to multi-loops.

Now we look at the action of Av on a multi-loop element |G〉. At each edge adjacent to
v, Av flips |0〉 and |1〉. Denote by v∗ the plaquette in L∗ dual to v. Then Av|G〉 corresponds
to the graph G′ which is obtained from G by replacing the edges of G that belong to ∂v∗

with their complement in ∂v∗. See Figure 8. Hence G′ is obtained by deforming G through
the dual plaquette v∗, and we say G′ and G are homologous. In general, for arbitrary two
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Figure 5: The lattice L (solid gray lines) and the dual lattice L∗ (dashed gray lines).

Figure 6: An example of a graph G in the dual lattice. The basis element |G〉 has component
|1〉 on edges whose dual belongs to G and has component |0〉 otherwise.

Figure 7: A local picture of a multi-loop around each dual vertex.
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v

|G〉

Av7−→ v

|G′〉

Figure 8: The action of Av on a multi-loop.

multi-loops G1 and G2, they are called homologous to each other if one is obtained from the
other by a sequence of deformations through dual plaquettes. This defines an equivalence
relation on the set of multi-loops. For each equivalence class [G], define the state

|[G]〉 :=
∑

G′∈[G]

|G′〉.

It is direct to check that

Av|[G]〉 = |[G]〉, for any v ∈ V,
since Av simply permutes the terms in the summation of |[G]〉.

Hence |[G]〉 is a ground state. Apparently, the states |[G]〉 corresponding to different
equivalence classes of multi-loops are linearly independent. It is not hard to see that they ac-
tually span all of Vgs. In summary, a basis of Vgs is given by {|[G]〉 : [G] equivalence class of multi-loops},
and the dimension of Vgs is the number of equivalence classes.

In the language of homology, multi-loops are 1-cycles (with Z2 coefficients). Two multi-
loops are homologous or equivalent if they belong to the same homology class. Equivalence
classes of multi-loops are homology classes 1-cycles, and thus the dimension of Vgs is equal to
|H1(torus;Z2)|, the number of elements in the first homology of the torus with Z2 coefficients.
One can also use the notion of cohomology, but the two notions are equivalent by Poincare
duality.

On the torus, there are four equivalence classes of multi-loops. They are represented by
{[∅], [m], [l], [d]}, where (See Figure 9) ∅ is the empty set or any contractible loop, m is the
horizontal loop, l is the vertical loop, and d is the diagonal loop. Note that d is in the same
equivalence class as the multi-loop which is the union of m and l. Also note that all the
loops are on the dual lattice. Thus on the torus, the ground state degeneracy is four. On
the sphere, the ground state degeneracy is 1 since all multi-loops are contractible.

2.2 Excitations

We have seen that a ground state |ψ〉 is defined by the following constraints:

Av|ψ〉 = |ψ〉, v ∈ V, (7)

Bp|ψ〉 = |ψ〉, p ∈ F. (8)

An elementary excitation or a 1-particle excitation is a state |ψ〉 for which at most one
constraint in Equation 7 is violated. More generally, an n-excitation corresponds to |ψ〉 for
which at most n constraints are violated.
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Figure 9: A representative for each equivalence class of multi-loops.

∂0t ∂1t

t

∂0t
′ ∂1t

′
t′

Figure 10: Connected paths (strings) in the lattice and dual lattice.

The Av
′s and Bv

′s are not independent operators, since they satisfy
∏

v∈V

Av = Id,
∏

p∈F

Bp = Id. (9)

Therefore, it is impossible to have exactly one Av or one Bp violated, which means single-
particle excitations do not exist, or rather, the only single-particle excitation is the vacuum.
Now we consider two-particle excitations.

Let t be connected path in the lattice L and denote the two end points of t by ∂0t and
∂1t. Define

SZ(t) :=
∏

e∈t∩E

Ze. (10)

See Figure 10. Clearly SZ(t) commutes with all Bp
′s and all Av

′s except the two vertex
operators at the end points of t where they anti-commute:

SZ(t)A∂it = −A∂itSZ(t), i = 0, 1.

Let |E〉 be a ground state and let |ψZ(t)〉 = SZ(t)|E〉. Then |ψZ(t)〉 violates exactly two
constraints, one at ∂0t and one at ∂1t, since

A∂it|ψZ(t)〉 = A∂itS
Z(t)|E〉 = −SZ(t)A∂it|E〉= −|ψZ(t)〉.

Hence we have a pair of particles located at the vertices ∂0t and ∂1t. We call them quasi-
particles of Z-type or “electric” charges. These quasi-particles have energy 4. The operator
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SZ(t) is called a string operator of Z-type. While the operator itself depends on the string
t, the state |ψZ(t)〉 is unchanged as we deform t keeping the end points fixed. Hence, only
the isotopy class of strings matter to the state |ψZ(t)〉.

Similarly, we can consider a path t′ in the dual lattice L∗. The two end points, ∂0t
′ and

∂1t
′ correspond to two plaquettes in the original lattice. See Figure 10. Define the string

operator of X-type by

SX(t′) =
∏

e∈E∩(t′)∗

Xe. (11)

Then SX(t) commutes with all Av
′s and all Bp

′s except at the two plaquettes (∂0t
′)∗ and

(∂1t
′)∗, where they anti-commute. Let |ψX(t′)〉 = SX(t′)|E〉. Then |ψX(t′)〉 represents a

pair of quasi-particles at the plaquettes (∂0t
′)∗ and (∂1t

′)∗. They are called quasi-particles
of X-type or “magnetic” charges, and they have energy 4. Again the |ψX(t′)〉 only depends
on the isotopy class of the path t′.

Thus, there are two types of quasi-particles. The electric charges live on vertices while
magnetic charges live on plaquette. There is another type of quasi-particle which is the
composite of an electric charge and a magnetic charge. Note that this composite has energy 8,
and it occupies a plaquette and a vertex on it. If we think of the vacuum as a particular type
of quasi-particle, we have in total four types of quasi-particles. (Note that the degeneracy
of the ground states on the torus is also four; this is not a coincidence.)

We could have arbitrarily even number of quasi-particles of each type. To obtain this
configuration, we simply connect each pair of quasi-particles of the same type by a string. The
space of each configuration has dimension exactly 4. However, the degeneracy arises purely
due to the degeneracy of the ground states on the torus. If the lattice is on a sphere, then
there will no degeneracy. Hence, all the quasi-particles are Abelian. The only topological
degree of freedom is the charge configuration and the only local degrees are phase factors.

Nonetheless, let’s take a look at their braiding statistics. Consider a pair of electric
charges and a pair of magnetic charges |ψ〉 = SZ(t1)SX(t2)|E〉 (See Figure 11). If we move
an electric charge around a magnetic charge, then resulting state would be |ψ′〉 = SZ(t1 ∪
t)SX(t2)|E〉. Thus,

|ψ′〉 = SZ(t1)SZ(t)SX(t2)|E〉 = −SZ(t1)SX(t2)SZ(t)|E〉 = −|ψ〉,

where we have used the fact that SZ(t) acts on the ground state by identity for any con-
tractible loop t. So by dragging an electric charge around a magnetic charge, the state
changes by a global phase (actually a only minus sign). This is the nature of Abelian quasi-
particles. In the case of non-Abelian quasi-particles, as we will see later, the braiding process
can produce nontrivial transformations in some higher dimensional space.

Finally, to fuse two particles of the same type, we simply draw another string connecting
them to form a closed loop. The result would always be the vacuum. This implies any
quasi-particle is its own antiparticle.
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t1

t2

t

Figure 11: Dragging an electric charge around a magnetic charge.

3 Quantum Double of Finite Groups

3.1 Representations of Finite Groups

We start with some basics on representation theory of finite groups. Let G be finite group
whose identity element is denoted by e. A unitary representation of G is a pair (V, χ), where
V is a finite dimensional Hilbert space, and χ is a group morphism

χ : G −→ U(V ),

where U(V ) is the group of unitary transformations on V . For g ∈ G, v ∈ V , when no
confusion arises, we usually write χ(g)(v) simply as g.v and call it the action of g on v. We
also say the group G acts on the space V by the representation χ. Sometimes, we also call χ
itself the representation, and denote the corresponding Hilbert space by Vχ. Finitely, denote
by |χ| := dimV . Let {|j〉 : j = 1, · · · , |χ|} be an orthonormal basis of V , and denote the
matrix elements of g by Γχij(g), namely,

g.|j〉 =

|χ|∑

i=1

Γχij(g)|i〉.

In the following, when talking about representations, we always assume a basis for the Hilbert
space has been chosen and hence each group element corresponds to a unitary matrix.

We call a representation (V, χ) irreducible (or an irrep, for short), if V does not contain a
proper subspace except 0 which is invariant under the action of G. Every group has a trivial
irrep which is one dimensional and all elements of the group act by the identity operator.
Denote this trivial irrep by 1. Let’s look at some examples.

Let Zd = {0, 1, · · · , d− 1} be the cyclic group of d elements. It has a generator a := [1]
with order d, namely, ad = e. Let S3 be the group of permutations on three elements. It
has two generators µ = (123) and σ = (23) with the relations µ3 = σ2 = (µσ)2 = e. When
defining a representation, it suffices to specify the matrices of generators of a group and
verify the relations of the generators are preserved.

Zd has d inequivalent irreps, all of which are dimensional. (More generally, all irreps of
a finite Abelian group are one dimensional.) For each i = 0, 1, · · · , d − 1, there is an irrep,

denoted by [ωid], mapping the generator a to the 1× 1 matrix (ωid), where ωd := e
2π
√
−1
d .

13



dimension matrix of µ matrix of σ
[+] 1 (1) (1)
[−] 1 (1) (−1)

[2] 2

(
ω3 0
0 ω̄3

) (
0 1
1 0

)

Table 2: Irreps of S3.

S3 has three irreps, which we denote by {[+], [−], [2]}, the matrices of the generators µ
and σ for each irrep are listed in Table 2. From the table, we see that [+] is the trivial irrep
1 and [−] is called the ‘sign’ irrep as it maps a permutation to its signature.

It is fact that every finite group G has only finitely many inequivalent irreps. Denote by
Irr(G) the set of all inequivalent irreps. For each irrep χ ∈ Irr(G), assume an orthonormal
basis for Vχ has been chosen and the matrix elements of g ∈ G are given by Γχij(g). The
following relation is well known and important in representation theory.

Shur Orthogonality Relation: for any two irreps χ, χ′ ∈ Irr(G), and i, j = 1, · · · , |χ|,
i′, j′ = 1, · · · , |χ′|, we have

∑

g∈G

Γχij(g)Γχ
′

i′j′(g) =
|G|
|χ| δχ,χ′δi,i′δj,j′ . (12)

The orthogonality relation has many implications. For instance, take χ′ to be the trivial
irrep 1 and i′ = j′ = 1, then Γχ

′

i′j′(g) = 1 for all g, and hence we have

∑

g∈G

Γχij(g) = |G|δχ,1δi,1δj,1. (13)

3.2 Quantum Double

The quantum double of a finite group G is an algebra DG with two set of generators {Ag :
g ∈ G} and {Bh : h ∈ G}. The multiplication of the generators is given as follows:

Ag1Ag2 = Ag1g2
Bh1Bh2 = δh1,h2Bh2

AgBh = BghḡAg, (14)

where, and throughout the context, ḡ means g−1. The identity element with respect to
multiplication is given by both

∑
h∈G

Bh and Ae. From the multiplication rules, we see that

the A-type generators (i.e., the Ag) span a subalgebra isomorphic to the group algebra C[G]
and the B-type generators (i.e., the Bh) span a subalgebra isomorphic to the dual of C[G],
that is, the algebra of functions on G. The quantum double has a basis given by

{D(h,g) := BhAg : h, g ∈ G}. (15)

DG has more structures than being an algebra. In fact, it is a quasi-triangular Hopf
algebra with the maps (∆, ε, S, R) defined as follows.
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• ∆ is the co-multiplication ∆ : DG −→ DG⊗DG,

∆(Ag) = Ag ⊗ Ag, ∆(Bh) =
∑

h=h1h2

Bh2 ⊗Bh1 . (16)

∆ is an algebra morphism, hence the image of any element under ∆ is known. For
instance,

∆(D(h,g)) = ∆(Bh)∆(Ag) =
∑

h=h1h2

(Bh2 ⊗Bh1)(Ag ⊗ Ag)

=
∑

h=h1h2

Bh2Ag ⊗Bh1Ag =
∑

h=h1h2

D(h2,g) ⊗D(h1,g).

• ε is the counit ε : DG −→ C which is also an algebra morphism. On generators, it is
defined by:

ε(Ag) = 1, , ε(Bh) = δh,e. (17)

• S is the antipode S : DG −→ DG,

S(Ag) = Aḡ, S(Bh) = Bh̄. (18)

But note that S is an anti-algebra morphism, that is S(ab) = S(b)S(a). Hence
S(D(h,g)) = S(Ag)S(Bh) = D(ḡh̄g,ḡ). Clearly, S2 = Id.

• R is the universal R-matrix R ∈ DG⊗DG which is given by

R =
∑

g

Ag ⊗Bg =
∑

h,g

D(h,g) ⊗D(g,e). (19)

As an element of DG⊗DG, R is invertible, and its inverse is given by

R−1 =
∑

g

Aḡ ⊗Bg. (20)

3.3 Representations of DG

Irreducible representations of DG are closely related with those of G. We give a complete
characterization of irreps of DG. Let G acts on itself by conjugation, namely, for g, x ∈ G,
the action of g sends x to gxḡ. An orbit under this action is called a conjugacy class. Clearly,
G is partitioned into several conjugacy classes:

G = tiCi,
where Ci is a conjugacy class. For any element r ∈ G, the conjugacy class containing r is
given by C(r) = {grḡ : g ∈ G}. The stabilizer (or centralizer) Z(r) of r is the subgroup
which fixes r by conjugation, that is, Z(r) = {g ∈ G : gr = rg}. For each c ∈ C(r),
arbitrarily choose qc ∈ G such that qcrq̄c = c. The choice of qc is not unique, and any other
q′c satisfying the required condition is equal to qcz for some z ∈ Z(r). In particular, we
always assume qr = e. It is direct to check that {qc : c ∈ C(r)} is a coset representative for
Z(r), namely,

G = tc∈CqcZ(r).
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Lemma 3.1. For any g ∈ G, c ∈ C, we have q̄gcḡgqc ∈ Z(r).

Proof.

(q̄gcḡgqc)r(q̄gcḡgqc)
−1 = q̄gcḡgqcrq̄cḡqgcḡ = q̄gcḡ(gcḡ)qgcḡ = r.

An irrep of DG is characterized by a pair (C, χ), where C is a conjugacy class of G, and
(assuming an element r ∈ C has been arbitrarily chosen and fixed,) χ is an irrep of Z(r).
The Hilbert space corresponding to (C, χ) is given by V(C,χ) = C[C] ⊗ Vχ. Thus a basis is
given by

{|c〉 ⊗ |j〉 : c ∈ C, j = 1, · · · , |χ|}.

The action of DG on V(C,χ) is given by

Bh|c〉 ⊗ |j〉 = δh,c|c〉 ⊗ |j〉
Ag|c〉 ⊗ |j〉 = |gcḡ〉 ⊗ χ (q̄gcḡgqc) |j〉

=
∑

i

Γχij (q̄gcḡgqc) |gcḡ〉 ⊗ |i〉. (21)

It is straight forward to check the above equations indeed defines a representation of
DG and it is in fact irreducible. In defining the actions, we need to arbitrarily choose the
qc
′s, but the resulting representations for different choices of qc

′s turn out to be isomorphic.
Also, the second part in the pair (C, χ) depends on the choice of an element r ∈ C. For
different r ′s, the corresponding centralizer Z(r) ′s are isomorphic, we will not obtain any
new representations of DG.

The action of Ag in Equation 21 is simplified in certain cases. If χ = 1 is the trivial irrep
of Z(r), then V(C,χ) ' C[C], and

Ag|c〉 = |gcḡ〉. (22)

If, on the other hand, C is the trivial conjugacy class {e}, then Z(r) = Z(e) = G. Hence χ
is an irrep of G, and V(C,χ) ' Vχ, and

Ag|j〉 = χ(g)|j〉. (23)

If both C and χ are trivial, then the representation is one dimensional, and the scalar
corresponding to the generators of DG are given by

Ag 7→ 1, Bh 7→ δh,e. (24)

Note that this is exactly the counit map ε in Equation 17.
The conjugacy classes and centralizer of certain elements of S3 are given in Table 3. With

the chosen elements r and qc
′s for each conjugacy class as shown in Table 3, we derive all

irreps of D(S3). See Table 4, where a basis for each irrep and the action of Aµ and Aσ are
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{c : c ∈ Ci} r ∈ Ci {qc : c ∈ Ci} Z(r)
C1 {e = (1)} e {e} S3

C2 {(12), σ = (23), (13)} σ {(13), e, (12)} {e, σ} ' Z2

C3 {µ = (123), (132)} µ {e, σ} {e, µ, µ2} ' Z3

Table 3: Conjugacy classes C1, C2, C3 of S3. Here for each Ci, we arbitrarily choose r ∈ Ci
and arbitrarily choose qc

′s for c ∈ Ci. Note that the order of the elements in {qc : c ∈ Ci}
is the same as that in {c : c ∈ Ci}. For instance, q(12) = (13).

(C, χ) basis dimension matrix of Aµ matrix of Aσ

C1

[+] |+〉 1 (1) (1)
[−] |−〉 1 (1) (−1)

[2] |2+〉, |2−〉 2

(
ω 0
0 ω̄

) (
0 1
1 0

)

C2
[1] |(12)〉, |(23)〉, |(13)〉 3




0 0 1
1 0 0
0 1 0







0 0 1
0 1 0
1 0 0




[−1] |(12),−〉, |(23),−〉, |(13),−〉 3




0 0 1
−1 0 0
0 −1 0







0 0 −1
0 −1 0
−1 0 0




C3

[1] |(123)〉, |(132)〉 2

(
1 0
0 1

) (
0 1
1 0

)

[ω] |(123), ω〉, |(132), ω〉 2

(
ω 0
0 ω̄

) (
0 1
1 0

)

[ω̄] |(123), ω̄〉, |(132), ω̄〉 2

(
ω̄ 0
0 ω

) (
0 1
1 0

)

Table 4: Irreps of DS3 where ω = ω3.
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given. Since µ and σ generate S3, we can deduce the action of all Ag
′s. The action of Bh is

simple in all cases, which we ignore in the table.
If V is a representation of DG, V ∗ is also a representation. Given a co-vector φ ∈ V ∗,

the action is given by

(D(h,g).φ)(v) := φ
(
S(D(h,g))v

)
, v ∈ V.

If we choose any basis {|j〉 : j = 1, ·, dimV } for V and let the dual basis be {〈j| : j =
1, · · · , dimV }, then

D(h,g)〈j| =
dimV∑

i=1

〈j|S(D(h,g))|i〉〈i|.

Given two representations V,W of DG, V ⊗W is a representation whose action is given
by the co-multiplication ∆, namely, for v ∈ V,w ∈ W ,

D(h,g).(v ⊗ w) := ∆(D(h,g))v ⊗ w.

Explicitly,

Ag.(v ⊗ w) = Agv ⊗ Agw, Bh.(v ⊗ w) =
∑

h=h1h2

h2v ⊗ h1w.

W ⊗ V becomes a representation in the same way. It is easy to check the naive swap
map FlipV,W between V ⊗W and W ⊗ V is not covariant under the action of DG if G is
non-Abelian. (Check the action of Bh before and after the swap.) It turns out the correct
“covariant swap” is the composition of the naive one with the action of the universal R-
matrix. Recall that R ∈ DG ⊗ DG is an invertible element. We let the first factor of R
act on V and the second factor act on W , then R can be viewed as a map from V ⊗W to
V ⊗W . Define

cV,W := FlipV,W ◦R : V ⊗W R−→ V ⊗W FlipV,W−→ W ⊗ V. (25)

It is direct to check cV,W commutes with the action of DG. The explicit formula for cV,W is
given by

cV,W (v × w) =
∑

g

Bgw ⊗ Agv. (26)

Then

cW,V cV,W (v × w) =
∑

g,h

BhAgv ⊗ AhBgw.

Thus in general cW,V cV,W 6= IdV⊗W . The inverse of cV,W is given by

c−1
V,W = R−1 ◦ Flip : W ⊗ V FlipW,V−→ V ⊗W R−1

−→ V ⊗W. (27)
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4 Kitaev’s Quantum Double Model

Now we study Kitaev’s quantum double model based on a finite group G [14]. When the
group is taken to be Z2, the model reduces to the well-known toric code. For non-Abelian
groups, the model produces quasi-particles which are non-Abelian. Generalization of the
model from finite groups to C∗ Hopf algebras was pointed out in [14], and was explicitly
studied in [6]. The model was later further generalized to C∗ weak Hopf algebras (quantum
groupoids) in [7]. For a detailed exposition of the Kitaev’s model, we recommend [4].

4.1 The Hamiltonian of the Model

Let Σ be any oriented surface without boundary such as the sphere or the torus, and let
L be an arbitrary lattice on Σ. For convenience, we still assume L is a square lattice, but
this assumption is not essential. As before, V , E, and F denote the set of vertices, edges,
and plaquettes, respectively. Now we arbitrarily fix an orientation on each edge. Associate
to each edge the Hilbert space C[G] with the orthonormal basis {|g〉 : g ∈ G}. The total
Hilbert space Htot is the tensor product of the C[G] ′s over all edges. Throughout the context,
by a site is meant a pair s = (v, p), where v ∈ V, p ∈ F and v ∈ ∂p. See Figure 12. For a
site s = (v, p), we connect v to the center of p by a red segment.

For each site s = (v, p) and g, h ∈ G, we define the local operators Ag(s) and Bh(s) as
shown in Figure 13. Ag(s) acts on edges which are adjacent to v. For each such edge, the
action is multiplication on the left by g if the edge is pointed away from v, and multiplication
on the right by ḡ otherwise. Note that Ag(s) does not depend on the plaquette, but only on v,
hence we also write Ag(s) = Ag(v). The action of Bh(s) is described as follows. Given a basis
element in Htot, one starts from v, travels along the boundary of p in the counterclockwise
direction, and multiply the group elements in the order as they are met. But if one edge
is oriented opposite to the traveling direction, then one multiplies the inverse of the group
element on that edge instead of the group element itself. Then Bh(s) acts as identity if h
equals the product just obtained, and as 0 otherwise. In another word, Bh(s) projects to
the subspace spanned by those basis elements for which the product along p starting from
v is equal to h. Note that Bh(s) does depend on both v and p. The following identities are
easily verified.

Ag1(s)Ag2(s) = Ag1g2(s), Bh1(s)Bh2(s) = δh1,h2Bh2(s), (28)

Ag(s)Bh(s) = BghḡAg(s), Ae(s) =
∑

h∈G

Bh(s) = Id (29)

(30)

Hence the operators {Ag(s), Bh(s)} define a representation of the quantum double DG.
Namely, Ag and Bh from DG act on Htot as Ag(s) and Bh(s), respectively. We denote by
D(s) the algebra generated by the Ag

′s and Bh
′s, and call it the algebra of local operators

at site s.
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v

p

Figure 12: A lattice L on the surface Σ whose edges are arbitrarily oriented.

g1 g3

g2

g4

v

p

Ag(s)7−→
gg1 gg3

gg2

g4ḡ
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Figure 13: The definition of local operators Ag(s) and Bh(s)
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Now we introduce the vertex and plaquette operators.

A(v) :=
1

|G|
∑

g∈G

Ag(v), B(p) := Be(v, p). (31)

Note that while in general Bh(v, p) depends both on v and p, Be(v, p) only depends on p
since the property that a product of group elements equals the identity is cyclic. It is direct
to check that A(v) and B(p) are both projectors and they mutually commute with each
other. The Hamiltonian is defined by

H =
∑

v∈V

(1− A(v)) +
∑

p∈F

(1−B(p)) , (32)

and the ground state is given by

Vgs = {|ψ〉 ∈ Htot : A(v)|ψ〉 = |ψ〉, B(p)|ψ〉 = |ψ〉} . (33)

It is direct to check that

Ag(s)A(v) = A(v), Bh(s)B(p) = δh,eB(p).

Hence we have |ψ〉 ∈ Vgs if and only if

Ag(s)|ψ〉 = |ψ〉, Bh(s)|ψ〉 = δh,e|ψ〉. (34)

Note that Equation 34 means that D(s) acts on Vgs by the trivial representation. Thus, Vgs
is the subspace corresponding to trivial representation of DG at every site s.

4.2 Ground State Space of the Model (Optional)

In this subsection, we compute the ground state degeneracy. Denote by π1(Σ) the fundamen-
tal group of Σ and by Hom(π1(Σ), G) the set of all group morphisms from π1(Σ) to G. There
is an action G on Hom(π1(Σ), G) by conjugation. Namely, for g ∈ G, φ ∈ Hom(π1(Σ), G),
g.φ := gφ(·)ḡ.

Proposition 4.1. The dimension of Vgs(Σ) is equal to the number of orbits in Hom(π1(Σ), G)
under the G-action.

Proof. A basis element of the total Hilbert space is an assignment of a group element to each
edge. Let |g〉 be any basis element where g = {gα ∈ G : α ∈ E}. Let γ be any oriented path
in the lattice. Denote by gγ the group element obtained by multiplying the group elements
along the path γ. But if one edge in the path is oriented opposite to the path, then multiply
the inverse of the group element on that edge instead.

Then the constraint B(p)|g〉 = |g〉 is equivalent to the condition that g∂p = e, where ∂p is
the boundary of p oriented counterclockwise. Note that the condition g∂p = e is independent
of the choice of a starting vertex on ∂p. Hence the subspace fixed by all Bp

′s is spanned the
following set:

S = {|g〉 : g∂p = e, ∀p}
= {|g〉 : gγ = e, for any contractible closed γ}.
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For any h ∈ G, we call the operator Ah(v) a gauge transformation at the vertex v. For
two basis elements |g〉, |g′〉 ∈ S, we call |g〉 and |g′〉 gauge equivalent or |g〉 ∼ |g′〉 if |g′〉 can
be obtained from |g〉 by applying some gauge transformations at several vertices. Gauge
equivalence defines an equivalence relation on S and denote by [S] the set of equivalence
classes. For each [g] ∈ [S], define

|[g]〉 :=
∑

|g′〉∼|g〉

|g′〉. (35)

It is direct to check {|[g]〉 : [g] ∈ [S]} forms a basis of Vgs(Σ).
Now we build a correspondence between [S] and orbits in Hom(π1(Σ), G).
Choose any vertex v0 as the base point and choose a maximal spanning tree T containing

v0. By definition, a maximal spanning tree is a subgraph of the lattice L (with plaquettes
ignored) which contains all vertices of L and does not contain any loop. Thus any maximal
spanning tree contains exactly N := |V | − 1 edges. Define a map

Φ : S −→ Hom(π1(Σ, v0), G) (36)

as follows. Let γ be any closed path starting and ending at v0. For any |g〉 ∈ S, define
Φ(|g〉)([γ]) := gγ, namely, Φ(|g〉) maps a closed path γ to the product of the group elements
on it. The fact that gγ0 = e for any contractible loop γ0 implies that Φ(|g〉)(γ) only depends
on the homotopy class of γ. Hence Φ(|g〉) is a well defined map from π1(Σ, v0) to G. It is
clear that it is also a group morphism, hence

Φ(|g〉) ∈ Hom (π1(Σ, v0), G) .

Now we show that map Φ is onto and in fact |G|N -to-1. Given any τ ∈ Hom(π1(Σ, v0), G),
we construct a preimage |g〉 of τ as follows. The value of g on edges of the maximal spanning
tree T is arbitrary, and the value on other edges is to be determined. For any edge α not in
T , let ∂0α and ∂1α be the two end vertices of α. By construction, there is a unique path γi
in T connecting v0 to ∂iα, i = 0, 1. Let γ = γ0αγ̄1 be the closed path, where γ̄1 means the
path γ1 with reversed direction. Namely, γ reaches ∂0α along γ0 from v0, travels through the
edge α, and then goes back to v0 along γ̄1. Define gα to be the unique group element such
that

gγ0gαgγ̄1 = τ(γ).

It can be checked that such defined |g〉 is in S, and Φ(|g〉) = τ . Since we have |G|N choices
when defining |g〉, the map Φ is |G|N -to-1

On the other hand, for each given |g〉, if we only allow to apply gauge transformations
on |g〉 at vertices other than v0, there are in total |G|N such transformations. (One needs
to check all the possible |G|N transformations are indeed different with each other.) If two
|g〉, |g′〉 are related by gauge transformations at vertices other than v0, then Φ(|g〉) = Φ(|g′〉).
We conclude that the preimage of τ contains precisely those |g〉 ′s which are related by gauge
transformations at vertices other than v0. If we perform a gauge transformation Ah(v0) at
v0 to |g〉, then it is easy to see that Φ(Ah(v0)|g〉) = hΦ(|g〉)h̄. Thus we have a one-to-one
correspondence between gauge classes in S and orbits in Hom(π1(Σ), G).
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t

=⇒s0

s1

Figure 14: An example of a ribbon t connecting the site s0 to s1.

Since the fundamental group of the sphere is trivial, the ground state degeneracy on the
sphere is 1. On the torus, the fundamental group is Z×Z. A morphism from Z×Z to G is
given by a pair of group elements (g1, g2) such that g1g2 = g2g1. The action of G on the pair
(g1, g2) is given by conjugation: (g1, g2) 7→ (gg1ḡ, gg2ḡ). Hence the ground state degeneracy
on the torus is given by the number of commuting pairs in G×G, up to conjugation by G;
this is equal to the number of irreps of DG.

4.3 Excitations of the Model (Summary)

We give a summary of excitations, fusion, and braiding, delaying the technical details until
next section. From now on, assume the lattice is on a sphere and denote by |E〉 the unique
ground state.

In general, an excitation occupies a site. However, as in the case of toric code, single
site excitation does not exist. (But such excitation can exist on surfaces with nontrivial
topology.)

The tool to study excitations is ribbon operators which are analogous to string operators
in toric code. Just as a string connects two vertices, a ribbon connects two sites. See
Figure 14. A ribbon t can be thought of as a thin strip with a pair of parallel strings, one
in the lattice and the other in the dual lattice. The ribbon t is assumed to be directed; it
starts from the site s0 := ∂0t and ends at the site s1 := ∂1t. (More precise definition of
ribbons will be given in next section.) As a notation, a site si always means the pair (vi, pi).
Associated with each ribbon t are a set of operators {F (h,g)(t) : h, g ∈ G}. Each F (h,g)(t) acts
non-trivially only on edges that are contained in or crossed by t. We give several properties
of these operators (without proof) and use them to study excitations. (We have not shown
what the operators F (h,g)(t) actually are. But hopefully this will not affect understanding of
the statements below.)

1. Let

F(t) = spanC{F (h,g)(t) : h, g ∈ G}. (37)

Elements in F(t) are called ribbon operators. The dimension of F(t) is |G|2. Hence
{F (h,g)(t) : h, g ∈ G} is a basis of F(t); it is called the group elements basis. A differ-
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ent basis, which is a “Fourier transformation” of the group elements basis, is given by

{F (C,χ;u,u′)(t) : (C, χ) ∈ Irr(DG), u and u′ each enumerates a basis of V(C,χ).} (38)

This is called the representation basis.

2. F (h,g)(t) commutes with all A(v) and B(p) where v 6= v0, v1 and p 6= p0, p1. The space of
2-particle excitations at s0 and s1 is given by

L(s0, s1) = {F |E〉 : F ∈ F(t)}, (39)

and it has two orthonormal bases,

{|h, g〉 := F (h,g)(t)|E〉 : h, g ∈ G},
{|C, χ;u, u′〉 := F (C,χ;u,u′)|E〉 : (C, χ) ∈ Irr(DG), u and u′ each enumerates a basis of V(C,χ)},

(40)

which are respectively again called the group elements basis and the representation basis.

3. The local operators D(s0) and D(s1) preserve the space L(s0, s1). They are the commutant
of each other in the space of operators on L(s0, s1), hence validate the notion of being called
‘local operators’. Indeed, any local operator that acts on a few qudits near the site s0 must
commute with the action of D(s1). Although the action of the local operator does not
necessarily preserve the subspace L(s0, s1), when projecting the action to L(s0, s1), it will
coincide with one of the operators in D(s0). The action of D(si) on the representation basis
has a particularly nice form. Explicitly, the action of D(s1) on |C, χ;u, u′〉 transforms the u
part according to the irrep (C, χ) while the action of D(s0) transforms the u′ part according
to the the dual irrep (C, χ)∗. For instance,

Bh(s1)Ag(s1)|C, χ;u, u′〉 =
∑

ũ′

Γ
(C,χ)

ũ′u′

(
D(h,g)

)
|C, χ;u, ũ′〉. (41)

Thus the representation basis gives a decomposition of L(s0, s1):

L(s0, s1) =
⊕

(C,χ)∈Irr(DG)

V ∗(C,χ) ⊗ V(C,χ), (42)

and under this decomposition D(s0) (resp. D(s1)) acts on the first (resp. second) factor.
When fixing (C, χ), we can think of the u index as living on site s0 and the u′ index as living
on site s1. Moreover, the local operators only change the indices u and u′, but not the irrep
(C, χ). Therefore, we call (C, χ) a quasi-particle type or an anyon type, and the types of
quasi-particles are in one-to-one correspondence with the irreps of DG (strictly speaking,
with isomorphism classes of irreps).

4. The state F (h,g)(t)|E〉 is unchanged as we deform the ribbon t.

5. To obtain the space of 3-particle excitations at sites s0, s1, s2, we simply connect one of
the sites, say s0, to each of the other two by a ribbon. See Figure 15 (Left). Then

L(s0, s1, s2) = span{|h1, g1;h2, g2〉 := F (h2,g2)(t2)F (h1,g1)(t1)|E〉 : hi, gi ∈ G}. (43)
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s0

s1 s2

t1 t2

=⇒ =⇒

s0

s1 s2 sn

t1 t2 tn

=⇒ =⇒ =⇒
· · ·

Figure 15: Ribbons connecting more than two sites

We also have the representation basis:

{|C1, χ1;u1, u
′
1;C2, χ2;u2, u

′
2〉}. (44)

One can think of the u1 index as living on s1, u2 on s2, u′1 and u′2 on s0. The local operators
D(si), i = 1, 2 transform ui according to (Ci, χi)

∗, while D(s0) transforms u′1⊗u′2 according to
(C1, χ1)⊗(C2, χ2). (Note that the latter statement is not obvious.) By general representation
theory, (C1, χ1)⊗ (C2, χ2) decomposes into direct sums of irreps:

(C1, χ1)⊗ (C2, χ2) = (C3, χ3)⊕ (C4, χ4)⊕ · · · (45)

Each irrep in the decomposition is called a total charge/type of (C1, χ1) and (C2, χ2). In
general, given any two types α, β ∈ Irr(DG), we can decompose

α⊗ β =
⊕

γ∈Irr(DG)

Nγ
αβγ, (46)

where Nγ
αβ = 0, 1 and these {Nγ

αβ} are called fusion rules.

6. More generally, consider the space L(s0, s1, · · · , sn). We connect si to s0 with a ribbon
ti, i = 1, · · · , n. See Figure 15(Right). Assume each ribbon ti is associated with the type
αi := (Ci, χi). For i = 1, · · · , n, D(si) acts on |ui〉 according to α∗i and D(s0) acts on
|u′1, · · · , u′n〉 according to the product α1 ⊗ · · · ⊗ αn. Let Inv(α1 ⊗ · · · ⊗ αn) be the subspace
of α1 ⊗ · · · ⊗ αn corresponding to the trivial representations of D(s0). Then the space
α∗1 ⊗ α∗n ⊗ Inv(α1 ⊗ · · · ⊗ αn) corresponds to the subspace without excitation at the site s0.
In another word, this is the space of n quasi-particles of types α1, · · · , αn whose total type is
trivial. Note that the local operators D(si) have no access to the space Inv(α1⊗· · ·⊗αn); this
is the logical space where we can encode information. For n > 3, the space Inv(α1⊗· · ·⊗αn)
could have dimension greater than one, but in general it lacks a tensor product structure.

5 Ribbon Operators

In this section, we study ribbon operators and excitations. An elementary and detailed
discussion of ribbon operators can be found in [6].

Let L be a lattice on which the Hamiltonian is defined, and let L∗ be its dual lattice.
Recall that each edge α in L is arbitrarily assigned a direction (orientation). We now orient
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s0

s1

Figure 16: A ribbon consisting of a sequence of triangles.

∂0τ ∂1τ=⇒
τ ∂0τ ∂1τ

=⇒τ

Figure 17: (Left) a type-I (or dual) triangle; (Right) a type-II (or direct) triangle

the dual edge α∗ so that α∗ crosses α from right to left. (This only makes sense if the surface
is oriented, which is always our assumption.)

Roughly speaking, a ribbon is a thin strip in the combined lattice L ∪ L∗ that connects
two sites. See Figure 16, where, and throughout the section, we will draw an edge in L as
a solid black line, an edge in L∗ as a dashed black line, and a site as a solid red line. More
precisely, a ribbon is built up from two types of triangles, called type-I triangles (or dual
triangles) and type-II triangles (or direct triangles). See Figure 17. A dual triangle consists
of two sites and a dual edge, while a direct triangle consists of two sites and a direct edge
(that is, an edge in L). For a dual/direct triangle τ , by choosing one site as ∂0τ and the
other as ∂1τ , we say τ is directed and it starts at ∂0τ and ends at ∂1τ . We often use an arrow
to indicate the direction. See Figure 17. A (directed) ribbon t is defined to be a sequence
(τ1, · · · , τn) of triangles (type I or II) such that ∂1τi = ∂0τi+1, and that the edge contained in
any τi (not including the sites) is not the same as and also not dual to the edge in any other
τj. The second condition above means the ribbon does not repeat or cross itself. Denote
by ∂0t = ∂0τ1 and ∂1t = ∂1τn. We say t is a directed ribbon, starting at ∂0t and ending at
∂1t. Similarly, we also use an arrow to indicate the direction. Note that it is possible that
∂0t = ∂1t. Such a ribbon is called a closed ribbon, (though we will not talk about it here).

For each pair of group elements (h, g) ∈ G × G and a directed ribbon t, we wish to
define an operator F (h,g)(t). We first define it for the case of a triangle. See Figure 18 for
a graphical illustration. Namely, if t is a triangle, then F (h,g)(t) acts non-trivially only on
the edge contained in it. If t is a type-I triangle and |x〉 is a basis state in the Hilbert space
of the edge αt contained in t, the action F (h,g)(t) sends |x〉 to δg,e|hx〉 if the direction of t

coincides with that of αt, and to δg,e|xĥ〉 otherwise. If t is a type-II triangle and again |x〉
is a basis state, then the action sends |x〉 to δg,x|x〉 if the direction of t coincides with that
of its edge, and to δḡ,x|x〉 otherwise. Note that for type-II triangle, the action is a projector

26



=⇒

|x〉
7−→ δg,e

=⇒

|hx〉

=⇒

|x〉
7−→ δg,e

=⇒

|xh̄〉

=⇒

|x〉
7−→ δg,x

=⇒

|x〉

=⇒

|x〉
7−→ δḡ,x

=⇒

|x〉

Figure 18: (Left block) The action of F (h,g)(τ) for a type-I triangle τ ; (Right block) The
action of F (h,g)(τ) for a type-II triangle τ . For each type, there are two cases determined
by whether the direction of the triangle coincides with the direction of the edge in it. In all
cases, x ∈ G is a group element such that |x〉 represents a basis state in the corresponding
Hilbert space.

and it does not depend on h.
We now define the operator F (h,g)(t) for a general ribbon t inductively. If t consists of

more than one triangle, then split t = t1 t t2 as a disjoint union of two sub ribbons, and
define

F (h,g)(t) :=
∑

k∈G

F (h,k)(t1)F (k̄hk,k̄g)(t2). (47)

With Equation 47, we can define F (h,g)(t) inductively for ribbons of arbitrary length. How-
ever, one must check that F (h,g)(t) does not depend on the way the ribbon is split. To prove
this, it suffices to show the following. Let t = t1 t t2 t t3. To compute F (h,g)(t), one can first
split t into t1 t t2 and t3, and then split the former into t1 and t2, or one can instead first
split t into t1 and t2t t3, and then split the latter into t2 and t3. One needs to check the two
ways of splitting give the same answer. This is straight forward:

F (h,g)(t) =
∑

k∈G

F (h,k)(t1 t t2)F (k̄hk,k̄g)(t3)

=
∑

k,l∈G

F (h,l)(t1)F (l̄hl,l̄k)(t2)F (k̄hk,k̄g)(t3),

F (h,g)(t) =
∑

l∈G

F (h,l)(t1)F (l̄hl,l̄g)(t2 t t3)

=
∑

m,l∈G

F (h,l)(t1)F (l̄hl,m)(t2)F (m̄l̄hlm,m̄l̄g)(t3)

lm→k
=

∑

k,l∈G

F (h,l)(t1)F (l̄hl,l̄k)(t2)F (k̄hk,k̄g)(t3), (48)
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where in the last equality, we applied a change of variable lm→ k.

Remark 5.1. Although it is direct to verify that F (h,g)(t) is well defined, it is still not clear
how the particular combination on the right hand side of Equation 47 is chosen. In fact, we
can rewrite Equation 47 as

F (h,g)(t) =
∑

h1,g1,h2,g2

Ω
(h,g)
(h1,g1),(h2,g2)F

(h1,g1)(t1)F (h2,g2)(t2), (49)

for some tensor Ω
(h,g)
(h1,g1),(h2,g2). For compactness, we use bold letters a,b, c, · · · , to represent

a pair of group elements. Then we have

F c(t) =
∑

a,b

Ωc
abF

a(t1)Fb(t2). (50)

That F a(t) does not depend on the way the ribbon is split is equivalent to the condition,

∑

m

Ωm
abΩd

mc =
∑

n

Ωd
anΩn

bc (51)

If we take a |G|2 dimensional Hilbert space with basis given by {fa : a ∈ G×G} and define
a multiplication by

fafb :=
∑

c

Ωc
abfc, (52)

then Equation 51 is equivalent to the property that the multiplication is associative, which
makes the Hilbert space an associative algebra. In fact, one can check directly that the Ω··,·
tensor here is exactly the multiplication tensor in the quantum double DG:

DaDb =
∑

c

Ωc
abDc. (53)

By the inductive formula, the operator F (h,g)(t) acts non-trivially only on edges contained
in or crossed by the ribbon. For a typical ribbon, the explicit formula is given in Figure 19.

Let

F(t) = spanC{F (h,g)(t) : h, g ∈ G}. (54)

Any operator in F(t) is called a ribbon operator. We state some properties of ribbon oper-
ators. Although they all can be proved formally, it is easier to use the explicit expression in
Figure 19 to verify the properties.

Let t be a ribbon with ∂it = si = (vi, pi), i = 0, 1. It is straight forward to show

F (h1,g1)(t)F (h2,g2)(t) = δg1,g2F
(h1h2,g2)(t). (55)

Hence F(t) is an algebra.
Also, F (h,g)(t) commutes with all the A(v) and B(p) for which v 6= vi, p 6= pi, i = 0, 1.

In fact, F (h,g)(t) even commutes with all Ag′(v) for any g′ ∈ G. Recall that at each site s
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x1 x2 x3

y1 y2 y3 y4

s0

p0

v0

s1

p1

v1

F (h,g)(t)7−→

x1 x2 x3

hy1 x̄1hx1y2

x̄2x̄1hx1x2y3 x̄3x̄2x̄1hx1x2x3y4

s0

p0

v0

s1

p1

v1

δg,x1x2x3

Figure 19: Explicit formula for the operator F (h,g)(t), where t starts at s0 = (v0, p0) and
ends at s1 = (v1, p1). Each xi, yj is a group element representing a basis state of the total
Hilbert space. The action is zero unless g = x1x2x3.

we have the algebra of operators D(s) which gives the action of DG on the total Hilbert
space. The ribbon operator in general does not commute with the operators in D(si). Their
commutation relations are given as follows.

Ag′(s0)F (h,g)(t) = F (g′hḡ′,g′g)(t)Ag′(s0)

Bh′(s0)F (h,g)(t) = F (h,g)(t)Bh′h(s0) (56)

Ag′(s1)F (h,g)(t) = F (h,gḡ′)(t)Ag′(s1)

Bh′(s1)F (h,g)(t) = F (h,g)(t)Bḡh̄gh′(s1) (57)

Denote by |E〉 the unique ground state (assuming the surface is a sphere). Let |0〉 be the
basis state in the total Hilbert space which has value e at each edge. Hence |0〉 is fixed by
all B(p) ′s. Then up to normalization, |E〉 is given by

|E〉 =
∏

v

A(v)|0〉. (58)

In particular, all the basis states contained in the expansion of |E〉 have positive coefficients.
Moreover, for any basis state in the expansion, the product of the group elements along any
closed loop is the identity e.

Assume t is not closed and define

|h, g〉 := F (h,g)(t)|E〉. (59)

By the formula in Figure 19, F (h,g)(t) projects out all basis states in |E〉 for which the product
of the group elements along any path connecting v0 to v1 is not equal to g, and it modifies all
remaining terms by expressions involving h. Then the basis states in the expansion of |h, g〉
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are characterized as follows. The product of the group elements along any path connecting
v0 to v1 is equal to g, and the product along the boundary of the plaquette p0 starting from
v0 in counterclockwise direction is equal to h̄. Therefore the |h, g〉 ′s are orthogonal and do
not depend on the choice of t.

Let

L(s0, s1) = {F |E〉 : F ∈ F(t)} = spanC{|h, g〉 : h, g ∈ G}. (60)

The space L(s0, s1) contains all states with excitations at s0 and s1. The local operators
D(si), i = 0, 1 preserves L(s0, s1). By Equations 5657 and the fact that D(si) acts on the
ground state by the trivial representation, it is direct to see that the actions are given by

Ag′(s0)|h, g〉 = |g′hḡ′, g′g〉
Bh′(s0)|h, g〉 = δh′,h̄|h, g〉 (61)

Ag′(s1)|h, g〉 = |h, gḡ′〉
Bh′(s1)|h, g〉 = δh′,ḡhg|h, g〉. (62)

Apparently, D(s0) commutes with D(s1) since they act on non-overlapping edges. By
general representation theory of quantum doubles, the space L(s0, s1) decomposes as

L(s0, s1) =
⊕

(C,χ)∈Irr(DG)

V ∗(C,χ) ⊗ V(C,χ), (63)

where D(s0) acts on V ∗(C,χ) and D(s1) acts on V(C,χ). We then have another basis correspond-
ing to the decomposition:

{|C, χ;u, u′〉 : (C, χ) ∈ Irr(DG), u = (c, j), u′ = (c′, j′), c, c′ ∈ C, j, j′ = 1, · · · , |χ|}. (64)

Explicitly, the translation between the two bases are given by:

|C, χ;u, u′〉 =
|(C, χ)|
|G|

∑

h,g

Γ
(C,χ)
u,u′

(
D(h,g)

)
|h, g〉, (65)

|h, g〉 =
∑

(C,χ)

∑

u,u′

Γ
(C,χ)
u,u′

(
D(h,g)

)
|C, χ;u, u′〉, (66)

where Γ
(C,χ)
u,u′

(
D(h,g)

)
is the matrix element of the irrep (C, χ). We also define the ribbon

operators F (C,χ;u,u′)(t) by

F (C,χ;u,u′)(t) =
|(C, χ)|
|G|

∑

h,g

Γ
(C,χ)
u,u′

(
D(h,g)

)
F (h,g)(t). (67)

Hence,

|C, χ;u, u′〉 = F (C,χ;u,u′)(t)|E〉. (68)
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s

s1 s2 sn

t1 t2 tn

=⇒ =⇒ =⇒
· · ·

Figure 20: n ribbons are used to create excitations at n+ 1 sites.

Remark 5.2. Simplifications of the formula for |C, χ;u, u′〉 is possible, although we will not
be using it in later context. Note that the matrix elements of the irrep (C, χ) is given by,

Γ
(C,χ)
u,u′

(
D(h,g)

)
= δh,gc′ḡδh,cΓ

χ
jj′(q̄hgqc′), u = (c, j), u′ = (c′, j′). (69)

Substituting the expression in Equation 65, we get

|C, χ;u, u′〉 =
|χ|
|Z(r)|

∑

n∈Z(r)

Γχjj′(n)|c, qcnq̄c′〉, u = (c, j), u′ = (c′, j′), (70)

where r ∈ C is the pre-selected element. For |h, g〉, let C(h) be the conjugacy class containing
h and r ∈ C(h) the pre-selected element in C(h), then

|h, g〉 =
∑

χ∈Irr(Z(r))

|χ|∑

j,j′=1

Γχjj′(q̄hgqḡhg) |C(h), χ; (h, j), (ḡhg, j′)〉. (71)

Under the basis {|C, χ;u, u′〉}, D(s0) changes the u index according to (C, χ)∗ and D(s1)
changes the u′ index according to (C, χ). But, both actions will not change the (C, χ)
index. We call (C, χ) an anyon/quasi-particle type. Thus anyon types are in one-to-one
correspondence with (isomorphism classes of) irreps of DG. We can think of the u index as
living at s0 and the u′ index as living at s1. Each state |C, χ;u, u′〉 is obtained by applying
the ribbon operator F (C,χ;u,u′)(t) to the ground state.

Now we consider excitations at n+1 sites s, s1 · · · , sn. For each i = 1, · · · , n, we choose a
ribbon ti connecting si to s. These ribbons are disjoint except near the site s. See Figure 20.
Then the space L(s, s1 · · · , sn) with excitations at these sites has a basis given by

{|h1, g1; · · · ;hn, gn〉 := F (hn,gn)(t) · · ·F (h1,g1)(t)|E〉 : hi, gi ∈ G} (72)

or

{|C1, χ1, u1, u
′
1; · · · ;Cn, χn, un, u

′
n〉 := F (Cn,χn;un,u′n)(t) · · ·F (C1,χ1;u1,u′1)(t)|E〉 :

(Ci, χi) ∈ Irr(DG), ui, u
′
i = 1, · · · , |(Ci, χi)|}. (73)

D(si) acts on the ui index according to (Ci, χi)
∗ and D(s) acts on the indices u′1 ⊗ · · · ⊗ u′n
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according to the product action (C1, χ1)⊗· · ·⊗(Cn, χn). This can be derived from Equations
56 and 57. For instance,

Bh′(s)|h1, g1; · · · ;hn, gn〉 = Bh′(s)F
(hn,gn)(t) · · ·F (h1,g1)(t)|E〉

= F (hn,gn)(t)Bgnhngnh′
· · ·F (h1,g1)(t)|E〉

= F (hn,gn)(t) · · ·F (h1,g1)(t)Bg1h1g1···gnhngnh′ |E〉
= δh′,gnhngn···g1h1g1|h1, g1; · · · ;hn, gn〉
=

∑

h′=h′n···h′1

(
Bh′1

(s)⊗ · · ·Bh′n(s)
)
|h1, g1; · · · ;hn, gn〉. (74)

We view the operators D(si) as local operators and D(s) as logical/topological operators.
Denote by αi = (Ci, χi), and let Inv(α1, · · · , αn) ⊂ α1⊗· · ·⊗αn be the subspace where D(s)
acts by the trivial representation. Then the subspace

α∗1 ⊗ · · · ⊗ α∗n ⊗ Inv(α1, · · · , αn) ⊂ α∗1 ⊗ · · · ⊗ α∗n ⊗ α1 ⊗ · · · ⊗ αn (75)

contains no excitation at s and the action of D(si) does not affect the Inv(α1, · · · , αn) part.
Therefore, we call Inv(α1, · · · , αn) the logical subspace. In contrast, the α∗i

′s are called the
local subspaces. Since local operators do not have access to the logical subspace, quantum
information encoded in this subspace is protected from local errors. From now on, we will
drop the local degrees α∗i and only consider the logical degrees α1 ⊗ · · · ⊗ αn. That is, we
will suppress the ui indices and denote a basis state by |α1, u

′
1; · · · ;αn, u

′
n〉 or |u′1, · · · , u′n〉

when the types αi are fixed.

6 Braiding and Fusion

We start with a brief review of some representation theory that will be used later. Let α, β
be two representations of DG, denote by Hom(α, β) the space of morphisms, namely, linear
maps from α to β commuting with the action of DG.

Lemma 6.1 (Schur’s Lemma). If α and β are two irreps of DG, then

Hom(α, β) '
{
C if α ' β,

0 otherwise.
(76)

Also recall that we have defined the invertible element R and its inverse R−1,

R =
∑

g∈G

Ag ⊗Bg, R =
∑

g∈G

Aḡ ⊗Bg. (77)

If α and β are two representations, then there is an isomorphism cα,β,

cα,β : α⊗ β R−→ α⊗ β Flip−→ β ⊗ α, (78)
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⇓ ⇓

t′1 t′2

τ1

τ2

⇓ ⇓

t1 t2

Figure 21: (Left)Two ribbons t1 = t′1τ1 and t2 = t′2τ2. They share one common site and
are directed toward this site. (Right) A schematic picture of two ribbons t1 and t2 whose
configuration is given by that on the left.

where the first factor of R acts on α, the second acts on β, and Flip swaps the two factors.
It is direct to check cα,β ∈ Hom(α⊗ β, β ⊗ α) and its inverse is given by

c−1
α,β : β ⊗ α Flip−→ α⊗ β R−1

−→ α⊗ β. (79)

More generally, for n representations α1, · · · , αn, we can apply the isomorphism c to αi⊗αi+1:

α1 ⊗ · · ·αi ⊗ αi+1 · · · ⊗ αn α1 ⊗ · · ·αi+1 ⊗ αi · · · ⊗ αn
idα1⊗···cαi,αi+1 ···⊗idαn

(80)

We denote the above the isomorphism by ci,i+1.

Lemma 6.2. The following equations hold:

ci,i+1 ci+1,i+2 ci,i+1 = ci+1,i+2 ci,i+1 ci+1,i+2, (81)

ci,i+1 cj,j+1 = cj,j+1 ci,i+1, |i− j| ≥ 1. (82)

Before introducing braiding, we need a technical lemma. Let t1, t2 be two ribbons as
shown in Figure 21(Left), namely, ti = t′iτi, i = 0, 1, the ti

′s are disjoint, and τ1 (resp. τ2)
is a type-II (resp. type-II) triangle. Moreover, τ1 and τ2 share the same edge. (Strictly
speaking, their edges are dual to each other.) So the ribbon operators associated with τ1 and
τ2 act on the same edge. When the background lattice is not drawn, we use the schematic
picture in Figure 21(Right) to represent two ribbons whose configuration is described by
that in Figure 21(Left).

Lemma 6.3. Let t1, t2 be as above, then

F (h2,g2)(t2)F (h1,g1)(t1) = F (h1,g1ḡ2h̄2g2)(t1)F (h2,g2)(t2). (83)

Proof. Consider first the special case when ti = τi, i = 0, 1. Let the common edge of τ1 and
τ2 be oriented as shown in Figure 21(Left), and let |x〉 be a basis state on that edge where
x is a group element. Then we check the action of both sides of Equation 83 on |x〉.

LHS: |x〉 7→ δg1,xδg2,e|xh̄2〉,
RHS: |x〉 7→ δg2,eδg1ḡ2h̄2g2,xh̄2|xh̄2〉. (84)
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t1 ti ti+1 tn

s1

⇓

si

⇓
si+1

⇓
sn

⇓

s

· · ·· · ·

Figure 22: A configuration of n+ 1 excitations

t1

t′i

tn

s1 si si+1 sn

s

· · ·· · ·

t′i+1

Figure 23: The configuration after we swap, in counterclockwise direction, the excitation at
si with that at si+1.

The coefficients in front of |xh̄2〉 in both expressions are obviously equal, and thus we have
proved Equation 83 in the special case. The general case can be proved using the inductive
formula for ribbon operators.

F (h2,g2)(t2)F (h1,g1)(t1) =
∑

k1,k2

F (h2,k2)(t′2)F (k̄2h2k2,k̄2g2)(τ2)F (h1,k1)(t′1)F (k̄1h1k1,k̄1g1)(τ1)

=
∑

k1,k2

F (h1,k1)(t′1)F (k̄1h1k1,k̄1g1ḡ2h̄2g2)(τ1)F (h2,k2)(t′2)F (k̄2h2k2,k̄2g2)(τ2)

= F (h1,g1ḡ2h̄2g2)(t1)F (h2,g2)(t2). (85)

In the first and last equality above, we applied the inductive formula for ribbon operators.
In the second equality, we applied Equation 83 for τ1 and τ2 which we already proved. (The
relevant terms are colored in red.) Note that the ribbons t′1, t

′
2 are disjoint with each and are

also disjoint from the τi, thus their corresponding operators commute with each other.

Now consider a configuration of n+ 1 excitations at s, s1, · · · , sn. We use a ribbon ti to
connect si to s. See Figure 22. Consider a basis state

|h1, g1; · · · ;hi, gi;hi+1, gi+1; · · · ;hn, gn〉 := F (hn,gn)(tn) · · ·F (hi+1,gi+1)(ti+1)F (hi,gi)(ti) · · ·F (h1,g1)(t1)|E〉.
(86)

Note the ordering in which the ribbon operators are applied. A different ordering will give
a different basis. If we swap the excitations at si and si+1 in counterclockwise direction
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· · · · · ·

1 i+ 1i n

· · · · · ·

1 i+ 1i n

Figure 24: (Left) The trajectory of a counterclockwise swap; (Right) The trajectory of a
clockwise swap.

(we can think that we drag the ribbons ti, ti+1 to make such a swap), then the ribbons are
changed as shown in Figure 23. Namely, ti is changed to t′i, ti+1 is changed to t′i+1, and all
other ribbons remain unaltered. Note that the ribbons can be freely deformed as long as
they do not cross any excitation. Hence we can deform t′i to ti+1. We cannot deform t′i+1 to
ti since that would cross the excitation at si+1. Then the resulting state is given by

|ψfi〉 === · · ·F (hi+1,gi+1)(t′i+1)F (hi,gi)(t′i) · · · |E〉
t′i→ti+1
=== · · ·F (hi+1,gi+1)(t′i+1)F (hi,gi)(ti+1) · · · |E〉

Equ 83
=== · · ·F (hi,giḡi+1h̄i+1gi+1)(ti+1)F (hi+1,gi+1)(t′i+1) · · · |E〉
t′i+1→ti
=== · · ·F (hi,giḡi+1h̄i+1gi+1)(ti+1)F (hi+1,gi+1)(ti) · · · |E〉

=== | · · · ;hi+1, gi+1;hi, giḡi+1h̄i+1gi+1; · · · 〉

===

[
Flip ◦

(∑

g

Ag(s)⊗Bg(s)

)]

i,i+1

| · · · ;hi, gi;hi+1, gi+1; · · · 〉, (87)

where in the fourth equality we can now deform the ribbon t′i+1 to ti since the ribbon operator
on ti+1 has not been applied yet when the ribbon operator on t′i+1 is being applied. In the last
equality, [·]i,i+1 means we apply the operator inside the square bracket to i-th and (i+ 1)-th
position. Thus a counterclockwise swap of the excitations at s0 and s1 induces the action

[
Flip ◦

(∑

g

Ag(s)⊗Bg(s)

)]

i,i+1

. (88)

If we consider state in the representation basis

|α1, u1, u
′
1; · · · ;αn, un, u

′
n〉, (89)

where α1, · · · , αn are irreps of DG, then Ag(s) in Equation 88 acts on the u′i index according
to αi and Bg(s) acts on the u′i+1 index according to αi+1. The map Flip swaps the the pair
(ui, u

′
i) with the pair (ui+1, u

′
i+1). Now if we fix the excitation types and drop the local degrees

u1, · · · , un, the topological degrees u′1, · · · , u′n span the Hilbert space α1 ⊗ · · · ⊗ αn, and the
action in Equation 88 on topological degrees is precisely the map ci,i+1. (See Equation 80.)
A counterclockwise swap followed by a clockwise swap must act as identity, hence a clockwise
swap induces the action c−1

i,i+1. We call the swap of two excitations a braiding.
The trajectories of a counterclockwise and a clockwise swap are each represented by

the diagram as shown in See Figure 24. These diagrams are called braid diagrams on n
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Figure 25: An example of a braid diagram on four strands.

strands. More generally, we can stack one braid diagram on top of another one to get more
complicated braid diagrams. See Figure 25 for an example. These diagrams are considered
up to isotopy. Namely, if two diagrams can be deformed to each other with their end points
fixed, then they are considered equivalent. Equivalence classes of braid diagrams form a
group called the braid group Bn. The multiplication of two diamgrams is given by stacking
the first one on top of the second one. For an introduction to braid groups, see for instance
[13]. Algebraically, Bn has a presentation as

Bn = 〈σ1, · · · , σn−1 |σiσi+1σi = σi+1σiσi+1, (90)

σiσj = σjσi, |i− j| > 1 〉, (91)

where σi (resp. σ−1
i ) corresponds to the braid diagram in Figure 24(Left) (resp. (Right) ).

Hence σi is the trajectory of counterclockwise braiding of si with si+1. A general element in
Bn corresponds to a sequence of braidings.

Now assume all excitation types are the same α1 = · · · = αn = α. Then ci,i+1 ∈ U(α⊗n),
and by Lemma 6.2 we obtain a representation of the braid group:

ρn,α : Bn −→ U(α⊗n)

σn 7−→ ci,i+1. (92)

Since each ci,i+1 commutes with the DG-action, it also preserves the subspace Inv(α⊗n) on
which DG acts by the trivial representation. Hence, ρn,α restricts to a representation on
Inv(α⊗n):

ρn,α : Bn −→ U
(
Inv(α⊗n)

)
. (93)

But remember the subspace Inv(α⊗n) is the logical/protected subspace where information is
encoded. Thus the image of ρn,α serve as quantum gates that process information.

Example 6.4. Let α = (C,1), where C is a conjugacy class and 1 is the trivial irrep .
A basis for α is given by {|c〉 : c ∈ C}. A counterclockwise braiding of α with another α
induces the map:

c1,2 : α⊗ α −→ α⊗ α,
|c1, c2〉 7−→ |c2, c2c2c̄2〉. (94)

Finally we consider the process of fusing excitations. Let |ψ〉 ∈ α ⊗ β be a state with
excitations at s1, s2 and s. See Figure 26(Left). Here we have ignored the local degrees α∗
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t1 t2

s1

⇓
s2

⇓

s

t′1 t′2

⇓ ⇓

s

s3

Figure 26: (Left) A configuration with three excitations. (Right) Fusing the excitations at
s1 and s2 to get an excitation at s3.

and β∗ at s1 and s2, respectively. We bring the two excitations at s1 and s2 to a common
location s3 and measure the type of the excitation at s3. This is called a fusion process. If
the measurement shows the excitation at s3 is γ, then the state |ψ〉 is transformed by a map:

φγαβ : α⊗ β −→ γ. (95)

Moreover, φγαβ should commute with the DG-action at site s since the fusion takes place
away from s. Hence, we have

φγαβ ∈ Hom(α⊗ β, γ). (96)

Note that as a representation of DG we have the decomposition of α⊗ β,

α⊗ β '
⊕

i

γi, (97)

where the γi
′s are irreps and they are mutually non-isomorphic. Hence φγαβ is not zero

if and only if γ is one of the γi
′s. And if γ = γi, then φγαβ is unique up to a scalar

multiplication by Schur’s Lemma (Lemma 6.1). We normalize φγiαβ so that it is an isometry
on the subspace γi ⊂ α ⊗ β. Hence, we call γi a total charge/type of α and β. We call
the triple (α, β, γ) admissible if γ is a total charge of α and β, in which case, we use the
graph in Figure 27(Left) to represent φγαβ. φγαβ is called a fusion channel. The fusion process
corresponds to a measurement which projects the state to one of its total charges via the
fusion channel. Explicitly, α and β fuses to γ with the probability |φγαβ|ψ〉|2 and the resulting
state is φγαβ|ψ〉 (unnormalized).

We can also think of the reverse process to fusion, namely, a splitting process. If γ is a
total charge of α and β, and |ψ〉 ∈ γ ⊂ α ⊗ β, then of course fusing α and β will always
produce γ. In this case, we may as well think that α and β is split from γ. The splitting
process is represented by a morphism

φαβγ ∈ Hom(γ, α⊗ β), (98)

whose graphical representation is shown in Figure 27(Middle). We choose the normalization
so that (see Figure 27 (Right))

φγαβ ◦ φαβγ = idγ. (99)
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γ

α β γ

α β

γ

α β

γ

=

γ

Figure 27: (Left) the fusion channel φγαβ; (Middle) the splitting channel φαβγ ; (Right) the
normalization condition.

β

α1 α3α2

γ

α1

β

α3α2

γ′

Figure 28: (Left): a splitting tree represented by (φα1,α2
γ ⊗idα3)φ

γ,β3
β . (Right) another splitting

tree represented by (idα1 ⊗ φα2,α3

γ′ )φα1,γ′

β .

Now consider a morphism in Hom(β, α1⊗α2⊗α3) given by (φα1,α2
γ ⊗ idα3)φ

γ,β3
β . It corre-

sponds to the process of splitting β into γ and α3 followed another splitting of γ into α1 and
α3. See Figure 33(Left), where the graph representing the process is called a splitting/fusion
tree. It turns out that as we vary γ among all possibilities, namely, all those γ such that
(α1, α2, γ) and (γ, α3, β) are both admissible, then

{(φα1,α2
γ ⊗ idα3)φ

γ,α3

β : (α1, α2, γ), (γ, α3, β) admissible} (100)

forms a basis of Hom(β, α1⊗α2⊗α3). This basis is called a splitting/fusion tree basis. But
we also have another splitting/fusion tree as shown in Figure 33(Right) and by varying γ′

we also get another splitting/fusion tree basis:

{(idα1 ⊗ φα2,α3

γ′ )φα1,γ′

β : (α2, α3, γ
′), (α1, γ

′, β) admissible}. (101)

The matrix relating these two bases is called F -matrix and its matrix elements are called
F -symbols. The process of changing one basis to the other is called an F -move. See Figure 34.
We will explore properties of F -symbols later.

More generally, a splitting tree basis of Hom(β, α1 ⊗ · · · ⊗ αn) is given by splitting tree
shown in Figure 30 by varying γ1, · · · , γn−2. Of course, one can also consider other shapes of
splitting trees and they will give other bases. Every two such bases are related by a sequence
of F -moves.

Note that the invariant subspace Inv(α⊗n) can be identified with the space Hom(1, α⊗n),
where 1 is the 1-dimensional trivial irrep of DG. Hence for Inv(α⊗n), we can use a splitting
tree basis as the computational basis.
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β

α1 α3α2

γ =
∑
γ′

Fα1α2α3

β;γ′γ

α1

β

α3α2

γ′

Figure 29: The F -matrix (F -symbols) related two splitting bases.

α1 α2

γ1

γ2

α3 α4 · · · αn

β

· · ·

Figure 30: A splitting tree for n anyons

7 Quantum Computing with Kitaev’s Model

We have discussed Kitaev’s quantum double model based on any finite group G. Here we
give a summary of the algebraic structures of anyons in the model, and show explicitly how
they can be used to perform topological quantum computing. These structures form the
abstract notion of a (unitary) modular tensor category, which is the algebraic foundation of
an anyon system and will be introduced next section.

The types of excitations/anyons in the quantum double model are in one-to-one cor-
respondence with (isomorphism classes of) irreps of DG. To be precise, an anyon type
corresponds to an isomorphism class of irreps, while an anyon corresponds to a specific ir-
rep, namely, a representative in the class. But we will not strictly distinguish these two
notions. Denote by L = Irr(DG) the set of anyon types. Given two anyons α, β ∈ L, we
have the decomposition

α⊗ β =
⊕

γ∈L

Nγ
αβγ, (102)

where Nγ
αβ is a non-negative integer indicating the multiplicity of γ in α ⊗ β. In general,

Nγ
αβ could be greater than 1. But for simplicity, let’s assume Nγ

αβ = 0, 1, which is the case
for most groups which we are interested in such as S3. These integers Nγ

αβ are called fusion
coefficients or fusion rules. If Nγ

αβ = 1, then γ is called a total charge of α and β, and the
triple (α, β, γ) is said to be admissible.

For each admissible triple (α, β, γ), we have the fusion channel φγαβ ∈ Hom(α⊗ β, γ) and

the splitting channel φαβγ ∈ Hom(γ, α⊗ β) such that

φγ
′

αβφ
αβ
γ = δγ,γ′idγ. (103)

These channels are represented by certain graphs in Figure 31. If |ψ〉 ∈ α ⊗ β is the
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γ

α β γ

α β

γ

α β

γ′

=

γ

δγ,γ′

Figure 31: (Left)the fusion channel φγαβ; (Middle) the splitting channel φαβγ ; (Right) the
normalization condition.

α1 α3

γ

α2

β
α1 α3

γ

α2

β

γ′

β′

=

β

δγ,γ′δβ,β′

Figure 32: (Left) a fusion tree basis; (Right) the composition of a fusion tree basis with its
dual splitting tree basis.

state before fusion, then fusing α and β corresponds to projecting |ψ〉 to one of their total
charges. The probability to fuse into the anyon γ is |φγαβ|ψ〉|2, and given that outcome, the
state becomes φγαβ|ψ〉 (unnormalized). Note that any state |ψ〉 can be written as

|ψ〉 =
∑

γ

cγφ
αβ
γ |ψγ〉, (104)

where |ψγ〉 is a state in γ and cγ is some complex number. Then by the normalization
condition in Equation 103, the probability to fuse into γ is given by |cγ|2 and the state is
|ψγ〉 when that happens. Thus fusion corresponds to the measurement with respect to the
splitting channel.

Now let’s consider fusion channels of three anyons α1, α2, α3. We can first fuse α1, α2 into

β

α1 α3α2

γ

α1

β

α3α2

γ′

Figure 33: Two splitting tree bases
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β

α1 α3α2

γ =
∑
γ′

Fα1α2α3

β;γ′γ

α1

β

α3α2

γ′

Figure 34: The F -move relating two splitting tree bases

γ, and then fuse γ, α3 into β. This is represented by the process

φβγα3
◦ (φγα1α2

⊗ idα3) ∈ Hom(α1 ⊗ α2 ⊗ α3, β), (105)

whose graphical interpretation is given in Figure 32(Left). By varying all possible interme-
diate γ, we obtain a basis for Hom(α1 ⊗ α2 ⊗ α3, β):

{φβγα3
◦ (φγα1α2

⊗ idα3) : (α1, α2, γ), (γ, α2, β) admissible}. (106)

This basis is called a fusion tree basis. Analogously, we can consider the splitting process in
Figure 33(Left), which corresponds to the morphism

(φα1α2
γ ⊗ idα3) ◦ φγα3

β , (107)

and again by varying the intermediate γ, these give a basis of the space Hom(β, α1⊗α2⊗α3),
called a splitting tree basis.

{(φα1α2
γ ⊗ idα3) ◦ φγα3

β : (α1, α2, γ), (γ, α3, β) admissible}. (108)

These fusion tree basis in Equation 106 is dual to the splitting tree basis in Equation 108 in
the sense that

(
φβ
′

γ′α3
◦ (φγ

′

α1α2
⊗ idα3)

)
◦
(
(φα1α2

γ ⊗ idα3) ◦ φγα3

β

)
= δγ,γ′δβ,β′idβ, (109)

which is better illustrated with graphical calculations as shown in Figure 32(Right).
Apparently, we also have another splitting basis associated with three anyons (see Fig-

ure 33(Right)),

{(idα1 ⊗ φα2α3
γ )φα1γ

β : (α1, γ, β), (α2, α3, γ) admissible}. (110)

The two splitting bases in Equation 108 and 110 are related by a matrix transformation. See
Figure 34, where Fα1α2α3

β is called an F -matrix and its matrix elements Fα1α2α3

β;γγ′ are called
F -symbols. We also call the basis change an “F -move”.

More generally, we have splitting/fusion tree bases for n anyons. Take n = 4 as an
illustration. Figure 35 shows some examples of splitting tree bases for the same space
Hom(β, α1⊗α2⊗α3⊗α4). Basically, each splitting tree represents a process of creating the
anyons αi

′s from the anyon β. Two different bases are related by a sequence of F -moves.
For instance, see Figure 36.

Now let’s consider the splitting process shown in Figure 35(Left), namely, we split β into
γ2, α4, followed by splitting γ2 into γ1, α3, followed by splitting γ1 into α1, α2. Denote this

41



α1

γ1

α2

γ2

α3 α4

β

α1

γ1

α2

γ2

α3 α4

β

α1

γ1

α2

γ2

α3 α4

β

Figure 35: Some examples of splitting tree bases in Hom(β, α1 ⊗ α2 ⊗ α3 ⊗ α4).

α1

γ1

α2

γ2

α3 α4

β

=

∑
m

F γ1α3α4

β;mγ2

α1

γ1

α2

m

α3 α4

β

α1

n

α2

m

α3 α4

β

=

∑
m,n

F γ1α3α4

β;mγ2
Fα1α2m
β;nγ1

Figure 36: F -moves relating different bases

process temporarily by P (γ1, γ2). Then for any state |ψβ〉 ∈ β, P (γ1, γ2) produces a state
P (γ1, γ2)|ψβ〉 ∈ α1 ⊗ α2 ⊗ α3 ⊗ α4. If we change |ψβ〉, then the final state also changes.
However, the total charges of (α1, α2), (γ1, α3), and (γ2, α4) all remain fixed. We refer |ψβ〉
as internal degrees. Fusion outcomes do not depend on internal degrees. Therefore, we will
not use internal degrees to encode information 1. Rather, information is encoded in the
splitting channels. In this case, γ1 and γ2 label a specific channel. In another word, we
encode information in the morphism space Hom(β, α1⊗α2⊗α3⊗α4), and use any splitting
tree basis as the computational basis. Measurement with respect to a splitting tree basis
is obtained by fusing anyons in the order according to the splitting tree. For the basis in
Figure 35(Left), we fuse α1, α2 into some γ′1, fuse γ′1, α3 into some γ′2, and finally fuse γ′2, α4

to get β. The final state can be obtained by applying the dual fusion tree basis as shown in
Figure 37.

As a special case, if β = 1, the trivial irrep or the ground state, then dim β = 1. The only
internal degree is the ground state |E〉 ∈ β, and Hom(1, α1⊗α2⊗α3⊗α4) can be identified
with the subspace Inv(α1, α2, α3, α4) ⊂ α1 ⊗ α2 ⊗ α3 ⊗ α4 on which DG acts by the trivial
representation. This is the logical subspace we discussed before.

Finally, let’s consider braiding. Braiding α1 and α2 in counterclockwise direction produces
the transformation

cα1,α2 : α1 ⊗ α2 −→ α2 ⊗ α1. (111)

1We will give another reason below why internal degrees are not used.
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α1

γ1

α2

γ2

α3 α4

β

Figure 37: a fusion tree basis of four anyons

α1 α2

β

α2 α1

= Rα2α1

β

α2 α1

β

Figure 38: the R-move

Compose cα1,α2 with the splitting channel φα1α2
β , we get cα1,α2 ◦ φα1α2

β ∈ Hom(β, α2 ⊗ α1).
Since the dimension of Hom(β, α2 ⊗ α1) is 1, there exists a scalar Rα2α1

β such that

cα1,α2 ◦ φα1α2
β = Rα2α1

β φα2α1
β . (112)

See Figure 38 for a graphical definition. The scalars Rα2α1
β are called R-symbols, and the

process of removing a crossing is called an “R-move”. From the above equation, we can also
see that Rα2α1

β is independent of the internal degrees of β, which is the second reason why
we will not make use of internal degrees.

With the fusion rules, F -symbols, and R-symbols, we can do explicit calculations. For
some anyons α, β, take Hom(β, α⊗4) as the computational space and choose the splitting
tree basis in Figure 35(Middle) as the computational basis. Denote by |γ1, γ2〉 the splitting
tree with labels γ1, γ2. Note that in general γ1 and γ2 are not independent, so we do not
have a tensor product structure on Hom(β, α⊗4). Braiding of the four α anyons gives a
representation of the four strand braid group B4 on Hom(β, α⊗4). The generator σi, i =
1, 2, 3, of B4 corresponds to braiding of the i-th α with the (i + 1)-th. The action of σ1 is
easy to compute as we just need to perform one R-move. See Figure 39. Hence, we have

σ1|γ1, γ2〉 = Rαα
γ1
|γ1, γ2〉, (113)

and the action is a diagonal matrix. The same is true for σ3. The action of σ2 is more involved
since we cannot apply an R-move directly. Instead, we will need to perform two F -moves to
convert the current basis to another one, apply R-move in that basis, and perform another
two F -moves to convert back to the current basis. See Figure 40. Hence, σ2 is expressed as

σ2|γ1, γ2〉 =
∑

m,n,γ′1γ
′
2

Fααγ2
β;mγ1

(Fααα
m )−1

nγ2
Rαα
n Fααα

m;γ′2n
(F

ααγ′2
β )−1

γ′1m
|γ′1, γ′2〉. (114)

The fusion rules, F -symbols, R-symbols, together with some additional data form the
notion of a unitary modular tensor category, which is the algebraic model for anyons. In
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Figure 39: The action of σ1.
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γ1

α

γ2

α α

β

=
∑
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Fααγ2

β;mγ1
(Fααα

m )−1
nγ2

α

m

α

n

α α

β

=
∑
m,n

Fααγ2

β;mγ1
(Fααα

m )−1
nγ2

Rαα
n

α

m

α

n

α α

β

=
∑

m,n,γ′
1γ

′
2

Fααγ2

β;mγ1
(Fααα

m )−1
nγ2

Rαα
n Fααα

m;γ′
2n
(F

ααγ′
2

β )−1
γ′
1m

α

γ′
1

α

γ′
2

α α

β

Figure 40: The action of σ2.
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α1 α3α2

γ =
∑
γ′

Fα1α2α3

β;γ′γ

α1

β

α3α2

γ′

δ

β

δ

β

= Fα1α2α3

β;δγ
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Figure 41: Expressing the F -symbols in terms of splitting/fusion channels.

(C, χ) basis dimension matrix of Aµ matrix of Aσ

C1

[+] |+〉 1 (1) (1)
[−] |−〉 1 (1) (−1)

[2] |2+〉, |2−〉 2

(
ω 0
0 ω̄

) (
0 1
1 0

)

C2
[1] |(12)〉, |(23)〉, |(13)〉 3




0 0 1
1 0 0
0 1 0







0 0 1
0 1 0
1 0 0




[−1] |(12),−〉, |(23),−〉, |(13),−〉 3




0 0 1
−1 0 0
0 −1 0







0 0 −1
0 −1 0
−1 0 0




C3

[1] |(123)〉, |(132)〉 2

(
1 0
0 1

) (
0 1
1 0

)

[ω] |(123), ω〉, |(132), ω〉 2

(
ω 0
0 ω̄

) (
0 1
1 0

)

[ω̄] |(123), ω̄〉, |(132), ω̄〉 2

(
ω̄ 0
0 ω

) (
0 1
1 0

)

Table 5: Irreps of DS3 where ω = ω3.

general, the F -symbols are obtained by solving certain equations (to be discussed later).
However, in the case of quantum double model, they can be computed directly from the
data of splitting/fusion channels. Explicitly, this is illustrated in Figure 41, namely Fα1α2α3

β;δγ

is the unique scalar such that the first term in Figure 41 is equal to Fα1α2α3
β;δγ times idβ.

As an illustration, we show how to compute the splitting/fusion channels and R-symbols
for G = S3. Recall that D(S3) has eight in-equivalent irreps. For convenience, we copy
the table of irreps of D(S3) from a previous lecture. Denote the eight irreps in the order of
appearance in Table 5 by A,B,C,D,E, F,G,H, respectively. Figuring out the fusion rules
requires knowledge of representation theory. Here we simply work out a specific example.
For a complete set of data on D(S3), see [8].

Take the irrep F corresponding to the conjugacy class C3 = {µ = (123), µ̄ = (132)}. It
has an orthonormal basis {|µ〉, |µ̄〉}. We claim

F ⊗ F = A⊕B ⊕ F. (115)
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The splitting channels are defined in Equations 116,117, and 118.

φFFA : A −→ F ⊗ F

|+〉 7−→ 1√
2

(|µ, µ̄〉+ |µ̄, µ〉). (116)

φFFB : B −→ F ⊗ F

|−〉 7−→ 1√
2

(|µ, µ̄〉 − |µ̄, µ〉). (117)

φFFF : F −→ F ⊗ F
|µ〉 7−→ |µ̄, µ̄〉
|µ̄〉 7−→ |µ, µ〉. (118)

Recall that the braiding has the following transformation on F ⊗ F :

cF,F : F ⊗ F −→ F ⊗ F
|c1, c2〉 7−→ |c2, c2c1c̄2〉. (119)

Since the two elements µ, µ̄ in C3 commute, the above map is simply the swap map: |c1, c2〉 7→
|c2, c1〉. We obtain that

RFF
A = RFF

F = 1, RFF
B = −1. (120)

Unfortunately, the computational power of braiding in the quantum double is limited
for any finite group G. It is a theorem of [10] that the image of the braiding on the space
Hom(β, α⊗n) is always a finite group for any α, β and n. This implies one always gets a finite
set of quantum gates by braiding, which is of course not universal. To obtain universality,
we either need to introduce extra resources such as ancilla and special measurement or use
anyon models beyond the quantum double model. This is will be discussed in next section.

8 Unitary Modular Tensor Category(UMTC)

We give a minimal introduction to the notion of a unitary modular tensor category (UMTC),
which is the algebraic structure describing a general anyon system. Apart from applications
in topological quantum computing, UMTCs are also central in a number of subjects such
as 3-dimensional topological quantum field theories, 2-dimensional conformal field theories,
representation of quantum groups, etc. For aspects of UMTCs related with topological quan-
tum computing and anyon systems, see [15, 5, 20, 17]. A UMTC can be defined abstractly
within the framework of fusion categories. See, for instance, [2, 18]. However, the formalism
involved is rather complicated and would be too much distraction to go through. Rather,
we follow the approach in [15, 3] to define a UMTC in a concrete manner, building a direct
connection with anyon systems. The downside of this approach is that certain properties
which are obvious in the framework of fusion categories are highly nontrivial in the discrete
setup. Readers who are interested in learning UMTCs to some depth are suggested to refer
to some of the math literature such as [20].
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Roughly, UMTCs are characterized by a set of data satisfying certain rules. The rules
are to be obeyed by all anyon systems, and are also complete in the sense that any set of
data satisfying these rules determines an anyon system. A UMTC is any particular set of
data satisfying these rules, and thus corresponds to a particular anyon system.

Label set. First of all, a UMTC contains a label set

L = {a, b, c, · · · }, (121)

which describes all possible anyon types in an anyon system. L assumed to be a finite set.
There is a special type in L, denoted by 1, which represents the ground state or the vacuum.
Also, for each type a ∈ L, there is a unique type ā ∈ L dual to a. The ā is characterized as
the unique type such that a and ā can be combined to produce 1. It is natural to require
that

¯̄a = a, and 1̄ = 1. (122)

If ā = a, we say a is self dual.

Fusion rules. For any two types a, b ∈ L, their combined type or total charge is formally
written as

a⊗ b =
⊕

c∈L

N c
ab c, (123)

where N c
ab is a non-negative integer representing the possible ways of combining a and b

to obtain c. For simplicity, we assume N c
ab is either 0 or 1, but note that there are anyon

systems for which N c
ab could be greater than one. A theory with this property is called

multiplicity free. If N c
ab = 1, then c is called a total charge of a and b, and there is a unique

channel of combining a and b to produce a type c. We call the triple (a, b, c) admissible in
this case. We emphasize that the ‘⊗’ and ‘

⊕
’ in the above equation are treated as formal

operations, although they can be defined to function as what they originally mean. Also
note that some authors write ‘×’ and ‘

∑
’ to replace ‘⊗’ and ‘

⊕
’, respectively. The numbers

N c
ab
′s are called fusion rules.
Some natural properties need to be satisfied for the fusion rules if they describe an anyon

system. The total charge of a and b should be the same as that of b and a. That is, formally,
a⊗ b = b⊗ a, implying

N c
ab = N c

ba, ∀a, b, c. (124)

If c is a total charge of a and b, then c̄ is a total charge of ā and b̄,

N c
ab = N c̄

āb̄, ∀a, b, c. (125)

The total charge of 1 and a should always be a, implying

N b
1a = δa,b, ∀a, b. (126)
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As mentioned in the definition of a dual type, in order for the total charge of a and b to
possibly be 1, a and b have to be dual to each other, and hence

N1
ab = δa,b̄, ∀a, b. (127)

Also, we require the fusion rules to be ‘associative’ whose meaning is as follows. If we want
to combine three anyons a, b, and c to produce an anyon d, we can either combine a, b first
to produce an intermediate anyon p followed by combining p, c to produce d, or combining
b, c first to produce an intermediate q followed by combining a, q to produce d. The number
of different ways to combining a, b, c to produce d is equal to the number of all possible p ′s,
as well as to the number of all possible q ′s. It is reasonable to require these two numbers to
be the same. Therefore, we have

∑

p∈L

Np
abN

d
pc =

∑

q∈L

Nd
aqN

q
bc, ∀a, b, c, d, (128)

or written formally, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c). It is not hard to check the above equation
actually guarantees that for an arbitrary number of anyons the total number of ways of
combining them into a single anyon does not depend on the specific ordering in which the
anyons are combined. To summarize, the fusion rules are required to satisfy Equations 124
- 128.

Remark 8.1. Equations 124 - 128 impose many degrees symmetries on fusion rules. As an
exercise, one can show the following,

N c
ab = Na

cb̄ = N b
cā = N b̄

c̄a = N ā
c̄b = N c̄

āb̄. (129)

One can of course swap the two lower indexes in any of the N ·· · terms in the above equation.

Hilbert space of states and splitting/fusion tree bases. If N c
ab = 1, there is a splitting

channel φabc which creates a pair of anyons a and b from their total charge c. One can
think that for any state |ψc〉 representing the anyon c, the channel creates a state φabc |ψc〉
representing the two anyons a and b. The state |ψc〉 is interpreted as the internal degrees of
the anyon c and is suppressed in the formalism of UMTCs. Hence, one can also think of the
channel itself as a quantum state representing a pair of anyons a and b whose total charge is
c. We will use these two interpretations interchangeably. Denote by V ab

c the space of states
corresponding to two anyons a and b with total charge c. V ab

c has dimension 1 if c is indeed
a total charge, and 0 otherwise. In the former case, a basis element in V ab

c is given by φabc ,
whose graphical representation is shown in Figure 42 (Middle). More generally, denote by
V a1a2···an
c the space of states representing n anyons a1, · · · , an, whose total charge is c. An

orthonormal basis of V a1a2···an
c is specified by a splitting tree. See Figure 43. The splitting

tree in Figure 43(Left) represents a state in V a1···a4
c such that the total charge of a1, a2 is

b1, the total charge of b1, a3 is b2, and the total charge of b2, a4 is c. By varying all possible
intermediate b1, b2, we obtain an orthonormal basis of V a1···a4

c . Thus the dimension of V a1···a4
c

is
∑

b1,b2

N b1
a1a2

N b2
b1a3

N c
b2a4

. (130)
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a b c
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a b

c′

=

c

δc,c′

Figure 42: (Left) the fusion channel φcab; (Middle)the splitting channel φabc ; (Right) the
normalization condition.
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c

a1

b1

a2

b2

a3 a4

c

a1

b1

a2

b2

a3 a4

c

Figure 43: Three splitting tree bases for the space V a1···a4
c .

Another splitting tree such as the one in Figure 43 (Middle) gives a different orthonormal
basis, from which the count for the dimension of V a1···a4

c is equal to

∑

b1,b2

N b1
a1a2

N b2
a3a4

N c
b1b2

. (131)

It is not surprising that Equation 128 guarantees that Equation 130 and Equation 131
give the same number, and actually guarantees that from any splitting tree one gets the
same count of the dimension. An basis specified a splitting tree is called a splitting tree
basis. In general, one formula expressing the dimension of V a1···an

c (with the splitting tree in
Figure 44(Left)) is

∑

b1,··· ,bn−2

N b1
a1a2

N b2
b1a3
· · ·N c

bn−2an
. (132)

If N c
ab = 1, there is also a 1-dimensional Hilbert space V c

ab spanned by the fusion channel
φcab as shown in Figure 42(Left). V c

ab is dual to V ab
c in the sense that φc

′

abφ
ab
c = δc,c′idc, where

idc is interpreted as the identity channel on c. Graphically, this is illustrated in Figure 42
(Right), where a vertical line with a label a represents the identity process on a. More
generally, there is a Hilbert space V c

a1···an spanned by fusion channels dual to V a1···an
c . A basis

of V c
a1···an is given by first choosing a fusion tree (See Figure 44(Right)) and then varying

all intermediate anyons. Any such basis is called a fusion tree basis. If we have a state
|ψ〉 ∈ V a1···an

c and fuse the n anyons from left to right, then the amplitude for obtaining the
intermediate anyons b′1, · · · , b′n−2 is given by applying the fusion channel in Figure 44(Right)
with the specific b′1, · · · , b′n−2 on its internal edges to the state |ψ〉.
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a1 a2

b1

b2

a3 a4 · · · an

c

· · ·

a1 a2
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b2
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· · ·
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c

· · ·

Figure 44: (Left) a splitting tree for the space V a1···an
c ; (Right) a fusion tree for the space

V c
a1···an

d

a cb

m =
∑
n

F abc
d;nm

a

d

cb

n

Figure 45: The F -matrix relating two bases.

F-symbols. The space V abc
d has two sets of orthonormal bases given respectively by the

two splitting trees shown on either side of the equation in Figure 45. Hence, we can express
each state in one basis as a linear combination of the states in the other basis. Denote by
F abc
d , called an F -matrix, the unitary matrix relating the two bases. Explicitly, the definition

of F abc
d is shown in Figure 45, where F abc

d;nm denotes the (n,m) matrix element of F abc
d , and

is called an F -symbol or 6j-symbol. Note that here n,m are labels of anyon types. In
particular, m ranges over all types for which (a, b,m) and (m, c, d) are both admissible, and
n ranges over all types for which (b, c, n) and (a, n, d) are both admissible. If either m or n
violates the above constraints, we define F abc

d;nm = 0. We call the change from one basis to the
other an F -move. Straightly speaking, there are two types of F -moves inverse to each other
depending on which basis to start with. Some authors call the transformation in Figure 45
an F -move and call the inverse transformation an inverse F -move.

The F -symbols need to satisfy some consistency conditions. Consider the space V abcd
e .

There are in total five splitting tree bases. One can convert one to another by a sequence of
F -moves. But there are different sequences of F -moves achieving this purpose. It is natural
to require that different sequences of F -moves give the same transformation. More precisely,
in the space V abcd

e , to convert one basis to another, there are exactly two sequences of F -
moves. See Figure 46. To convert the splitting tree basis labeled by 1 to the basis labeled by
3 , one can follow either the path 1 → 2 → 3 or the path 1 → 5 → 4 → 3 . Denote

by | i ;x, y〉 the basis state in the basis labeled by i . For example, | 1 ;m,n〉, | 3 ; z, y〉, and
| 4 ;x, y〉 represent the basis states shown in Figure 45 corresponding to the bases 1 , 3 ,
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and 4 , respectively. Then following the path 1 → 2 → 3 , we have

| 1 ;m,n〉 =
∑

z

Fmcd
e;zn | 2 ;m, z〉

=
∑

y,z

Fmcd
e;znF

abz
e;ym| 3 ; z, y〉. (133)

And following the path 1 → 5 → 4 → 3 , we have

| 1 ;m,n〉 =
∑

x

F abc
n;xm| 5 ;x, n〉

=
∑

x,y

F abc
n;xmF

axd
e;yn| 4 ;x, y〉

=
∑

x,y,z

F abc
n;xmF

axd
e;ynF

bcd
y;zx| 3 ; z, y〉 (134)

By requiring these two sequences to give the same transformation, we arrive at the following
equation, known as Pentagon Equation.

Fmcd
e;znF

abz
e;ym =

∑

x∈L

F abc
n;xmF

axd
e;ynF

bcd
y;zx, ∀a, b, c, d, e,m, n, y, z. (135)

In general, it is a very hard problem to solve the equation. The Pentagon Equation makes
the F -moves consistent not only for the case of four anyons a, b, c, d, but also for the case of
arbitrary n anyons. Namely, any two sequences of F -moves relating one splitting tree basis
to another give the same transformation. This is known as MacLane Coherence Theorem.

R-symbols. Consider the state (or channel) φabc ∈ V ab
c , if we swap (or braid) a and b

counterclockwise, this should not change the total charge of a and b, but it will change φabc to
φbac times a phase denoted by Rba

c . We call Rba
c an R-symbol. Graphically, see Figure 47(Left)

for the definition of Rba
c . A clockwise braiding followed immediately by a counterclockwise

braiding should fix the initial state. Hence a clockwise braiding applied to φabc is equal to φbac
times the phase (Rab

c )−1. See Figure 47(Right). We call the transformation in either left or
right of Figure 47 an R-move. There are also consistency conditions that need to be imposed
on the R-symbols introduced below.

The effect of braiding an anyon d with a followed by braiding d with b should be the
same as that of braiding d with (a, b) as a composite particle. The effect of the latter should
be, in turn, the same as that of braiding of d with c if the combined pair (a, b) behaves
like c. Combining the above two assumptions, we derive the equality in Figure 48, which
means braiding commutes with the splitting process. Graphically, this means one can always
slide an edge representing a braiding process through a vertex. To see what restrictions this
equality imposes on R-symbols, consider the transformations in Figure 49. Each splitting
tree in the figure represents a basis in the space V bca

d . To convert the basis labeled by 1 to
the basis labeled by 4 , there are two sequences of F/R-moves: 1 → 2 → 3 → 4 and
1 → 6 → 5 → 4 . And it is natural to require these two sequences of moves produce the
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Figure 46: Consistency condition for F -moves.

a b

c

b a

= Rba
c

b a

c

a b

c

b a

= (Rab
c )−1

b a

c

Figure 47: (Left) A counterclockwise swap (braiding) of a and b; (Right) A clockwise swap
of a and b
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Figure 48: The equality shows that the splitting process commutes with braiding.
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Figure 49: Consistency for R-symbols
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same transformation. For the sequence 1 → 2 → 3 → 4 , the transformation is given
by,

| 1 ;m〉 =
∑

x

F abc
d;xm| 2 ;x〉

=
∑

x

F abc
d;xmR

xa
d | 3 ;x〉

=
∑

x

F abc
d;xmR

xa
d F

bca
d;nx| 4 ;n〉. (136)

For the sequence 1 → 6 → 5 → 4 , we have

| 1 ;m〉 = Rba
m | 6 ;m〉

=
∑

n

Rba
mF

bac
d;nm| 5 ;n〉

=
∑

n

Rba
mF

bac
d;nmR

ca
n | 4 ;n〉 (137)

Hence we arrive at the Hexagon Equation:

Rba
mF

bac
d;nmR

ca
n =

∑

x∈L

F abc
d;xmR

xa
d F

bca
d;nx. (138)

By replacing the counterclockwise braidings in Figure 49 with clockwise braidings, we obtain
another Hexagon Equation:

(Rab
m)−1F bac

d;nm(Rac
n )−1 =

∑

x∈L

F abc
d;xm(Rax

d )−1F bca
d;nx. (139)

Again it is a theorem that the Hexagon Equations also guarantee the consistency of
braiding one anyon with a group of anyons viewed either as a single braiding with the group
or as a sequence of braidings with each member of the group.

Rigidity and quantum dimension. We introduce a convention that if in a splitting/fusion
tree an edge is labeled by the vacuum 1, then we can also erase that edge (together with
its label.) For example, see Figure 50 and 51. However, the trees in Figure 50 can also be
related by F -moves. To make the convention consistent, the involved F -moves have to equal
the identity transformation. It is not hard to see that this is equivalent to the condition,

F abc
d = (1) , whenever a, b, or c is 1. (140)

Note that if one of a, b, c is 1, then the rest two together with d need to be admissible. A
similar argument on braidings requires the condition,

R1a
a = Ra1

a = 1. (141)
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Figure 50: Conventions for erasing edges with label 1

a1

1

a2

c

a3 a4

c

=

a1 a2

c

a3 a4

Figure 51: Conventions for erasing edges with label 1

Now consider the two processes shown in Figure 52. The first process starts with an
anyon a, creates a pair (a, ā) on the left, and fuses ā with the original a. The amplitude
of this process is given by F aāa

a;11. The second process has a similar interpretation but starts
with the anyon ā, the amplitude of which is Gāaā

ā;11, where Gāaā
ā denotes the matrix (F āaā

ā )−1.
We require the two processes to have the same nonzero amplitude:

F aāa
a;11 = Gāaā

ā;11 6= 0. (142)

Remark 8.2. In fact, it suffices to require F aāa
a;11 6= 0. In [9], it is shown that the equality

F aāa
a;11 = Gāaā

ā;11 can be derived as a consequence.

Note that each F -matrix is a unitary matrix, hence Gāaā
ā = (F āaā

ā )†. Let φa := (F aāa
a;11)−1,

then we have

φa = φā, (143)

where the first (̄·) in the above equation means complex conjugation, while the second means
taking the dual. Define

da := |φa|, (144)

where da is called quantum dimension of a whose meaning is to be justified later. Clear
we have d1 = 1 and da = dā. We further introduce some notations as shown in Figure 53.
Roughly, we scale the creation process from the vacuum and the fusion process to the vacuum.
For the creation process (as well as the fusion process), there are two versions of scaling
depending on the arrow. One can think of the arrow as specifying a direction on the arc.
The rule for interpreting the labels at the two ends of an arc is as follows. If the arc
itself is labeled by a as the ones in Figure 53, then the end of the arc is labeled by a if the
direction near the end is pointing downwards, and is labeled by ā if the direction is pointing
upwards. These scalings are chosen so that the equalities in Figure 54 and 55 hold. That
is, a circle labeled by a with either direction is equal to da. The equalities in Figure 55 are
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a;11

a

ā
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Figure 52: Two proceses both starting and ending with a single anyon a. Here Gāaā
ā denotes

(F āaā
ā )−1.

a

:=
√
da

a ā a

:=
√
da

a ā

a

:=
√
da

φa

|φa|

ā a a

:=
√
da

φa

|φa|

ā a

Figure 53: Some notations

known as rigidity properties. Note that a vertical string with upward direction labeled by a
represents the identity process on ā. The rigidity properties mean that the identity process
is ‘topological’; one can isotope the trajectory as long as the arrow on the trajectory does
not change direction.

We now give an interpretation of the quantum dimension da. For a ∈ L, define a |L|×|L|
matrix Na whose (b, c)-entry (Na)bc is N c

ab. Hence the entries of Na are either 0 or 1. By
the Perron-Frobenius theorem, Na has an eigenvalue d′a which is greater than or equal to, in
absolute value, any other eigenvalues. We call d′a the Frobenius-Perron dimension of a. It

a = da a ā = da = a

Figure 54: A circle labeled by a with either direction is equal to da.
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Figure 55: Rigidity proerties.

can be shown that da = d′a. The dimension of V a⊗n
1 is (see Figure 44 (Left))

∑

b1,··· ,bn−2

N b1
aaN

b2
b1a
· · ·N bn−2

bn−3a
N1
bn−2a

=
∑

b1,··· ,bn−3

N b1
aaN

b2
b1a
· · ·N ā

bn−3a
(145)

=
(
(Na)

n−2
)
aā

n→∞∼ dn−2
a . (146)

Thus, da measures the asymptotic size of the space of n type-a anyons with total charge
trivial. da does not have to be an integer and generalizes the usual notion of dimension of a
Hilbert space. In fact, it can be shown that for the anyons in the quantum double model of
a group G, the quantum dimension of an anyon is indeed the dimension of the irrep of DG
corresponding to that anyon. Here are some further properties of quantum dimension.

•

dadb =
∑

c∈L

N c
abdc. (147)

• da ≥ 1, and da = 1 if and only if a is Abelian, namely, a⊗ ā = 1.

T-matrix. For each a ∈ L, we define a scalar θa as shown in Figure 56(Left). Namely,
θa
da

is the amplitude the following process. Start with an anyon a, create a pair of anyons
a and ā from the vacuum on the right(this step is assumed to be deterministic.), braid the
two type-a anyons counterclockwise, and finally fuse a and ā into vacuum. θa is called the
topological spin of a. Define T to be the |L| × |L| diagonal matrix with the (a, a)-entry to
be θa. This is called the T -matrix. By closing up the process in Figure 56(Left) to a circle,
we obtain the equality as shown on the right of that figure, which can also be viewed as a
definition of θa (, which is also why the it is called θ).
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Figure 56: The definition of θa.

a b

= S̃ab

Figure 57: The definition of S̃ab.

S-matrix. Similarly, for a, b ∈ L, define S̃ab to be amplitude shown in Figure 57. Let S̃

be the |L| × |L| matrix whose (a, b)-entry is given by S̃ab. Also denote by D =
√∑

a∈L
d2
a. D

is called the total dimension of the theory. Let S = 1
D
S̃, which we call the S-matrix. We

require that,

det(S) 6= 0. (148)

To summarize, a UMTC is defined to be a set consisting of a label set L, the fusion rules,
the F -symbols, and the R-symbols, satisfying rules we have given above. Specifically, the
rules are classified in Table 6.

The S and T matrices are very important data of a UMTC. They satisfy very constraint
conditions. We list some properties of them. See [20, 2] for their proof.

Theorem 8.3. 1. (Vafa) The T matrix has finite order, hence every θa is a root of unity.

Data Rules
Label set with a convolution Equation 122

Fusion rules Equations 124 - 128.
F -symbols Equations 135, 140, 142.
R-symbols Equations 138, 139, 141.
S-matrix Equation 148

Table 6: Rules defining a UMTC.
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2. (Verlinde formula):

Nk
ij =

∑

r

SirSjrSk̄r
S1r

. (149)

3. S4 = id, (ST )3 = λS2, for some scalar λ. Hence S and T defines a projective
representation of SL2(Z).

9 Unitary Modular Tensor Category(UMTC) II

We have defined a UMTC in terms of a set of discrete data satisfying certain rules. Now we
look at some examples of UMTCs and examine their power in terms of topological quantum
computing.

We first set up some conventions. In any anyon theory, there is a particular type 1, the
vacuum. The total charge of 1 with any anyon a is still a. So we will not mention this rule
explicitly. Also, since a⊗ b = b⊗ a, only one of them will be listed for each example below.
We call an F -symbol or an R-symbol trivial if it is defined2 and is equal to 1. All the trivial
F -symbols and trivial R-symbols will be omitted.

Toric code. The first anyon system we encountered is the toric code, which corresponds to
the quantum double model for the group Z2.

• Label set L = {1, e,m, em} ←→ {(0, 0), (1, 0), (0, 1), (1, 1)} = Z2 × Z2; ā = a.

• Fusion rules a⊗ b = (a+ b) mod 2.

• All F -symbols are trivial.

• Quantum dimension: for any a, da = 1; total quantum dimension D = 2.

• R-symbols Ra,b
a+b = (−1)a1b2 , a = (a1, a2), b = (b1, b2) ∈ Z2 × Z2.

• θa = (−1)a1a2 , Sab = 1
2
(−1)a1b2+a2b1 .

Thus all the anyons in toric code are Abelian as we have seen before. Note that Ree
1 =

Rmm
1 = −Rem,em

1 = 1, hence e and m are both bosons while em is a fermion.

Ising theory. There are several related but slightly different UMTCs that are called Ising
theory. The following list of data corresponds to one of them.

• Label set L = {1, σ, ψ}; x̄ = x.

• Fusion rules: ψ ⊗ ψ = 1, ψ ⊗ σ = σ ⊗ ψ = σ, σ ⊗ σ = 1⊕ ψ.

• The F -symbols are given in terms of F -matrices.

Fψσψ
σ = F σψσ

ψ = (−1) , F σσσ
σ =

1√
2

(
1 1
1 −1

)
(150)

2This means all involved triples (a, b, c) are admissible.
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σ
1/ψ σ 1/ψ σ 1/ψ σ 1

σ σ σ σ σ σ σ

Figure 58: A splitting tree basis for V σ⊗n
1

σ
1/ψ σ 1

σ σ σ

σ
1/ψ

σ

σ σ

Figure 59: (Left) a splitting tree basis for V σ⊗4

1 ;(Left) a splitting tree basis for V σ⊗3

σ .

• Quantum dimension d1 = dψ = 1, dσ =
√

2; D = 2.

• R-symbols: Rψψ
1 = −1, Rψσ

σ = Rσψ
σ = −i, Rσσ

1 = e−
πi
8 , Rσσ

ψ = e
3πi
8 .

• θ1 = 1, θψ = −1, θσ = e
2πi
16 .

S =
1

2




1
√

2 1√
2 0 −

√
2

1 −
√

2 1


 (151)

From the above list, we see that ψ is self dual and Rψψ
1 = −1 means that swapping two ψ ′s

change the state by a minus sign. Hence ψ is called a Majorana fermion. The σ particle is
an non-Abelian anyon, called Ising anyon.

Let’s look at some properties of the Ising anyon in terms of quantum computing. Consider
the space V σ⊗n

1 , namely, the space of n σ-anyons with total charge trivial. We choose a
splitting tree for the space as shown in Figure 58, where, in contrast to the usual vertical
alignment we draw the tree horizontally and the right end labeled by 1 is the root of the
tree. From the fusion rules, it is direct to see that all possible labels for internal edges of the
tree are the ones shown in Figure 58. That is, a 1 or ψ label and a σ label always alternate.
Hence the dimension of V σ⊗n

1 is 0 if n is odd, and is 2
n−2
2 if n is even. This means if n is

even, V σ⊗n
1 has a natural tensor product structure to encode n−2

2
qubits. Each edge labeled

by a 1/ψ corresponds to a qubit. This tensor product structure is very rare in other anyon
systems.

We can encode one qubit in either the space V σ⊗4

1 or the space V σ⊗3

σ (see Figure 59),
which are isomorphic. We take the latter as example. The braiding matrices turn out to be
the same to the two spaces. A label of 1 or 1 of the internal edge gives a basis. The set
of quantum gates obtained from braiding are generated by two generators σ1 and σ2, where
σi corresponds to braiding the i-th anyon with the (i + 1)-th counterclockwise. Note that
here the notation for the braiding σi has nothing to do with the particle σ. Apparently, the
matrix for σ1 is the diagonal matrix

σ1 =

(
Rσσ

1 0
0 Rσσ

ψ

)
= e−

πi
8

(
1 0
0 1

)
. (152)
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=

∑
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F σσσ
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σ σ

σ σ

y

=
∑
y

F σσσ
σ;yxR

σσ
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σ σ

σ σ

y
=

∑
y,z

F σσσ
σ;yxR

σσ
y F σσσ

σ;zy

σ
z

σ

σ σ

Figure 60: Caculation of the matrix of σ2. Note that in the last step, an inverse F -move is
performed. Thus we should apply the inverse of F σσσ

σ . However, in this case F σσσ
σ is equal

to its inverse.

Thus up to an unimportant scalar, σ1 is the so-called phase gate. To compute σ2, we need
to first apply an F -move. See Figure 60 for the calculation. Let F = F σσσ

σ be the Hadamard
matrix, then we have

σ2 = Fσ1F. (153)

By direct calculations, we see that up to a global phase,

F = σ1σ2σ1. (154)

Hence the 1-qubit gates from braiding are generated by the phase gate σ1 and the Hadamard
gate F . It is well known that these two gates generate the 1-qubit Clifford group, which is
stabilizer of the Pauli group. In fact, it is not hard to check that all n-qubit quantum gates
obtained from braiding on V σ⊗(2n+2)

1 form precisely the n-qubit Clifford group, which, as a
group, is generated by the phase gate, the Hadamard gate, and the control-NOT gate. By
Gottesman-Knill theorem [16], a quantum circuit only consisting of gates from the Clifford
group can be efficiently simulated classically. Hence, the Ising anyon is not braiding universal.

Fibonacci theory. Let φ = 1+
√

5
2

be the golden ratio.

• Label set L = {1, τ}; x̄ = x.

• Fusion rules: τ ⊗ τ = 1⊕ τ .

• F -symbols:

F τττ
τ =

(
φ−1

√
φ−1√

φ−1 −φ−1.

)
(155)

• Quantum dimension d1 = 1, dτ = φ; D =
√

1 + φ2.

• R-symbols: Rττ
1 = e−

4πi
5 , Rττ

τ = e
3πi
5 .
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τ
1/τ

τ

τ τ τ τ

· · · τ
1/τ

τ

τ τ

Figure 61: A splitting tree for V τ⊗n
τ

• θ1 = 1, θτ = e
4πi
5 .

S =
1√

1 + φ2

(
1 φ
φ 1

)
. (156)

Remark 9.1. In some references, the R-symbols are defined as the inverse of the ones given
here. Changing R-symbols to their inverses corresponds to a “mirror image” of the theory,
i.e., positive braiding is changes to negative braiding. Apparently, the group generated by
all braiding matrices remain the same under such a change.

The theory contains only one nontrivial anyon τ which is non-Abelian. In this case, one
can actually solve the Pentagon Equation and the Hexagon Equations fairly easily to find
the solution [17]. Again let’s check the properties of the τ anyon in the aspect of quantum
computing.

First of all, let

an = dimV τ⊗n

τ , bn = dimV τ⊗n

1 . (157)

Clearly, a1 = 1, a2 = 1 and bn = an−1. Choose the splitting tree as shown in Figure 61 as the
basis for V τ⊗n

τ . If the internal edge most close to the root is labeled by 1, then the number
of possible labels of all other internal edges is equal to bn−1. If that edge is labeled by τ
instead, then the number of possible labels of all other internal edges is equal to an−1. Hence
we have the recursion relation:

an = an−1 + an−2, (158)

and thus an is equal to the n-th Fibonacci number:

an =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

. (159)

This explains the name of theory. Note that an is rarely a power of 2 and the space V τ⊗n
τ or

V τ⊗n
1 usually does not have a natural tensor product structure. We can encode one qubit in

the space V τ⊗3

τ with the basis given by the splitting tree shown in Figure 61. Then similar
to the calculations in Ising theory, the 1-qubit gates are generated by

σ1 =

(
Rττ

1 0
0 Rττ

τ

)
=

(
e−

4πi
5 0

0 e
3πi
5

)
, and σ2 = Fσ1F, (160)
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τ

τ τ τ

τ

ττ

τ

Figure 62: A sparse encoding of two qubits in the space of six τ -anyons.

where F is the only non-trivial F τττ
τ . Note that σ10

1 = σ10
2 = id, and σ1, σ2 generate a

representation of the 3-strand braid group B3. It can be shown that the image of this
representation is a dense subgroup of U(2), hence one can approximate any single qubit
gate with a braid. More generally, it is a theorem of [11] that for arbitrary number n, the
braidings on the space of n anyons of type τ with total charge 1 or τ generate a dense
subgroup. Thus the Fibonacci theory is braiding universal.

There is not a natural way to encode several qubits, say k qubits, in the space of n τ
anyons, since the dimension of the latter is usually not a power of 2. In practice, we have two
encoding schemes, the dense encoding and the sparse encoding. For the dense encoding, one
simply chooses some n large enough so that 2k < dimV τ⊗n

1 , and takes any 2k-dimensional
subspace as the space of k-qubits. Since braidings can approximate arbitrary unitaries in the
larger space, they can also approximate arbitrary unitaries of the k-qubit subspace. However,
during the intermediate state, each individual braid may not preserve the k-qubit subspace,
and one needs to think about the issues of information leakage. For the sparse encoding,
we take k = 2 as an illustration. We encode one qubit in the space V τ⊗3

τ . Then there is a
natural embedding

V τ⊗3

τ ⊗ V τ⊗3

τ ⊂ V τ⊗6

τ , (161)

shown in Figure 62. So the six τ anyons are partitioned into two groups, each group with
three anyons. The first group encodes the first qubit, and the second group encodes the
second qubit. In this way, this is a natural tensor product structure, and one can perform a
single qubit braiding within each group. The problem now is that the space V τ⊗6

τ is strictly
larger than two qubits. Therefore, an arbitrary braiding, such as braiding the third with the
fourth anyon, may not preserve the 2-qubit subspace. The issue of information leakage still
needs to concerned.

10 SU(2)k and Jones Polynomial

In this section, we study a family of anyon theories called SU(2)k for k a positive integer. It
turns out this theory is closely related with the Jones polynomial evaluated at certain root
of unity. So let’s start with the definition of the Jones polynomial.
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Figure 63: Some examples of knot diagrams.

〈 〉
=

〈 〉
A +

〈 〉
A−1

Figure 64: The skein relation.

10.1 Jones Polynomial

A knot (or more precisely, a link) is a collection of circles embedded in R3. There are several
ways to present a knot, one of which is by projecting it to a plane to get a knot diagram.
See Figure 63 for some examples of knot diagrams. Two knots are defined to be equivalent
if they can be deformed into each other. A knot is called trivial or unknot if it is equivalent
to the one on the left of Figure 63, namely if it is equivalent to an unknotted circle. It is
not hard to see the second knot from the left in Figure 63 is an unknot. A classic hard
question is how to distinguish non-equivalent knots. One approach is to define a function
on the set of knots such that it takes the same value on equivalent knots. So if the function
has different values on two knots, then the two knots are not equivalent. Note that the
converse to the above statement is not necessarily true. Namely, if the function has the
same value on two knots, then they are not necessarily equivalent. The weakest function is
a constant function which does not distinguish any knot at all, while the strongest function
can distinguish all different knots. Ideally, we want to construct the latter function. But for
practical applications, the function should also be algorithmically computable (efficiently or
not). With this restriction, one wish to construct a function as strong as possible in terms
of distinguishing different knots. We call any such function an invariant of knots. One of
the most well known knot invariants is the Jones polynomial.

Let A be an indeterminate and let Z[A,A−1] be the ring of Laurent polynomials over the
integers. So elements of Z[A,A−1] are of the form

+∞∑

n=−∞

anA
n, an ∈ Z, an = 0 for all but finitely many n ′s. (162)

Define d := −A2 − A−2.
For a knot or rather a knot diagram K, we define its bracket polynomial 〈K〉 ∈ Z[A,A−1]

as follows. If K is a disjoint union of k unknots and any one of them is not linked with the
rest, then 〈K〉 := dk. Such a K is called an unlink. In general, we define 〈K〉 with the so
called skein relation as shown in Figure 64. The three knot diagrams involved in the equation
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〈 〉
=

〈 〉
A−1 +

〈 〉
A

Figure 65: An equivalent skein relation.

〈 〉
=

〈 〉
A +

〈 〉
A−1

=

〈 〉
A2 +

〈 〉

+

〈 〉
+

〈 〉
A−2

= A2d2 + d+ d+A−2d2

Figure 66: Computing the bracket polynomial for the Hopf link.

of that figure are interpreted as follows. They differ only locally in the portion that is drawn
in the figure and are exactly the same elsewhere. From the skein relation, one can also derive
an equivalent one as shown in Figure 65 by rotating the original one by 90 degrees. Since
the knot diagrams on the RHS have one crossing fewer that the one on the LHS, by applying
the skein relation recursively at all crossings, one can write 〈K〉 in the form

〈K〉 =
∑

i

Ani〈Ki〉, (163)

where each Ki is an unlink. Since the bracket polynomial for unlinks is defined, the skein
relation defines the bracket polynomial for all knot diagrams. See Figure 66 for an illustration
of computing the bracket polynomial for the Hopf link.

It can be checked that the bracket polynomial is invariant under Reidemeister moves
of type II and III (see Figure 67). But it is not invariant under Reidemeister moves of
type I. Specifically,there are two cases of type-I move corresponding to a positive crossing
and a negative crossing (see Figure 68). By Performing a type-I move of the first case,
namely twisting a segment of the knot diagram to the one on the left in Figure 68, the
bracket polynomial obtains a factor of −A3. Similarly by performing a type-I move of the
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⇐⇒ ⇐⇒

Figure 67: Reidemeister move of type II (Left) and type III (Right)

⇐⇒ ⇐⇒

Figure 68: Reidemeister move of type I

second case, the bracket polynomial obtains a factor of −A−3. It is possible to normalize the
bracket polynomial so that it becomes invariant under type-I moves as well. To introduce the
normalization, we have to orient each component of the knot. That is, we need to consider
oriented knots. For each crossing c of the knot, define ω(c) to be 1 if the strand going under
the crossing crosses the other strand from right to left, and define it to be −1 otherwise. See
Figure 69. The crossing c is called positive if ω(c) = 1, and negative if ω(c) = −1. Define
ω(K) to be the sum of ω(c) over all crossings c. Then we define

J(K;A) := (−A3)−ω(K)〈K〉. (164)

J(K;A) is invariant under all three types of Reidemeister moves and hence is an invariant
of oriented knots. Note however that if K consists of only one component, then ω(K) actually
does not depend on its orientation. Indeed, simultaneously reversing the arrows of all strands
does not change ω(c). Therefore, J(K;A) is defined for unoriented knots with one component
and for oriented knots for arbitrary number of components. We also introduce a new variable
q := A−4 and let J ′(K; q) := J(K;A). Then J ′(K; q) is the well known Jones polynomial
(up to a normalization factor independent of K).

Now we specialize to the case where A is a root of unity. Then J ′(K; q) becomes a complex
number and it equals 〈K〉 up to a phase. Hence we also call the latter the evaluation of the
Jones polynomial at q. Note that 〈K〉 is defined for unoriented knots.

Figure 69: (Left) a positive crossing; (Right) a negative crossing.
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By the results in [19], if q = e
2πi
r , then evaluating J ′(K; q) is #P -hard if r 6= 1, 2, 3, 4, 6.

What about the complexity on a quantum computer? We will address this problem below.

10.2 SU(2)k

For each positive integer k, there is an anyon system denoted by SU(2)k. Strictly speaking,
there are two versions of SU(2)k, one corresponding to the Wess-Zumino-Witten conformal
field theory and the other corresponding to the Kauffman-Jones theory. These two theories
are similar and many people do not distinguish them, but they are different in subtle ways.
Nonetheless, these subtleties will not matter much to us, and below we give the data for the

Kauffman-Jones version. Let A = ie−
2πi

4(k+2) , d = −A2 − A−2, and q = A−4. As a UMTC,
part of the data for SU(2)k is given as follows.

• Label set: L = {0, 1, 2, · · · , k}; x̄ = x.

• Fusion rules: N c
ab = 1 if and only if

|a− b| ≤ c ≤ |a+ b|, (165)

a+ b+ c even and ≤ 2k. (166)

• Quantum dimension: d0 = 1, d1 = d, di = ddi−1 − di−2.

• R-symbols:

Rab
c = (−1)

a+b+c
2 A

c(c+2)−a(a+2)−b(b+2)
2 . (167)

In this theory, the vacuum is 1 = 0 and all types of anyons are self dual. Some examples of
fusion rules and R-symbols are as follows.

1⊗ 1 = 0⊕ 2, if k ≥ 2 (168)

R11
0 = −A−3, R11

2 = A. (169)

The F -symbols, S- and T -matrices are omitted since they will not be used here. We will
only use the fact that for any a ∈ L, F aaa

a;00 = d−1
a > 03.

Recall that we have introduced the notations in Figure 70. In the theory SU(2)k, since
a = ā and φa = (F aaa

a;00)−1 > 0, the arrows in the figure do not make a difference and hence
we will simply drop the arrows. Moreover, we adopt the notation that an edge without an
label means the label is 1. Hence we have the equality as shown in Figure 71. An unknotted
circle (with arbitrarily deformed shape) has evaluation equal to d. Also note that we have
a decomposition of the identity process on a ⊗ b. See Figure 72. To verify the identity,
precompose the splitting channel φabc with the channel on either side of the equality.

Now consider the following process. Create n pairs of anyons all of which have type 1,
arbitrarily braid these anyons, and finally fuse the n pairs back to vacuum. See Figure 73

3The property actually only holds in the Kauffman-Jones version, but not in the WZW CFT; this is also
the original of subtle differences between the two theories.
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Figure 70: Some notations

=
√
d =

√
d

Figure 71: The edges are implicitly assumed to labeled by 1.

for an illustration. Denote the state before braiding by |0〉 ∈ V 1⊗2n

0 , the braid diagram
implementing the braiding by σ, and the knot diagram representing the whole process by σ̂.
Also, denote by U(σ) the action of σ on the space V 1⊗2n

0 . U(σ) is a quantum circuit that we
can realize via braiding. Then the amplitude corresponding to σ̂ is given by dn〈0|U(σ)|0〉.
The factor dn comes from the notation in Figure 71.

On the other hand, we show another way of computing the amplitude. At each crossing of
the knot diagram, perform the procedure shown in Figure 74. This means that the amplitude
of a knot diagram satisfies the skein relation. Combining with the fact that an unknotted
circle has evaluation d, we obtain the conclusion that the amplitude of a knot is exactly
equal to its bracket polynomial with A taken to be the specific root of unity mentioned at
the beginning the subsection. Hence we have the equality:

〈0|U(σ)|0〉 =
J(σ̂;A)

dn
(−A)3ω(σ̂). (170)

Therefore we have an efficient quantum circuit to approximate |J(σ̂;A)
dn
|2. Specifically, we

initialize the system at the state |0〉, braid the anyons according to the braid σ, and finally
fuse all anyons pair by pair back to vacuum. Each run of the circuit returns a random
variable Z(σ) which takes the value 1 if the fusion results in the state |0〉 and the value 0

otherwise. The expectation value of Z(σ) is hence |J(σ̂;A)
dn
|2. Given a precision δ, it suffices

to run the circuit O(poly(1
δ
)) times to get a good approximation.

Furthermore, it is a theorem of [12] that for k 6= 1, 2, 4, the braiding of 2n anyons of type
1 generate a dense subgroup of U(V 1⊗2n

0 ). The following theorem is proved in a number of

a b

=
∑
c
N c

ab

a b

c

a b

Figure 72: Decomposition of the identity channel on a⊗ b.
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√
d
n|0〉

√
d
n
U(σ)|0〉

Figure 73: A quantum circuit.

= + 2 = −A−3 + A 2

= A + A−1d = A + A−1

Figure 74: A derivation of the skein relation.

references, such as in [11, 1], et. al.

Theorem 10.1. Approximating |J(K; ie−
2πi

4(k+2) )| is BQP -complete for k 6= 1, 2, 4.

A Appendix

A.1 Homework 1

1. (Logical operators in toric code.) In class, we studied string operators SZ(t) and SX(t′)
where t and t′ are strings in the lattice and dual lattice, respectively. By definition, SZ(t)
acts by Pauli Z on each edge of t and by identity on other edges. Similarly, SX(t′) acts by
Pauli X on each edge crossed by t′ and by identity otherwise. Now we consider the case
where both t and t′ are closed strings (paths). See Figure 75. Let Vgs be the ground state
space.

• Show that SZ(t) and SX(t′) preserve Vgs for arbitrary closed strings t and t′. Moreover,
show that the action of these operators on Vgs only depends on the isotopy class of the
strings. In particular, this means if a closed string is contractible, the corresponding
string operator acts by identity on ground states.

• By the previous result, there are four string operators of Z-type which are
{SZ(∅), SZ(m), SZ(l), SZ(m ∪ l)}, where ∅ is the empty string or any contractible
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m′

l′

m

l

Figure 75: closed strings in the lattice and dual lattice

string, m is a loop along the horizontal direction, and l is a loop along the verti-
cal direction. (See Figure 75). Similarly, there are four string operators of X-type,
{SZ(∅), SX(m′), SX(l′), SX(m′ ∪ l′)}. See Figure 75. Let

Ẑ1 = SZ(m), Ẑ2 = SZ(l),

X̂1 = SX(l′), X̂2 = SX(m′).

Show that on the ground states the communication relations between the operators
{Ẑ1, Ẑ2, X̂1, X̂2} behave like the usual Pauli operators on two qubits {Z1, Z2, X1, X2}.
These operators are the logical operators.

• (optional) Show that the space of logical operators, i.e., those preserving Vgs, is gener-

ated as an algebra by {Ẑ1, Ẑ2, X̂1, X̂2}. (Hint: the space of all operators on a physical
qubit has a basis given by {Id,X, Z,XZ}.)

2. (Vgs is an error correcting code.) Let the square lattice L in the definition of toric code
have size L× L, namely, there are L edges in the shortest non-contractible loop both along
the horizontal direction and along the vertical direction. Let

P :=
∏

v∈V

Id+ Av
2

∏

p∈F

Id+Bp

2
.

Namely, P is the projector onto the ground space Vgs. Let O be any operator acting on less
than L qubits, namely, O acts non-trivially on at most L− 1 qubits (edges). Show that

POP = αOP, (171)

for some scalar αO. By Theorem Theorem 10.1 of [16], Vgs is an error correcting code which
corrects errors on arbitrary bL−1

2
c qubits. (Hint: it suffices to show Equation 171 for a basis

of the space of operators acting on at most L− 1 qubits. A basis for this space is given by
{∏

e∈E

Pe : Pe ∈ {Id,X, Z,XZ}, and at most L− 1 P ′es are not trivial

}
.
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t

e e

t′

e e

Figure 76: A pair of electric charges before the braiding (Left) and after the braiding (Right).

Any basis element is collection of string operators. )

3. (Braiding statistics of quasi-particles in toric code.) In class, we have shown that there
are four types of quasi-particles, the vacuum 1, the electric charge e, the magnetic charge
m, and the composite em of an electric charge with a magnetic charge. Consider a pair of
electric charges e, (See Figure 76, where the background lattice and dual lattice are ignored.),
denote the state of such configuration by

|ψin〉 = SZ(t)|E〉,

where |E〉 is some ground state. If we swap the two particles in counterclockwise direction,
then the state becomes

|ψfi〉 = SZ(t′)|E〉.

But since, t and t′ can be deformed to each other, we have |ψin〉 = |ψfi〉. Hence the electric
charge e is a boson. Similarly, the magnatic charge m is also a boson. However, show that
the composite em is a fermion.

A.2 Homework 2

Choose n problems, 2 ≤ n ≤ 5.

1. (Single-particle excitation on a torus) Single-particle state can not exist on the sphere,
but it can on a surface with non-trivial topology. Consider a square lattice on the torus (See
Figure 77), where the edges on the top are identified with those on the bottom and the edges
on the left are identified with those on the right. All horizontal edges are oriented to the
right and all vertical edges are oriented upwards. Let G be a finite group and let a, b ∈ G
be two group elements which do not commute. (obviously, this is only possible if G is not
Abelian.) Let r := abāb̄. Then r is not the identity element. Recall that on each edge lives a
Hilbert space with the basis {|g〉 : g ∈ G} and the total Hilbert space is the tensor product
of the Hilbert spaces on all edges. Let |ψ〉 be the basis state in the total Hilbert space whose
value at each edge is shown in Figure 77, where any edge without a label on it means the
label is the identity element e. Namely, the five horizontal edges on the far right are each
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Figure 77: A lattice on the torus.

labeled by a, the five vertical edges on the top are each labeled by b, and all other edges are
labeled by e. Define

|ψa,b〉 :=
∏

v∈V

A(v)|ψ〉. (172)

• By definition, |ψa,b〉 is stabilized by all A(v) ′s. Let p0 be the plaquette on the top right
corner of the lattice. Show that

B(p)|ψa,b〉 = |ψa,b〉, ∀p 6= p0, (173)

B(p0)|ψa,b〉 = 0. (174)

Thus |ψa,b〉 is a state which violates only one constraint. (By the way, it should be
clear, and also important, that |ψa,b〉 is not the zero vector.)

• Let C be the conjugacy class containing r. Let v0 be a vertex on the boundary of p0

and s0 = (v0, p0) be a site (See Figure 77). For each c ∈ C, define

|c〉 := Bc(s0)|ψa,b〉, (175)

and let V = span{|c〉 : c ∈ C}. Show that the states {|c〉 : c ∈ C} form a basis of V .

• It is not hard to see that any state in V is stabilized by all A(v) and B(p) for which
v 6= v0, p 6= p0. (Verify the statement if you are not comfortable with it.) What is
the action of the operators Ag(s0) and Bh(s0) on V ? Write it out under the basis
{|c〉 : c ∈ C}. Conclude which irrep V corresponds to. A state in V represents an
excitation on the single site s0.

2. (Local operators interpreted as ribbon operators.) Let s = (v, p) be any site on a lattice.
We show the local operators Ag(s) and Bh(s), h, g ∈ G can be interpreted as ribbon operators
for certain ribbons. We start with Bh(s). Let ts be a ribbon contained in the plaquette p,
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Figure 78: (Left) a closed ribbon ts; (Right) a closed ribbon τs

starting and ending both at s. See Figure 78(Left). It consists of four triangles of type-II
(direct triangles) t1, t2, t3, t4, and is directed in the order the triangles are listed. Assume
the edges on the boundary of p are directed as shown in Figure 78(Left) and a basis state
|x1, x2, x3, x4〉 is given. Then

F (h,g)(ti)|xi〉 = δg,xi |xi〉. (176)

By the inductive formula for ribbon operators

F (h,g)(t1t2) :=
∑

k∈G

F (h,k)(t1)F (k̄hk,k̄g)(t2), (177)

we have

F (h,g)(t1t2)|x1, x2〉 =
∑

k∈G

F (h,k)(t1)|x1〉 ⊗ F (k̄hk,k̄g)(t2)|x2〉

=
∑

k∈G

δk,x1δk̄g,x2|x1, x2〉

= δg,x1x2|x1, x2〉. (178)

Inductively, it is not hard to see that

F (h,g)(ts)|x1, x2, x3, x4〉 = δg,x1x2x3x4|x1, x2, x3, x4〉 = Bg(s). (179)

Similarly, let τs be a ribbon around the vertex v, starting and ending at s. It has four
triangles of type-I (dual triangles) τ1, τ2, τ3, τ4, and is also directed in the order the triangles
are listed. See Figure 78(Right). Prove that

F (h,g)(τs) = δg,eAh(s). (180)

Note that Ah(s) actually only depends on v, hence the ribbon operator F (h,g)(τs) does not
depend on the choice of the initial site.

3. (Excitation types can be locally measured.) We know that an excitation in general
occupies a site s = (v, p) and the types of excitations are in one-to-one correspondence with

73



irreps of DG. Recall that the irreps Irr(DG) are characterized by the pairs (C, χ), where
C is a conjugacy class with a pre-selected element r ∈ C and χ is an irrep of Z(r), the
centralizer of r. For each c ∈ C, arbitrarily choose qc ∈ G such that qcrq̄c = c. See Lecture
note 3 for more details and conventions. Also recall that DG acts on the total Hilbert space
by the local operators D(s). We wish to find a set of elements

{P(C,χ) ∈ DG : (C, χ) ∈ Irr(DG)} (181)

which satisfy the following properties.

P(C,χ)P(C′,χ′) = δC,C′δχ,χ′ , (182)
∑

(C,χ)∈Irr(DG)

P(C,χ) = 1, (183)

P(C,χ) acts on V(C,χ) by δC,C′δχ,χ′ . (184)

If we have such a set of elements, then their corresponding operators {P(C,χ)(s)} in D(s)
form a complete set of orthogonal projectors and hence can be used to construct a measure-
ment. Moreover, the projector P(C,χ)(s) precisely projects states to the irrep V(C,χ). Verify
Equation 185 gives the desired elements.

P(C,χ) :=
|χ|
Z(r)

∑

c∈C

∑

z∈Z(r)

Tr(χ(z))BcAqczq̄c . (185)

4. (Non-Abelian Aharonov-Bohm effect.) We consider two special types of excitations. An
anyon of type (C,1) is called a magnetic charge and an anyon of type ({e}, χ) is called an
electric charge, where 1 means the trivial irrep of the corresponding centralizer and {e} is
the conjugacy class containing only the identity element. In the latter case, χ is an irrep of
G. For a magnetic charge (C,1), a basis for the irrep is given by

{|c〉 : c ∈ C}, (186)

and the action of the double DG is

Ag|c〉 = |gcḡ〉
Bh|c〉 = δh,c|c〉. (187)

For an electric charge ({e}, χ), a basis for the irrep is given by

{|j〉 : j = 1, · · · , |χ|}, (188)

and the action is

Ag|j〉 = χ(g)|j〉
Bh|j〉 = δh,e|j〉. (189)

74



α β α β

Figure 79: (Left) Swap of α and β in counterclockwise direction. (Right) Drag α around β
in counterclockwise direction. This is equivalent to two counterclockwise swaps.

Note that the actions above can all be derived from the general formula on irreps of DG. If
we swap an anyon of type α with an anyon of type β in the counterclockwise direction (see
Figure 79 (Left)), then this induces the transformation cα,β given by:

α⊗ β R−→ α⊗ β Flip−→ β ⊗ α, (190)

where R =
∑
g

Ag ⊗Bg, and the first factor of R acts on α and the second factor acts on β.

• If α = ({e}, χ), β = (C,1), a basis for α⊗ β and β ⊗ α are given, respectively, by

{|j, c〉 : j = 1, · · · , |χ|, c ∈ C} and {|c, j〉 : j = 1, · · · , |χ|, c ∈ C}. (191)

Write out the transformation cα,β under the bases above. Do the same for cβ,α. Swap-
ping α and β followed by another swap of β and α is the same as dragging α along
some closed path around β (see Figure 79 (Right)). The net result is a unitary trans-
formation on α⊗ β given by

α⊗ β cα,β−→ β ⊗ α cβ,α−→ α⊗ β. (192)

If you have worked out cα,β and cβ,α, then you will see that

cβ,α ◦ cα,β|j, c〉 = χ(c)|j〉 ⊗ |c〉. (193)

This is the non-Abelian Aharonov-Bohm effect for anyons.

• Work out the formula for cβ,α ◦ cα,β in Case I where α, β are two magnetic charges and
in Case II where α, β are two electric charges.

5. (Quantum double model for Z2.) The quantum double based on G = Z2 = {0, 1} recovers
the toric code. In this case, at each edge in the lattice lives a qubit with the standard basis
{|0〉, |1〉}. There is no need to orient the edges since all group elements are their own inverse
and the group is Abelian. Let X and Z be the Pauli matrices.

• Work out the formula for the vertex operator A(v) and plaquette operator B(p). These
will not be exactly the same as the ones defined originally in toric code, but only differ
in a simple way. The two Hamiltonians are equivalent, up to an energy shift.
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Figure 80: The action of F (i,j)(τ) for two types of triangles.
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Figure 81: A general ribbon t

• Let’s look at ribbon operators. Let (i, j) ∈ Z2 × Z2 be a pair of group elements. If t
is a type-I triangle(resp. type-II triangle) (see Figure 80), then F (i,j)(t) acts as δj,0X

i

(resp. |j〉〈j|) on the corresponding edge. The inductive formula for spliting ribbons is
given by

F (i,j)(t1t2) :=
∑

k∈Z2

F (i,k)(t1)F (i,j+k)(t2). (194)

Note that arithmetic is performed modulo 2. Work out an explicit expression for the
ribbon operator F (i,j)(t) where t is shown in Figure 81. (I already gave the formula in
class for a general G.)

• To continue, we need to study irreps of DZ2. Each element of Z2 represents a conjugacy
class, and the centralizer is always Z2 itself since the group is Abelian. An irrep of Z2

is 1-dimensional and is given by a group element, 0 or 1, corresponding to the trivial
and non-trivial irrep. To avoid confusion, let’s denote them by [0] and [1]. The [0] irrep
maps everything to 1 and the [1] irrep maps a group element i to (−1)i. Therefore,
irreps of DZ2 correspond to

{(i, [j]) : i, j ∈ Z2}. (195)

All of them are 1-dimensional. Show that the matrix element of D(k,l) = BkAl in the
irrep (i, [j]) is given by

Γ
(i,[j])
11 (D(k,l)) = δk,i(−1)jl. (196)

• In general case, the ribbon operator in the representation basis is given by

F (C,χ;u,u′)(t) =
|(C, χ)|
|G|

∑

h,g

Γ
(C,χ)
u,u′

(
D(h,g)

)
F (h,g)(t). (197)
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In our case, this formula can be simplified as

F (i,[j])(t) =
1

2

1∑

l=0

(−1)jlF (i,l)(t). (198)

What is the explicit formula of F (i,[j])(t) for the ribbon t in Figure 81? You will recover
the string operators.
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