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Abstract Harnessing non-abelian statistics of anyons to perform quantum compu-
tational tasks is getting closer to reality. While the existence of universal anyons
by braiding alone such as the Fibonacci anyon is theoretically a possibility, acces-
sible anyons with current technology all belong to a class that is called weakly
integral—anyons whose squared quantum dimensions are integers. We analyze the
computational power of the first non-abelian anyon system with only integral quan-
tum dimensions—D(S3), the quantum double of S3. Since all anyons in D(S3) have
finite images of braid group representations, they cannot be universal for quantum
computation by braiding alone. Based on our knowledge of the images of the braid
group representations, we set up three qutrit computational models. Supplementing
braidings with some measurements and ancillary states, we find a universal gate set
for each model.
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1 Introduction

Harnessing non-abelian statistics of anyons to perform quantum computational tasks is
getting closer to reality. While the existence of universal anyons by braiding alone such
as the Fibonacci anyon is theoretically a possibility [15,19], accessible anyons with
current technology all belong to a class that is called weakly integral (WI)—anyons
whose squared quantum dimensions are integers. A famous WI anyon is the Ising
anyon o with d, = +/2, which is believed to model the non-abelian quasi-particle in
the fractional quantum Hall liquids at v = % [17]. Other WI anyons with Property
F [16] include the metaplectic anyons [6,7] and those in quantum double of finite
groups [5]. Certain topological defects or ends of 1D nanowires also behave as WI
anyons [2,10]. It is conjectured that all WI anyons have finite images of braid group
representations [16], if so then they cannot be universal for quantum computation by
braiding alone.

In this paper, we analyze the computational power of the anyon system D (S3)—the
quantum double of S3. D(S3) is the first non-abelian anyon system with only integral
quantum dimensions [4]. There are 8 anyon types in the theory, which are denoted by
A,B,C,D,E, F, G, H asin [3] with quantum dimensions {1, 1, 2, 3, 3,2, 2, 2}. Itis
known that all braid images are finite [5]. It follows that to obtain a universal quantum
gate set, we have to go beyond braiding. The natural extra resources are measurements
and ancillary states. Using measurement to gain extra computational power is tricky
because universal quantum computation can be performed by measurement alone.
Similar caution applies to ancillary states as cluster state quantum computation shows.
Therefore, we have to be careful in choosing physically reasonable extra resources
from measurements and ancillary states.

In [9] (see also [13]), the anyon of quantum dimension dp = 3, denoted as D,
is made universal for quantum computation by encoding a qutrit in the A, C fusion
channels of a pair of D anyons. In the usual anyonic quantum computing model,
two fusion channels such as A, C of a pair of D anyons would be used to encode a
qubit instead of a qutrit, but the authors split the single fusion channel C into a two-
dimensional internal computational space because the anyon C is the two-dimensional
representation of S3. Since D(S3) is a discrete gauge theory, this encoding is justified
on physical ground and computation is performed using only the color (topological)
degrees of freedom of anyons. Universality based on similar encodings for other finite
groups is established in [14,18]. In this paper, we follow the usual scheme in anyonic
quantum computation by encoding information in the subspace of anyonic fusion
tree basis without splitting any fusion channels, i.e., the computational subspace is
spanned by basis elements from labeling a single fusion tree. Since two pairs of D
anyons has 9 fusion channels, we have many choices of encoding a qutrit by choosing
a three-dimensional fusion subspace. Based on our analysis of the representations of
the braid groups, we propose three different encodings of qutrits: one with 3 fusion
tree bases, and two with superpositions of fusion tree bases. It is possible, as suggested
by Kitaev to the third author, that the splitting of the fusion channel C as in [9] can be
understood as a non-local encoding using superpositions of different fusion trees. Note
that in the encoding in [9], there is a bureau of standards, which is mathematically a
based frame.

@ Springer



Universal quantum computation with weakly integral anyons 2689

The contents of the paper is as follows. In Sect. 2, we provide the detail of our
adaptive anyonic quantum computing models and prove that a qutrit gate set conve-
nient for our purpose is universal. There are three natural choices in our setup that
are called U-model, V-model and W-model, respectively. We also define the mea-
surements and ancillary states that we are going to use later. In Sect. 3, we prove
that the U- and V-models are universal when braidings are supplemented by the two
measurements defined in Sect. 2, and the W-model needs the extra ancillary state to
become universal. Our major technical advance is organized into two appendices. We
obtained complete solutions of all modular categories with the same fusion rules as
D(S3). But to save space, we list in “Appendix 1” only the complete data for the cat-
egory D(S3). For this paper, any other theory will work equally well. The complete
list of data in “Appendix 1” is used in “Appendix 2” to analyze the images of the
braid group representations of Bs. We give complete information of the finite images
as abstract groups and as concretes matrices with respect to the computational bases
of our models. These matrices are braiding quantum circuits of our models. Many
interesting finite groups such as the Hessian group of order 216 appeared as images
of braid group representations.

2 Adaptive anyonic quantum computing model

A pure anyonic quantum computing model as illustrated by Fig. 7.1 in [21] is to
implement a circuit by braiding alone. Measurement is only done in the end by fus-
ing anyons together. In particular, we are not allowed to do measurements in the
middle of the computation. Unlike the standard circuit model, a computation with
measurements during the computing process is not always equivalent to one that all
measurements are postponed to the end of the computation. Since WI anyons pro-
vide only very limited circuits by braiding alone, we have to rely on other resources
to obtain a universal gate set. The obvious places to look for are measurements in
the middle of the computation and ancillary states. Since measurements of anyon
charges beyond fusing two anyons are subtle, we want to do as little measure-
ment as possible so that we do not decohere or leak the protected information in
the computational subspace. In this section, we use D(S3) to illustrate such adap-
tive models that braiding gates are supplemented with measurements and ancillary
states. Our goal is to find minimal extra resources beyond braidings to obtain a
universal gate set. Therefore, though important for physically realizing the extra
resources, we will not justify our choices of measurements or ancillary states phys-
ically. Another important issue that we did not address is the issue of leakage. We
think there is no damaging leakage in our model, but will leave a careful analysis to
the future.

2.1 The integral anyon system D(S3)

The irreducible representations (irreps) of the quantum group D(S3), called the Drin-
feld double or quantum double of Sz, correspond to pairs (C, p,), where C is a
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conjugacy class of &3, u an element in C and p, an irrep of the centralizer of u in
S3. For a fixed conjugacy class C, the corresponding irreps of D(S3) do not depend
on the choice of the element u. There are three conjugacy classes of &3, namely
Ci ={e}, Cr, ={(12), (23), (13)}, C3 = {(123), (132)}. For C}, the centralizer of ¢
is Sz, which has three irreps, i.e., the trivial one, the sign one and the two-dimensional
one. We denote them by A, B and C, respectively. For C,, we pick (12) and its cen-
tralizer is isomorphic to Z,, which has two irreps. We denote the trivial one by D
and the other one by E. For C3, the centralizer of (123) is isomorphic to Z3, which
has three irreps, all of which are one-dimensional. More precisely, they correspond
to mapping the generator of Z3 to 1, = e = —% + @ and w?. We denote
these three irreps by F, G and H, respectively. Therefore, there are in total 8 irreps
of D(S3). As a unitary modular category, Rep(D(S3)) has 8 isomorphism classes
of simple objects. Since simple objects in unitary modular categories model anyons,
we also call them anyon types. The 8 anyon types were denoted by A, B, C, D, E,
F, G and H. In the discrete gauge theory, an anyon of type A is called the vacuum;
anyons of types B and C are purely electric charges; anyons of types D and F are
purely magnetic fluxes; while anyons of types £, G and H are dyons. We will not
always distinguish between anyon types (isomorphism classes of simple objects) and
anyons (simple objects) carefully because for D(S3) this distinction will not make any
difference. Detailed explanations of the quantum double of S3 can be found in many
references, e.g., [3,11].

We list the irreps of D(S3) and their quantum dimensions in Table 1 and the fusion
rules in Table 2.

Table 1 D(S3)

Flux (conjugacy class) Centralizer Charge qdim
C1 = {e} Z(e) =83 1,-1,2 1,1,2
Cr ={(12), (13), (23)} Z((12)) = Zp = {e, (12)} +, - 3,3

C3 ={(123), (132)} Z((123)) = Z3 = {e, (123), (132)} Lo o 2,2,2

Table 2 Fusion rules of D(S3)

® A B C D E F G H

A A B C D E F G H

B B A C E D F G H

C C C A®BaeC DOE DOE GOH FOH FoG

D D E D®E AGCOF®GOH BOCOFO®GOH DOE DOE DOE

E E D D®E BOCOFOGOH AGCOFOGOH DOE DOE DOE

F F F G&H DOE DOE AGBOF H®C GocC

G G G FoH DOE DOE HoC AGB®G FoC

H H H F&G DOE DOE GoeC FecC AGBOH
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The modular representation of SL(2, Z) is given by:

T =diag(1,1,1, -1, 1, 1, w, 0?).
1 1 2 3 3 2 2 2
1 1 2 -3 -3 2 2 2
2 2 4 0 0 -2 -2 -2
g_1]3 3 0 3 -3 0 0 0
“6l3 -3 0 -3 3 0 0 0
2 2 -2 0 0 4 -2 =2
2 2 -2 0 0 -2 -2 4
2 2 -2 0 0 -2 4 =2

2.2 Fusion tree basis

An anyon c can split into a pair of anyons (a, b) if the triple (a, b, ¢) is admissible
[21]. We denote this process by

c

The anyon a can continue to split into another pair of anyons. Consider the following
splitting tree:

d

There is a Hilbert space V;bc for the 4 anyons a, b, ¢, d, where the labeled splitting
trees with choices of anyon m that make the splitting tree admissible at each trivalent
vertex form a basis of V;’b’c. We imagine the splitting process as going from the bottom
to the top and then the fusing process going from the top to the bottom. Therefore, we
will often also refer to a splitting tree as a fusion tree.

We also have another splitting tree.

a b c
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The labeled fusion trees provide another basis for the same Hilbert space Vd"b".
Hence, there is a transformation matrix F that relates these two bases, which is called
an F-matrix.

a b c a b c
m => g
d d

Assume that the fusion tree on the left-hand side of the above equation is the j,,-th
basis element and the fusion tree on the right-hand side is the i,-th basis element in
the other basis. Then F ;acm will denote the (iy,, ji,)-entry of F;bc when the theory has

no multiplicities in the fusion rules such as D(S3). The numerical values F;,% are
called 6j symbols. In the following, we always assume that there are no multiplicities
in the fusion rules, i.e., the fusion coefficients are either O or 1. The matrices Fjb ¢ can

be chosen to be unitary for a unitary theory.

Remark 1 For the case of D(S3), recall that the eight anyon types are denoted by
A, B, C, D, E, F, G; and H. For some reason, we order the basis elements in
the order A, B, G, D, E, F, C, andH. This is the order we use to compute the
F-matrices in “Appendix 1.” For example, the basis for the following fusion tree is
{A, G, F, C, H}.

D D D

D

The Hilbert space Vcab associated with the following splitting tree is one-
dimensional.

Braiding the two anyons a, b corresponds to a unitary transformation ng from
V4 to vbe, The image of the fusion tree basis of V.%” under BZ” is a scalar multiple
of the chosen fusion tree basis of Vcb". This scalar is denoted by Ri’“, which is called
the R-symbol.
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b\

a b =Rk

a b a

The 6j-symbols and R-symbols are the data needed to compute the amplitudes
of creating anyons from the vacuum, braiding some of them and then fusing them
back to the vacuum. The approximation of these probabilities for such processes is the
output of anyonic quantum computational models. Similar orthonormal basis exists
for any Hilbert space V)fb"'c. Protected information is encoded into some subspaces
of Vx“b ¢ which are called computational subspaces. There are no canonical choices
of computational subspaces.

2.3 Encoding of qudits
Consider the following fusion tree:

m m m m

z

Namely, we start with an anyon of type z and split it into 4 anyons, all of which
have the same anyon type m. All the pairs of (x, y) that make the above splitting
tree admissible form a natural basis of V"""  We denote them by {|x, y; m, z)}.
When there is no confusion, we will use the abbreviation |xy) for |x, y; m, z). We
use this basis of the Hilbert space V""" or linear combinations of some of them
as our computational basis for a 1-qudit. For a particular theory, this Hilbert space
is not big enough for all qudits, but usually we are only interested in a qubit or a
qutrit.

To carry out computation, we can braid the first anyon m with the second, the
second with the third and the third with the fourth anyon. Each of them corresponds to
aunitary transformation on V""" ‘which we denote by o1, 07 and o3, respectively.
Moreover, they satisfy the relation:

010201 = 020102, 020302 = 030203, 0103 = 030].
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2694 S. X. Cui et al.

This is just the relation that defines the braid group 34 on three generators. So we
obtain a unitary representation of B4 on V""" which we denoted by p(m, z). The
computational power of the theory depends on the image of p(m, z) in the special
unitary group SU(V"™™).

Definition 1 Given V""" we will call the unitary representation matrices U (b) for
braids b the braiding quantum circuits. The special braiding circuits U (al.i) for the
+

braid generators o;~ will be called the braiding gates.

The same terminologies are extended to multi-anyons for multi-qudits.

Since our computational space is always a subspace of the braid group represen-
tation, the quantum circuits obtained from braiding quantum circuits are really their
restrictions to the computational subspace. We will not make this distinction when no
confusion will arise.

Now we specialize to D(S3). In order to compute the braiding matrices, we
need all the 6j-symbols and R-symbols. For D(S3), all of them are listed in
“Appendix 1.” To analyze the computational power of 1-qudit braiding circuits, we
need all the representation matrices of Bs. We systematically analyzed all B4 rep-
resentations in “Appendix 2.” These two important appendices are our technical
advance.

The natural choice will be to encode a qudit in V ??P?_ Unfortunately, we did not
succeed in finding a model that could be made universal even with measurements and
ancillary states. Therefore, we turn to VGD DDD paged on our knowledge of the braid
group representations:

D D D D

G

The space VPPPP is nine-dimensional with a basis {|{GG), |AG), |GA), |FC),
ICF),|FH),|HF),|CH), |HC)}.LetU =span{|GG), |[AG), |GA)}, V=span{ﬁ
(|FC)+I|CF)), %(IFHHICH)), %(IHFHIHC))}andW=span{¢%(|FC>—
|CF)), \L@(|CH) —|FH)), \%(|HF) —|HC))}. Toremind ourselves that these bases

are used as computational basis, we also write them as {|0), |[1)x, |2)x,}, x =
U, V, W, where the subscript x indicates which subspace we are referring to, e.g.,
|0)y = |GG). The representation of By splits into the direct sum of a 6-dim irreducible
summand U @ V and a 3-dim irreducible summand W.

To encode 2-qutrits, we consider the following fusion tree:
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D D D D D D D D

The 2-qutrits are the tensor product of the two qutrits on the two branches. This
encoding of 2-qutrits is called the sparse encoding because encoding with fewer
anyons, called the dense encoding, is also possible. To encode n-qutrits, we sim-
ply use the tensor product of n such branches, so there are totally 4n anyons. See
Fig. 1.

We will refer to the three qutrit models that encode 1-qutrit in the subspaces U,
V and W, respectively, with the computational bases above as the qutrit U-model,
V-model and W-model, respectively.

To analyze these models, we systematically investigate all relevant braid group
representations in “Appendix 2.” Our results are summarized below in Tables 3 and 4.

Table 3 list of the dimensions and bases of V""" and Table 4 the basic prop-
erties of the representations p(m, z). In Table 4, for each pair of anyons (m, z), the
corresponding row lists the dimension of the representation V""" the dimension
of each irreducible subrepresentation in V""" and the image of the braid group on
each irreducible subrepresentation.

Note that the group of order 648 in the last row of Table 4 is isomorphic, as an
abstract group, to (((Z3 x ((Z3 x Z3) X Z3)) X Z3) X Z3) X Z3. This isomorphism
is given by the software package GAP.

Fig. 1 Encoding of n qutrits D DD D D DD D D DD D

G G
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2696 S. X. Cui et al.

Table 3 Dimension and basis of V"""

m,z Dimension Basis

C,A 3 |AA), |BB),|CC)

C,B 3 |CC), |AB), |BA)

C,C 5 |CC), |AC), |CA), |BC),|CB)

D, A 5 |AA), |CC), |FF),|GG),|HH)

D, B 4 |CC), |FF),|GG), |HH)

D,C 9 |CC),|AC), |CA),|GF),|FG),|GH),|HG),|FH), |HF)
D, F 9 |FF),|AF),|FA),|GC),|CG),|GH),|HG),|CH), |HC)
D, G 9 |GG), |AG),|GA), |FC),|CF),|FH),|HF),|CH),|HC)
D, H 9 |HH),|AH),|HA), |GF),|FG),|GC),|CG), |FC), |CF)
G, A 3 |AA), |BB),|GG)

G, B 3 |GG), |AB), |BA)

G, G 3 |GG), |AG),|GA), |BG),|GB)

Table 4 Summary of the representations p (1, z) on V"""

m,z Dimension of Dimension of each Image of p(m, z) on each irrep
vy irrep in VR
C,A 3 2 1 73 X L4 1
C,B 3 3 Sy
Cc,C 5 3 1 1 Sy 1 1
D, A 5 3 1 1 Ay 1 1
D, B 4 2 2 SL(2,F3) SL(2,F3)
D,C Same as (D, F)
D,F 9 8 >(216) 1
D, G 9 3 6 >(216 % 3) >°(216 % 3)
D, H Same as (D, G)
G, A 3 3 D(9.1,1;2,1,1)
G,B 3 3 D(18,1,1;2,1,1)
G,G 5 4 1 Group of order 648 1

2.4 Braiding, measurement and ancilla

Using the encoding above, we can simulate standard qutrit quantum circuits by
braidings of D anyons. Concrete braiding quantum circuits are the braid group repre-
sentation matrices with respect to the fusion tree basis. For 1-qutrit braiding circuits,
we need to know the representation matrices of 34—the 4-strand braid group, and for
2-qutrit braiding circuits, the representation matrices of Bg. Since both collections of
matrices are finite [5], they are not sufficient to simulate the standard qutrit circuit
model.
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Universal quantum computation with weakly integral anyons 2697

To gain extra computational power, we consider measurement and ancilla. In anyon
theory, there are two kinds of measurements to determine the total charge of a collection
of anyons: projective and interferometric. Both types of measurements always lead to
some decoherence in the model. Therefore, ideally we should only use them at the end
of the computation. Since we cannot avoid using them for WI anyons, we will allow
ourselves to determine whether or not the total charge of two anyons is trivial in the
middle of the computation. Then based on the outcome, we choose how to continue
our computation. For this reason, we call such models adaptive.

Measurement 1 Let My = {I1y4, T4/} be the projective measurement onto the total
charge=A sector and its complement. Then M 4 allows us to distinguish between the
anyon A and other anyons, namely check whether a anyon is trivial or not. Moreover,
the state after measurement for each outcome is still coherent.

The next measurement that we use is problematic, but it is unavoidable due to
our choices of computational subspaces. It allows us to project states back to the
computational subspaces.

Measurement 2 Let S be a subspace of an anyonic space and S+ be its orthonormal
complement. Then Mg = {Ilg, IT¢1} is the projective measurement that projects a
state to S or S+.

For example, applying Mg to S = U in VGDDDD, we obtain the orthogo-
nal projection to U = span{|GG), |AG),|GA)} and its orthogonal complement
Ve W=span{|FC),|CF),|FH),|HF),|CH),|HC)}.

The main result of the paper is that braiding supplemented by measurements M 4
and My leads to a universal gate set for the U-model and V-model. To make the
qutrit W-model universal, we need to use the extra ancillary state:

Ancilla 1 The state in the following picture is denoted by |H) 4.
D D D D

A

Then our second result is that braiding supplemented by measurements M 4 and
My and ancillary state | H) 4 leads to a universal gate set for the W-model.

2.5 A universal gate set for qutrits

Theoretically, there is no advantage to use quitrits instead of qubits. But there are anyon
systems that are more natural to choose qutrits rather than qubits. This is the case when
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we use WI anyons of quantum dimensions 3 or /3 for anyonic quantum computation.
Moreover, there are some better numbers for qutrits distillation protocols which might
provide some benefits for engineering [1,8]. In this section, we prove that a particular
convenient qutrit gate set for our purpose is universal for the standard qutrit circuit
model.

The generalized Hadamard gate for qutrit is the following:

| 1 1
h=— w 2,
V3 o

2mi

where w =e 3.

The SUM gate for qudits is a generalized version of CN OT, which maps basis
element |7, j) to |i,i + jmod3). To state our theorem, we need to define another
measurement:

Measurement 3 Let Mgy = {ITj), [T}y, 1} be the projective measurement that is the
orthogonal projection to span{|0)} and its orthogonal complement spanf{|1), |2)} in
a qutrit.

Theorem 1 The 1-qutrit classical gates, generalized Hadamard gate, SUM gate and
Measurement 3 form a universal gate set for the standard qutrit quantum circuit model.

2.5.1 Proof of Theorem 1

We fix |0) and |1) as a qubit and show that we can implement a universal set of qubit
gates. More explicitly, we use the two-dimensional subspace C> = span{|0), 1)}
inside C3 = span{|0), |1), |2)} to do computations. During the computations, we will
go out of the subspace C?, and eventually come back to it. Though unnecessary, we
can deduce universality for the qutrit models by encoding a qutrit with two qubits C>®
C? c C? ® C3. That is, we use |00), |01), |10) to encode [0), |1), |2), respectively.
And the basis element |11) is left unused.

Our strategy of proof follows from that of [9], and some of the lemmas below are
stated in [9] as exercises.

Note that with 1-qutrit classical gates, the generalized Hadamard gate 7 and Mea-
surement 3, we can easily construct the following ancilla and measurements:

L. ]i),i =0, 1, 2.

2. [i) = X3_gw|j) = hli).i =0, 1, 2.

3. Projection of a 1-qutrit state to any computational state, preserving the coherence
of the orthogonal complement. For example, projection to spanf{|0), |1)} and its
complement span{|2)}.

4. Measurement of a qutrit in the standard computational basis.

Projection to span{|1), |2)} and its complement span{|0)}

6. Measurement of a qubit in the standard basis if we take {|0), |1)} as the computa-
tional basis. This follows from 4).

9]
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From the set of operations given in Theorem 1, we show that we can construct the
qutrit (qubit) gates (measurements) in Lemmas 1, 2 and 3.

We define the qutrit gate FLIP, by the map: FLIP;|0) = [0), FLIP,|1)
=|1), FLIP,|2) = —|2).

Lemma 1 The gate FLIP;, can be constructed.

Proof To obtain FLIP;, we first construct the ancilla |{) = \%(lO) —|1) 4+ 12)) as
follows. o

Prepare the state |1)|2) and project each quitrit to the space span{|0), |1)} to obtain
the state |n) = %(IO) + w|1)) ® (J0) + w?|1)). Apply the SUM gate to |5) and then
project the first qutrit of the resulting state to the space span{ @}. It is easy to see on
the second qutrit we get the state |/).

Now for a state |¢) = cg|0) +c1]1) +c2|2), apply the SUM gate to |¢)|¢) and then
measure the second qutrit in the standard basis. If the outcome is |0), then the first qutrit
iscp|0)4c1|1)—c2|2). If the outcomeis | 1), then the first qutritis —cg|0)+c1|1)+c2|2),
and if the outcome is |2), then the first qutrit is c9|0) — c1|1) + ¢2]2). Moreover,
the probability for each case is % Therefore, this process changes the sign of some
coefficient randomly. By repeating this process, we will get the gate FLIP;. O

Lemma 2 The 3-qubit gate \*(0.) which maps |i, j, k) to (—1)U%|i, j k) can be
constructed. In particular, |\ (o;) and o, can be constructed since we have the ancilla

).

Proof Combining the gate FLIP, obtained in Lemma 1 and the SUM gate, one can
construct the following 2-qutrit and 3-qutrit gates.

.. —li, j) i+ j=2mod3
li, j) — [ R @1
li, j)  else
—i, j, k) i i +k =2mod 3
k) s | TR mo 2.2)
li, j, k) else

When applying them to the state |i, j) (or |7, j, k)), we can describe the above two
gates as “ flip the sign if i + j = 2 mod 3”(or “flip the signifi 4+ j +k = 2 mod 3”).

One can check applying the following four gates to a 3-qubit state |i, j, k) succes-
sively gives rise to A2(02).

“flip the signif i + j +k =2 mod 3,

“flip the signif i 4+ j =2 mod 3,

“flip the sign if i + k =2 mod 3,”

“flip the sign if j + k =2 mod 3,”

Note that here i, j, k are either O or 1. O

Let |£) = \/LE(IO) =+ |1)), which are the eigenstates of the qubit gate o,. Note that

the state |[4) can be obtained by projecting the state |0) to the space span{|0), |1)}.
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2700 S. X. Cui et al.

Lemma 3 Measurement of oy can be constructed on a qubit.

Proof For an arbitrary 1-qubit state «|+) 4+ B|—), a measurement of o, would result
in the state |+) with probability ||, and in the state |—) with probability |8 2.

We denote the measurement which projects a state to s pan{|’0v)} and its complement
span{m |A2$} by M and denote the measurement which projects to span{|0), |1)}
and its complement span{|2)} by M>.

Note that |—) is orthogonal to |O) while |+) is not. So if a state results in |0) after
M, then the corresponding probability only depends on the |+) component. We
explain this idea explicitly below to construct the measurement of o .

Consider the following procedure.

M, pr=2
O:al+)+ 8l-) T> output _—3 |0> — |+)
Pr y
al+H)+Bl-) - ZE0)  pg,

output —— [2) —— |+) (2.3)

a|+)+381-)

N

__So the procedure O consists of two measurements M and Mp. If the outcome is
|0) after M or is |2) after My, then we prepare the state |[+), namely we take the

appearance of these two cases as the outcome |4-). The probability for either of these

8\oz| a|+)+38]

two cases to happen is . Otherwise, we get the state WIZ) with probability
—olo

, and then, we iterate the procedure O until the above two cases happen or
the required accuracy is satisfied.

More explicitly, let the resulting state be |V), = oy |+) + B, |—) after iterating the
procedure On times with no |+) outcome and let b,, be the probability to obtain |i),
from |Y),—1 via the n-th procedure. Then we have the following equations.

_ 8lal?
1 9

3B by =1 8lan 1 _ loty 1| 2.4)

_ Ap—1
V9 = 8lan1? = V9= 8lan_1]? 9 9oty |2

From the above equations ,we have

n

jorf? |O,|
o = (1 —|a?)9" + [af?>" H =181 + 2.5)

So the probability for iterating the procedure n times with no |+) outcome is

b = H = | ,8|2 + |9,, , which is very close to | ,3|2 when n is large. Moreover,

@ Springer



Universal quantum computation with weakly integral anyons 2701

[{(+]¥n)|? = |an|?> which is close to zero, namely 1, is almost equal to |—) up to
a phase. Therefore, it is reasonable to treat the case that no |+) appears within n
procedures for some proper large n, as the outcome |—).

To sum up, after iterating the procedure n times, we can get the state |[+) with
probability 1 —b = (1 — %)|o¢|2 and |—) with probability b = |B|> + I‘;—,lf. If we take
n large enough, we get the measurement of o, with required accuracy.

Lemma 4 [13] The following set of qubit operations are universal for quantum com-
putation:

1. Create the state |£) = Lz(|0) + [1)), |0) and |1)

2. Measure o;.
3. Measure oy.
4. The Toffoli gate T = /\z(ox).

For a proof of this lemma, see [13].

Lemma 5 [9] The following set of qubit operations are universal for quantum com-
putation:

1. Create the state |+) = L2(|o> +[1)).

2. Measure o.
3. Measure oy.
2
4. The gate \*(o7).

Proof We prove this lemma by showing that the set of operations here can be used to
implement all the operations in Lemma 4.

Since we can measure o, and o, it is clear that |—), |0) and |1) all can be created
from [+). Thus, it suffices to show that the Toffoli gate can be created.

For notational convenience, we also denote |6> = |4), IT) = |—) in the following
proof. The readers should not be confused with this notation and the one we used for
a qutrit, since for the moment we only work in qubit space.

With the ancilla |1) and the gate /\z(az), we can get the gates /\ (o;) and 0.

Next we do the following procedure which creates a *“ gate” H or o, H,

o N(o2) ST Measure(oy )| [ |6) |7) outcome is 1
1£)10) |£)1E) ~ i .
[1)(—1)'|i) outcome is — 1

By measuring (o)1, we mean measuring o, on the first qubit.

One checks that both probabilities are % If the outcome is — 1, then we continue to
apply the gate o, on the first qubit so that the state becomes 10)(— 1) [7).

Notice that our ancilla starts from the second qubit while ends on the first qubit,
i.e., the working qubit and ancilla qubit are switched. But we show below that this is
not a problem.

Therefore, if the outcome is 1, we produced the gate qubit Hadamard gate H, and
otherwise we produced o, H. We name this sequence of operations by .A.
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Now we produce the gate 7.

.. Y A314 |i,j, 6, ’]g> outcome 1 /\Z(O'Z)Lz‘z;
li, j, k)|0) ———— P ARG NN
(—D*i, j,0,k) outcome — 1
li, j.ij+k,0) outcome (1, 1)
li, j.0.ij + k) As3 (—D¥i, j.ij+k,0) outcome (—1,1)
~ 7. % . . .. =,
(=i, j,0,ij + k) i, j,ij+k+1,0) outcome (1, —1)

(=X, j,ij+k+1,0) outcome (—1,—1)

In the diagram above, A3 4 means applying the operation .4 with the third qubit
as working bit and the fourth qubit as ancilla. Each pair of outcome happens with
probability 1.

If the outcome is (1,1) or (1,-1), we do nothing.

If the outcome is (-1,1) or (-1,-1), we apply the gate (o;)3 A (0;)1.2 to get the state
li, j,ij +k)yor—|i, j,ij +k+1, 6). The overall phase is not important.

Therefore, if the outcome is (1,1) or (-1,1), we produced the gate 7. Otherwise we
got the gate (0, )37T. Both probabilities are %

In the latter case, we repeat the procedure, then we either go back to the original
state with probability %, or we go to the state |i, j, k + 1) also with probability %
Repeat the procedure again. It is easy to see that after doing this procedure at most 3
times, the probability to get the state |i, j, ij + k) is 3 + 5.

After at most 2n — 1 times, the probability to get T is % + 2% +- 4+ zi,l =1- 2%,
Therefore, after repeating enough times, we will eventually produce the gate 7. O

By the lemmas above in this subsection, all the operations in Lemma 5 can be
created from the operations given in Theorem 1 if we pick a qubit from the qutrit
space. Thus, Lemma 5 implies Theorem 1.

3 Universal adaptive anyonic computing models

In this section, we prove that the U-model, V-model and W-model in Sect. 2.3 can be
made universal provided measurement and ancilla are allowed besides braiding.
Recallthat U =span{|GG), |AG), |GA)}, V:span{\%ﬂFC)—HCF)), %QFH)
1 - € _ L
+ ICH)), J5(IHF) + |HC))} and W = span{J5(IFC) — |CF)), J5(ICH)
— |FH)), \%(|HF) — |HC))}. The computational basis for the three models are

denoted as {|0), |1)x,|2)x,} corresponding to the pair of anyons above, x =
U, V, W, where the subscript x indicates which subspace we are referring to.
Our main theorems are as follows:

Theorem 2 Braiding quantum gates and Measurements 1 and 2 provide a universal
gate set for the qutrit U-model and V -model.

Theorem 3 A universal gate set for the W-model can be constructed from braidings
and Measurements 1, 2 when the ancillary state 1 is used.
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The proof of Theorem 2 is given in the next subsection and the proof of Theorem 3

in Sect. 3.2.

3.1 Universality for U- and V-models

U @ V is a 6-dim irreducible representation of B4. Under the basis span{|0)y, |1)y,

12)u, 10)y, |1}y, |2) v}, the generators o; ‘s have the following matrices:

o1

o) =

o3 =

S
o

Ee - cooco~o

W | =
[}

— O O OO

S

S
o

cocoo
coocof o

cocof oo

§§8 =8 SO~ O OO

SO OoO—OO
S

S

SO~ OO O

[§8)

Let p = 010207 and ¢ = 030203. Then

p2q2p2 —

0 0
0 0
0 0
0 0
1 0
0 w
w

w

1
V2
V2w
V2

0 0
0 O
0 O
0 O
o 0
0 1
0 0
0 1
1 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 0
1 0
0 0
0 1
0 0
0 0
0 0

[SS]

SO OO RO OO~ OO OO oo -

SO R OO0 mPOODOOOoO OO0 0OCC

=N eleNelaoBiel eleoNeoBeloNe R =l =N

O OO0 OO~ OO0 mOOOOCO
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Therefore, when restricted to the subspace U or V, p? and g° generate all the
classical gates on 1 qutrit and p?g?p? is equal to h?, where / is the generalized
Hadamard gate defined in Sect. 2.5.

Let h’ = ¢%pg?. Then

e R I { R

Define a unitary transformationy : U — V, v|j)v = |j)v, j =0, 1, 2.

Lemma 6 By alternating use of h’ (or h'~') and Measurement 2, one can eventually
obtain the generalized Hadamard gate on both U and V, as well as the transformations
y and y~'. Moreover, the probability to successfully construct these transforma-
tions approaches to 1 exponentially fast in the number of measurements and the
gate I'.

Proof Let the generalized Hadamard gate £ act on both the spaces U and V, then we
have

1
Wy = —(h|j 2h Y
i) ﬁ( 1Yo + 2071 j)y)

and

Wlj)y —7<fh 1Yo —hlj)v)

We first construct the Hadamard gate on U first.
Denote the operation of Measurement 2 by M. Note that on the subspace U or V,
we have p2¢?p? = h?> = h2. Consider the following procedures:

! P =l
P ljly —= J5Blj)u + 207 j)v) M output ——% p|jyy

. . Pr=3 3.1
W)y s 2Ry = i) s outpur —— 2y, -1

l7)u
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-1 Pr=2
Q: |j)v > W2 j)u = 7)) s outpur == hij)y

_1
Pr=3

P

—h_1|j)v;>%(—ﬁ|j>U +h2|j)v)A>0utput4> Yu (3.2

n2j)y li)v

Thus, if we run the procedure P on the space U, we have a probability % to obtain
the Hadamard £, g to obtain the identity and % to obtain the transformation y. If we
obtained 4, then we are done. If we constructed the identity gate, then we run the
procedure P again. If we got the transformation y, then we apply the procedure Q to
the resulting state. After running Q, we have a probability % to obtain A, % to go back
to the original state | j)y, and é to get the state | j)y . Repeat the procedures P and/or
Q, according to which space the resulting state after each procedure is in, until we get
the Hadamard gate &. And it is not hard to show that the probability to construct 4
within n procedures is 1 — % . (g)”_l, which approaches to 1 exponentially fast.

The Hadamard gate on V can be constructed in the same way.

To construct the transformation y, see the following procedure:

R i)y~ J5tljyo + V20 jy) M outpur
Pr:%
Pr=1
3
W)y = 32 = Rv) hlju
l./\/l h/—l
20 . Pr:% 1 . \/5]’12 .
W)y output 7§(|J>U + [/)v)
ipzquz lprzg 3.3)
ljYv lJ)u M
/v output
Pr=%
Pr:%
v i h21j)v

So the procedure R has a probability of g to construct the transformation y and a
probability of g to obtain the identity. By repeating it, one can show the probability
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to construct y within n times is 1 — (g)”. Therefore, one can obtain y exponentially
fast.
Similarly, one can construct y‘l. O

The following lemma shows that Measurement 3 can be constructed in both U and
V.

Lemma 7 Using Measurements 1, 2 and braiding, one can perform Measurement 3
in both the spaces U and V.

Proof Note that we used the notation |0)y = |GG), |1)y = |AG), |2)y = |GA).
Given a state |) = a|GG) + b|AG) + c|GA) in U, we apply Measurement 1 to
the left half of the state, i.e, we check whether or not the first pair of D anyons in
the 1-qudit splitting tree has total trivial charge. This is essentially the projection to
span{|AG)} and its orthogonal complement in U, namely the projection to span{|1)y}
and span{|0)y, |2)y}. Since we have all the 1-qutrit classical gates on U, it is clear
that Measurement 3 in U can be constructed.

Measurement 3 in V follows from Lemma 6 that one can construct the transforma-
tion y, ¥~ ! to go back and forth between U and V. O

Up to now, we only considered gates and operations on one qutrit. Next, we want to
construct a 2-qutrit gate, the Controlled-Z gate A\ (Z) which maps |i, j) to @i, j).

D D D D D D D D

We use the above fusion tree to encode 2-qutrits. Let s; = 02010302 namely, s is
the braiding of the first pair with the second pair. Similarly let s, = 04030504, s3 =
0605070¢. Clearly s exchanges x; with y; with a phase in the above 2-qudit splitting
tree, namely it maps |x, y1; X2, ¥2) to |y1, X1; X2, y2) up to a phase. Similarly, s3
exchanges x, with y,. The gate s, is much more complicated since it involves F-
moves. Let CrlZ = sfls%slsg 1S%S3. Through direct calculations, we found that
CrlZ is a diagonal matrix. Moreover, when restricted to the space U, CrlZ is exactly
the Controlled-Z gate A (Z). Again, via the transformation y, one also obtains the
Controlled-Z gate in the space V.

The SUM gate maps |i, j) to |i, i + j) and can be obtained by conjugating A (Z)
via the Hadamard. Explicitly,

SUM=(de@h) \@) 'udeh™).

So we can also construct the SUM gate in the space U and V.
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To sum up, with Measurements 1, 2 and braiding, we can construct all the 1-qutrit

classical gates, generalized Hadamard gate, SUM gate and Measurement 3 in both the
spaces U and V.

Finally, Theorem 2 follows from Theorem 1 and the arguments in this subsection.

3.2 Universality for W-model

In this subsection, we examine the representation on W. Under the basis of W given
by {|0)w, |1)w, |2)w], the ;s have the matrices:

1 0 0 1 0 0

g = 0 1 0 03 = 0 w 0
0 0 w 0 0 1
1, V3 1, 43 1 3
1t% Tattg —atty
1 J3 1 J3i 1 3i
—2t+% 2 t% %

So p? and ¢ generate all the 1-qutrit classical gates in W.
Also from o7 and o3, we obtain the generalized Z-gate and Phase gate P:

0
0
2

1 0
Z=|0 w
0 0 w

1 0 O
P=|0 1 0
0 0 w

. i2_i
where Z maps |i) to o'|i) and P maps |i) tow 2 [i).

1 1
Moreover, let i’ = q2 pqz, then ' = ﬁ 1 o o? , which is exactly the
1 0* o

generalized Hadamard gate up to a phase.

Therefore, in the space W, we obtained the classical 1-qutrit gates, generalized
Z-gate, the Phase gate and the generalized Hadamard gate by braiding.

Now we turn to constructing the 2-qutrit gate /\ (Z). One may try the same braiding
method as we did for the space U. But it turns out that braiding does not work for W.
Instead, we try to construct a transformation similar to y.

Consider the following picture of braiding.
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Let P= 0405040307060504, Q = 02,0101020607070¢, and let R = p-! QP. Then
the braiding in the picture is given by R.

We denote the state in the picture before braiding by |H) 4|xy). Then the braiding
R gives the following transformation:

. 1 . . .
[H)ali)w +—> 5(_|H)A|1>W +|H)pli)y —~2|H)g| —i)y)
and

1
|H)pli)u — —2(|H)A| —i)w + [H)p|l = i)v)

/2

wherei = 0, 1, 2 and —i is taken to be modulo 3.
Define a unitary transformation 8 : |[H)4 @ W — |H)p @ U, B(|H)ali)w) =
|H)gli)y. Here |H) 4 is the ancilla.

Lemma 8 With braiding, Measurements 1, 2 and Ancilla 1, the transformation B and
B~ can be constructed with probability approaching to 1 exponentially fast in the
number of measurements and the gates applied.

Proof In the following diagram, M means applying Measurement 1 to the first
qudit (the ancilla part) to check whether the total charge is trivial or not and M is
Measurement 2 applied to the second qudit. Consider the following procedure S:
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S H)ali)w

|

L HYalivw + [H)YBliYy — V2 H) 5| — D)y) —ts output

Pr=1
_3 7
Pr=3 l

FH)sli)y = V2IH) 5 — i) |H) ali)w
Mo 3.4
output
Pr:%
Pr=% \
[H) 5] — i)y |H)sli)y
1d®p*q*p? i/d@y‘
|H)sli}u [H)sli)u

Starting from the state | H) 4 |i)w with |H) 4 as ancilla, we apply the procedure S to
it. From the diagram above, one can see that there is a probability of 4—1L for the state to
remain unchanged in which case we would apply the procedure again. Otherwise, the
state is transformed to |H)g|i)y, namely the transformation § is constructed. Note
that in the above procedure, the states in each outcome are considered up to a global
phase, which is of course irrelevant. By repeating the procedure S, 8 can be obtained
exponentially fast.

B! can be constructed in a similar way by repeated use of the following procedure
T

|H)gliyy —= J5(1H)al = i)w + [H)p| = i)y)

. 1d®p*q*p? .
output 1 [H)al = iyw —————= [H)gli)yw )
Pr:f
iPr:;
. 1d®p2q? p* ) 1d@y~! )
|H)p| —i)v |H)pli)y |H)pli)u

]

By going back and forth between W and U via 8 and f~!, any operation in the
space U can be performed in W accordingly. In particular, the Controlled-Z gate and
Measurement 3 can be constructed in W.

Collecting the results in this subsection, we finish the proof of Theorem 3.
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Appendix 1: Solutions of the D(S3) fusion rules

Given a set of fusion rules, it is highly non-trivial to solve for all 6 j symbols even with
software packages. Though D(S3) is a large anyon system, recent progress makes it
possible to solve for all modular categories with the same fusion rules. In the following,
we list the complete data only for the D(S3). See Sect. 2.2 for an explanation of the
notations that we use for F-matrices and R-matrices.

The subcategory spanned by {A, B, G} is a near-group category of type (Zz, 1)
and analyzed completely in [20]. (The objects A, B, G here are the €, g, m in [20],
respectively.)

The only monoidal structure which allows braiding is the following one [20]. When
we list 6 symbols, all the admissible ones that are equal to 1 are omitted.

GBG

FEGE = FERS = P = PSS = 1.
1/2 1/2 1/2

F§C =1 12 12 —1/V2
1/V2 —1/42 0

Note that we normalize the trivalent basis to obtain unitary F matrices, while the
original F matrices in [20] are not unitary.

There are three braiding structures on the subcategory depending on a choice of
we {1’ eZni/3’ €4ﬂi/3}.

R4* = Ra% = REA = REB = REC = RGA =1,

REC = RSB = 1,
RgG — C02’

Rgc = o,

RgG =w

The subcategory is balanced for all choices of w € {1, e2mi/3 pAmi/ 3}. Siehler
claimed that the @ = 1 structure is balanced but w # 1 structures are not (without
explicit proof, see Proposition 10.11in [20] ). However, it is easy to see that all structures
are balanced. Balancing equation is

Bal®? : 6. = 6,0, R“" R>*
With twists 64 = 1, 0p = 1, g = w, all non-trivial balancing equations Balg’G,
Bal$®, Bal§©, Bal§  hold for any third root of unity w.
However, the case w = 1 cannot be extended to get a braiding of the whole category.
Here is the argument. Consider the hexagon equation on G summand in the product

D ® D ® G with the intermediate summand D in G ® D and summand £ in D ® G,

: 1« pDG 2DGD pDG _ pDDG pAG -GDD DDG pGG GDD v,
whichis Ry FG;EDRD _FG;EARG FG;AD+FG;EGRG FG;GD.Wuhthevalue
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GG _ ioht-hand-sideis 4 -1- L +(—L).1.L = ‘e FDGD _
of R3 _1,the1r1ghthand51dels\/j 1 ﬂ+( ﬂ) 1 ﬁ—O,whlleFG;ED_

— 73, thus one of the two R-symbols on the left-hand side must be zero, a contradiction.

The other two cases with @ = ¢27/3_ ¢*71/3 can both be extended to the whole
category to get a braiding. Moreover, their braiding structures are conjugate to each
other; thus, we assume that w = e271/3 from now on.

There are three monoidal structures that extend to all other simple objects. We
will focus on the structure that we used in this paper. For simplicity, let G = {A, B},
Ci ={G},Cy = {D, E}, and C3 = {C, F, H}. In the following, we list associativity
matrices according to types upon three upper objects in Fjbc. For example, GGCr—
type contains all associativity matrices with two objects from G and one from C.
Using this notation, all GGG—, GGC,—, GC1C1—, and C;C{C; — types are given above.

A. 1 The rest of the 6 symbols

Beside the 6 j-symbols above, the rest are as follows:
GGgCy— type:
BDB BEB
o FpPP =FptPf =1
GC1Cy— type:
o —1 for FEPC FREC FEPB FLEE

GC1C3— type:

e —1 for
BGC pBGH pBGH pBFG pBCG pBCG pBHG pGBF 1pGBC 1GBH
Fgtt Fg®Y FEY 7  FZ"Y  Fpt U, Fg Y, F&7", Fg°t Fg®t, FZ°H,

GFB pGCB pGCB pGHB pFBG pCBG pCGB pHBG pHGB pHGB
IR =Rl U S (i - Y il -

GCyCr— type:
e —1 for
i}ggj?ggg’ FBDBD’ FC[;)BE7 Fé)BE’ FI?BE’ FI?DB7 F]?EB, FgBD, FCI‘SBD’
H 'B

GCyC3— type:

e —1 for
BDC BDH BEC BEH BFD BFD DBF DFB DFB EBF
FE ’F 9F 7F 1F 7FE 7FD 7FD 7FE 7FD ’

FBD pFBE pCDB pCEB pHDB pHEB
Fpo2 Fp? =, Fg" P, Fp=?  Fg 7", Fp

GC3C3— type:

* _;;%r BFC BFH BCC BCH BHC BHC BHH FBF FBC
o ey G et Gy eyt ey By G
FCHBC,FI;-IBH’ FGHFB” ;Hcé gHH}a foone 2 enh e

G Y H TG 1 G > H

C1C1Cr— type:
11
1 G.G.D .GGE rDGG pEGG
.%(1 —l) for Fp R ETT
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(1 _1) for Fg’G’D,FDGGE

(1,1) for e, e
-1 —

f

-3 1 ) of

V31
( for FEPO, FGEC

&IH §|~

GDG
FD

8=

Nl —

1 V3

D=
U-)

1

f FGEG
3 1) or
C1C1C3— type:

1 11 GGF GGC GGH FGG CGG HGG
.\—5(1_1) for FEOF, FGGC FGOH FFGG FCOG FH

. (? (1)) for FGFG, FGCG FGHG

C1CrCr— type:

DGE pEGD
o —1 for Fg™", Fg
1 (11 f
— or
V2 \1 -1
FGPD pGDD pGDD. FgEE’ FCGEE7 FgEE’ FC[;)DG7 FCL?DG’ F[?DG’
EEG pEEG [EEG
Fg=" Fc™7, Fy

1 -1
1
NACE for

GDD GED pDEG pDEG pEDG pEDG pEDG pEEG
Fpoo Fg oo Fgm Fy =2 FG 7 Fg 22 Fe 77 F

1 11

7 _11)f0r

GDE rpGDE pGDE rGED pGED pGEE pDDG pDEG
FGor Fp o m Femm Fg =2 Fy =7 Fg =2, Fp o™, F

o L (_1 _1) for FgDE’ FgED’ Fé)EG’ FgDG

. %(_—Jlg —lﬁ) for FPOP, FPOP
° %(_; f) for FPOP

° ((1) _01) for FII_I)GD

. %(_1/5 \/lg) for FPOE FEGD
° %(_;/g __\}5) for FPOE

° %(\f _}/5) for Fé)GE FEGD
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-10

(-3 1
5(_1 —ﬁ) for FIEGD

1 V3 EGE
(\/§ _1) for Fg

1 -3 EGE pEGE
(—ﬁ —1) for Fy™. Fe
-10 EGE

(0 1) for Fy

C1CaC3— type:

(-1 =3 GDF FDG
5(_\@ ) for F=", Fjj

-3 -1 GDF pFEG
(1 N3 for F50, Fpy

(1) tor e, e

(\f _}/§> for FGPC, FGEC DG [CEG

! O) for FDGDH,FgDG

(&) ror rpoe. por

D=

1
2

8 — 8=

D —

0-1

0 -1 GDH pGEH pHDG pHEG
lo)forFE S , Fp

| —

*f _lﬁ) for FSEF, FEPG

( 1 —\/_) for FGEF FGEC pFEG pCEG
0

D —

V3
1(1)) for FGEH FHEG

L1
—_ T
a\-11)°
GFD GFD DGF DGC DHG EGF EGH EFG EFG ECG
FDFGDvFFGEsFE 1FE vFE 7FE 7FD aFD 7FE 7FD ’
Fp=", Fp
(-1
—_ or
V21 1
I;~GFE7F*GFE7 FGCE’ FgHD, FgGF, Fll'))FG, FEDFG,FgGF, FgGD, FgGE,
CGD HGE
Fe=", Fp
L (11
V2 \1 -1
FGCD, FGCE, FGHD’ FGHE’ FDGC, FDGH’ FDCG’ FDDHG, FEEGC,
EGH ECG EHG CGD CGE HGD HGE
Fr s Fg=7, Fg S FEp 7 Fg7 =, Fp , Fg

/N

for
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o L -1l for

V2 -1 1
GCD pGHE pDGH pDCG pEGC pEHG pCGE pHGD
Fe=2 Fpo s Fgo o  Fg="  Fp” " Fp7 7 Fp =, Fp

C1C5C3— type:
11
1 GFF pGCC pGHH pFFG CCG HHG
°_f2(1—1) for FGo0, Fg~"  Fg"7 Fg 7 F~ 7 Fg

e —1 for
GCH GHF GHC FGC FHG CGF CGH CHG HGC HCG
Fg=t Fg o Fgt e Fpos  Fg v Fgot  Fg o Fg Y P s Fg

01 FGF pCGC pHGH
° (1 O) for Fo"", F5"%, Fg

C2CrCr— type:

1 V2222
V2 -1-1-12
11V2—-1 2 —1 1] for FPPP FEEE
V2 -1-12 =1
V22 —1-1-1
-1-11 0
1 -1 0 —-1-1 DDD DDE DED EDD
Al 210 -1 for Fg "%, F5"%, Fp° ", F
0 —1-11
V22 =2 =2
1 -1 1 =2
1 2 1 1 | for FPPE FEED
-1 =2 1
-1 1 1
22242
1 1 =2
-2 1 1 | for FPEP FEPE
-2 1
11
22242
1 1 =2
V2 -1 2 —1 1| for FREE FEPD
V21 1 =21
—V2-21 1 1
1 =1-10
\% :} _01 _01 _11 for FEEE,FgDE,FgED,FgEE
0 -1 1 —1

CrCrC3— type:

St

—_
[\

p—

'§~|§|§|§§|
~ 5"

[ONT

e —1 for
DDF pDCE pDHE pEDF pECD pEHD pFDD pFDE
Fglr Fg™", Fg S g P Fgt o Fgt P Fpt P Fy

@ Springer



Universal quantum computation with weakly integral anyons 2715

o L 1 1)fbr

2 —
égDF}F%DF,FgDC’F?DH,FgDH,FEEH’FgDF’FgDF,FgEC7FgEH,
FgED,FgED,FgEE’FgEE’FgEE’FgDE,FgED,FgED,EgDE’FﬁDE’
FgDE’FgED’FﬁEE

o L 1 for

V2 \1 -1
F[?DF9 FgDF, FgDC, F]?DC9 FgDC, Fé)DH, F]?DHv FFDEC, FCEDF’ F(l;’?EC’
FgEC, FEEH’ FEEH’ FFDD, FFDD’ FgDE, FgDD, FgDD, FgDD, FFCED,
CEE CEE HDD HDD HEE HEE
Foo", F-7", F; S Fg oo FG PR By
1 -1
o L for

V2l 1
DEF pDEF pDEC pDEC pDEH pEDC pEDH pEDH pEDH pEEF
Feor  Fgt  Fg = Fe o Fg  Fe o Fg P Fpo Fg =t Fg&r,
EEF pEEF pEEH pFDD pFDD pFDE pFDE pCDD pCEE
Feol  Fgtt  Fpo  Faor Fytr  Fe o r, Fy = v Fg= " Fg=™,
HDD pHDD pHED pHEE
Feoo  Fe P Fp oo, FG

1 -1 -1
° JE( 1 1 for

DEF pDEC pEDF pEDH
Fptt Fgt~, Fg®", Fg
—11
o L for

V2l 1

DEF pDEH pEDC pEDC pEEF pEEC pFED pFEE pCDE pCDE
Foor  Fe o Fpo  Fyos  Fe=r  Fp ==  Fe =2 Fe =%, Fpon, Fg™r,
FgEE’EgED

1 (-1 -1
° 75(_1 | for

DEH pEDC pCDE pHED
FGo7  FG7 Fg7, Fg

()

DFD DFD DFD DCD DCD DHD DHD
G ’FC ’FH ’FF ’FH ’FF ’FC

lfl) for FRFD, FPCD pDHD

[ )
B[—

&

°
/N

-3 1 DFE pDFE pDFE pECD pEHD
for FG" ", Fo" 2, Fg' 7, Fp= ", Ff

-1 _Vﬁ
) for FRFE FEFD

[ ] [ ] [}
P e e
O =

—-13 DCD pDHD
V@ 1 ) for FZ=", Fy
(V31 DCE pDHE pECD pEHD
2\ _ss for FG%%, Fg" " FE©0, Fy
V(3 -1 for FDCE pDHE pEFD pEFD pEFD
.51—\/5 or =", ' " ", I'g" 7, I'c” 7, I'y
0 -1 DCE pDHE pECD pEHD
o (_1 0) for FR%5, FEM5  FE7, F(
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<3

;/5 \}g) for FI?CE’ FCQHE’ F5CD, FgHD
1

B )for

E FEFE FEFE FECE FECE FEHE FEHE

NI

EF
G
- (1) for FPEFE FECE FEHE

0
( ) for FECE FEHE

11
1 FDE p[FED [CED pHDE
° ﬁ(—l _1) for Fpo%, Fp=o, Fp™", F¢

/N

Bf—

CrC5C3— type:

L (11
AN
FDFF’ FDFC’ FDFC, FDCF’ FDCC, FDHH’ FECF’ FECC,FEEHH, FgFD,

FCD FCE CFD CFD CcCD CCE HHD HHE
FD ’FD ’FD ’FE ’FD ’FE ’FD ’FE

L (=11
o —— for
ﬁ(—l—l)
FDFF’ FDHCngFF’ FgCH
L (1-1
v2\1 1
DFH DFH DCH DHF DHC ECH EHF EHC FFE FHD
"Bu pico plcr phee pive wiap phaz’ = F T E
Feo o Fg="  Fp= " Fp " " Fg 7", Fy » Fp
(=11
V211
DCF DCH EFC EFC ECF EHC FCD FCE CFE CFE
FECHEvFEIiCD’FD aFE 1FE 3FD 7FE ’FE ’FD 7FE ’
Fp™ =, Fg
YERY
—_ or
7 —11)
DCC DHF DHH EFF EFH EFH ECC EHF EHH
vhnp foenE penp pour phen farn phcs facs P
Fp o Fp = Fp Y Fg ' Fp 2, Fg Fp =", Fg

° (1 O) for FEPE, FGPC

for

for

for

0-1
01 FDF pFEF
° (1 O) for Fp"", Fpy
—1 -3

.%(_\/§ X )for

FDC FDH CDF CDH HDF HDC
FLPC, pEPH pSPE pSDH pHDF

1 (‘f _1/3) for F}I;DC’ FgDH7 FLC)‘EF7 FII)JEF

-10 FEF pCEC
(0 l) for Fp*", Fg
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o L (_;@ __\}§) for FgEg FII)TEH’ FbgDF’ FEIDF

—3 FEC pFEH pCEF pHEF pHEH
_1 for Fp =%, Fpot Fp="  Fg =" Ff

—1 -1
1 FFD FFE CHD HCE
—(1_)forFE ,FEFE FCHD Pl

[ ]
DO —
|

&lb—

V2 1
. (_01 ‘0) for FEDC, FCEC
. %(‘lﬁ k) for FCPH FCEH pHDC pHEC
° % (\% f) for FgEH, FgEC
° %(:/% \?) for FgDH
. ;(“f _lﬁ) for FJIDH  pHEN

C3C3C3— type:
FFF FCH ccce HCF HHH
o —1 for Fgo o Fg=", Fg=~, Fg , Fg
1 1 2
1 —2| for FEFF FECC, FHHH
V2 0

1 FFC pCCF CCH pHHC
forFC N A

[ ]
Nl —

1
_11) for F[I;FH’ FI{_THH’ F[I;IFF’ FI{:IHF

FCF FHF CFC CHC HFH HCH
for FECF, pEHE pCFC pCHC pHEH pl

S e
\o_;_t——b—sl'—‘

2\—-11

X

1 FCC CFF pCHH pHCC
)forFF N R S O+

A. 2 The rest of R-symbols

Beside the R-symbols at the beginning of the section, the rest are:
e | for
A fe B 8o Rp s Rp s Be
e —1 for
R(B;G, RgF,RgC, RE]H’ RgB, R;B, RgF, RgB, Rgc’ RZB’ RQD, R?D, RgD
o ifor REP REB REF, REC REE RGE, REE, REP
o —i for REE REF RPC REB REP RCP, RPE, RRE, REP REP
o ? for
RGC, RGE RGC, REH REH REC REC, REH, RGC RSF, RCH, RAP RHE,
R(I;‘{F7RgC9RZH’RgE
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2 GG pDD

o —w” for Ry"Y, R5
e o for

GG GD GE GF GC DG EG FG FC FH CcG CF CH
R(I;{F,R%C,R%IJRCEE,RF s Rp7,REY, RV, Ry, RG™, REY, Ry, R,
RG ’RGD’DRAHI;RH
—o for Rg", Ry
wi for RGE, REC

. GD pDG pDE pED
—wi for Rg”, Rg”, Rg", Ry
w?i for REH, RHE

2. DE pED pDH pHD
—a)lforRG s REY, R, Ry

Appendix 2: Representations of braid group 14

In this appendix, mathematically, we study whether or not the representations of 34
are irreducible and identify the images of those representation on each irreducible
summand. We will refer to each irreducible summand as a sector. For our application
to anyonic quantum computation, we also determine whether or not there are unitary
transformations (braiding quantum circuits) in the images that are powerful for quan-
tum computation, especially whether or not these circuits lead to a universal gate set.

We will provide explicitly the braiding matrices for o1, 02, 03 and then compute
what is the group generated by them. Without loss of generality, we may multiply
the o; 's by a common factor so that they all have determinant = 1 (Note that all the
o;’s are conjugate to each other). We still denote the new representation by p(m, z).
We will focus on sectors which are three-dimensional. In this case, the images of the
representation on such sectors are subgroups of SU(3). As will be seen later, some
interesting subgroups of SU(3) will arise as the image.

As in Sect. 2, the representations are denoted by p(m, z) on the space V""",
which corresponds to the following splitting tree:

m m m m

z

Our results are summarized in Tables 3 and 4 in Sect. 2. Now we examine each
representation explicitly in the following subsections.

Remark 2 The matrices o;’s depend on the fusion rules of the two anyons m, the
6 j-symbols and the R-symbols R7"". From this point of view, the anyons A and B are
not interesting because their R-matrices are trivial. It follows that their representations
are also projectively trivial. Also, the anyons C and F' have identical R-matrices. D

@ Springer



Universal quantum computation with weakly integral anyons 2719

and E are identical if we multiply the R-matrices of D by —1. Similarly, G and H are

identical if we replace w = —% + @ in the R-matrices of G by its complex conjugate.
Therefore, it suffices to consider the cases where the anyon m is C, D, and G.

B. 1 Representations on VZCCCC

There are three choices for z that make the following splitting tree admissible, namely
A,BorC.

C C C C

B.1lz=A

The basis of V<CCC is {|AA), |[BB), |CC)}. Under this basis,

-1 0 0 [ -1 V2
opr=03=(0 1 0 O'2=—§ —1 1 V2
0 0 -1 V2 V20

This representation splits into two sectors S and S», where S; is a 1-dim irrep
mapping o; to —1 and S is a 2-dim irrep spanned by {|BB), ?MA) — é|CC)}.
The matrices of the o; 's under the basis of S, are given by:

61=0“3=i((1) _01) 02:%(—_«}? _1/5)

They generate a group which is isomorphic to Z3 X Zj.

B.1.2z=B

The Hilbert space V§ €€ is also three-dimensional with basis {|CC), [AB), |BA)}.
The matrices of the o; s are given by:
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-1 0 0 ([0 V2 =2
oi=10 =1 0 02 =—3 -2 1 -1
0 0 1 -2 -1 1
-1 0 0
oa=10 1 0
0 0 -1

The representation is irreducible with image isomorphic to the permutation group
Sa.

B.13z=C

The Hilbert space VECCC is five-dimensional with basis {|CC), |AC), |CA), |BC),
|CB)}. And the image of the o; 's is given by :

1 0 0 0 O 1 0 0 0 0
01 0 0 O 1 0 1 1 1 -1

or=10 0 1 O O op==-10 1 I -1 1
000 -1 0 2o 1 =1 1
00 0 0 1 0 -1 1 1 1
1 0 0 0 O
01 0 0 O

o3=10 0 I 0 O
00 0 1 O
00 0 0 -1

VCC CCC gplits into the direct sum of two trivial irreps and a 3-dim irrep V. V has a

basis {%(MC) — |CA)), |BC), |CB)}. Under this basis, the o; 's have the following
image:

-1 0 0 [0 V2 V2 -1 0 0
oo=10 1 0 0r=—3 V21 1 o3=|0 -1 0
0 0 -1 -2 1 1 0 0 1

And they generate a group which is also isomorphic to Sy.
Therefore, if we braid four anyons C, then all the images of the representations are
very small.

B. 2 Representations on V2PPP

There are six choices for z, namely A, B, C, F, G and H. By Remark 2, we only need
to consider cases where z = A, B, F and G.

@ Springer



Universal quantum computation with weakly integral anyons 2721

D D D D

B.2.1z=A

The space VPPPP is five-dimensional with basis {|AA), |GG), |FF), |CC), |HH)}.
Under this basis, the matrices of the o; ’s are as follows:

1 0 0 0 O
0 o> 0 0 0
op=03=]0 0O 1 0 O
0 0 0 1 0
0 0 0 0 w

2 V2+46i 0 2V2 272 =2 —6i
| —V2+V6i  1+V3i 1-3i 1—-43i 4
o= 272 1 —/3i 4 ) 14+ /3i
22 1 —/3i -2 4 14+ +/3i
—/2 — V6i 4 1+3i 14+/3i  1-4/3i

where w = —% + @ is a third root of unity.

This representation splits into the direct sum of two trivial representations and a
three-dimensional sector S, which is spanned by the basis {|GG), |HH), %(—\/E |AA)
+ |CC) + |FF))}. The representation on S is generated by the following matrices:

®* 0 0 { 1+ /3i 4 2 —2./3i
oi=o3=|0 o 0 o =2 4 1—3i 2+23i
0 0 1 223 2+4+23i -2

They generate a group of order 12 which is isomorphic to A4, the alternating group.

B.2.2z=8B

VPPPD is four-dimensional with basis {|GG), |FF), |CC), |H H)}. The matrices of
the generators are as follows:

@ Springer



2722 S. X. Cui et al.

> 0 0 0
0 1 0 0
A=B=10 01 0
0 0 0 w

3—-V3i 34+3i 3+4/3i 0

oy L[3 43 0 -2v3  -343i
276 |3+v3  —2v3 0 3 — 3
0 3443 3—43i 3443

This representation splits into the sum of two two-dimensional sectors S and
S>, where S; is spanned by {|GG), \%(ICC) + |FF))}, and S, is spanned by

(IHH), 55(FF) = |CC)).
On the sector S7, the generators have matrices:

w 0 1 _E e
0] =03 = o) = 2 .6 3 .
0 o N6 1 30

3 2 6

They generate a group of size 24 which is isomorphic to SL(2, F3). Modulo the
center, we get Aj.
The representation on the other sector $; is exactly the same of that on Sj.

B 2.3z=F

The space VFDDDD is nine-dimensional and has a basis {|F F), |AF), |FA), |GC),
|CG),|GH),|HG), |CH), |HC)}. The generators of 34 have the following matrices:

o] = 1

o3 = w
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0y =

W | =

€& — — ~—
[SS IS

S —=

w

HSNS — 8 = = =

e
()

1
1
1
1
w
w

S

w
w

N

1

e
o

S

€ = =
[38)

— = = g

S
o

—_— »—»—SNS»—

SI\)S —_—

S

— & =
[SS]

S

€ —

S}

S

w— €

€ — = ¢
[\

& —~ =

SNS

E mm = =
[3S]

— &

This representation splits into the sum of a 1-dim trivial representation and an 8-dim
irrep. The 1-dim irrep is spanned by the element \/Lg (|FF)+|AF)+|FA)). The 8-dim
irrep has an image in U(8) of size 216 which is isomorphic to the famous Hessian
group > (216) in physics literature. The following is a presentation of >_(216) from
analyzing the matrices of the generators o;:

< a,b, claba = bab, bcb = cbc, ac = ca, a’ = (ab)6 = (bc)6 = (abcaba)2 =1>.
As an abstract group, it is isomorphic to ((Z3 x Z3) x Qg) X Z3, where Qg is the

quaternion group of order 8.
We will see this group again later.

B2.47z=G

The space VFPPP is also nine-dimensional with a basis {|GG), |AG), |GA), |FC),
|ICF),|FH),|HF),|CH),|HC)}. As always, we first look at the matrices of the
o;'s:

o] = 1

o3 = 1

@ Springer



2724 S. X. Cui et al.

1l o o o o* 1 1 1 1

o 1 o 1 1 1 & 1 o?

o o 1 1 1 &* 1 & 1

1 w? 1 1 1 o 1 w 1
==l 1 1 o* 1 o 1 1 o
Sl I T T N R
I @* 1 o 1 1 1 o o?

I 1 o o 1 o* o 1 1

1 o* 1 1 o o o 1 1

The representation splits into the sum of a 6-dim irrep and a 3-dim irrep.

Denote this 3-dim irrep by W, which is spanned by the basis {\/LE( |FC) —
|CF)), \%(|CH) —|FH)), \%QHF) — |HC))}. If we use this subspace W as com-
putational space, we will have a qutrit. The three basis elements above correspond to

[0), 1), 12).
Under this basis, the matrices of the o; 's(unnormalized) on W are as follows:

1 0 0 1 0 0
g = 0 1 0 03 = 0 w 0

0 0 w 0 0 1

1 NG 1 J3i 1 3

3+% 3t %
o= |-f+ [+ -f4+

1, 3 1, 3 1, 3

—2+t% —at% 2t %

The group generated by them has order 648 with a center of size 3. The elements
in the center are scalar matrices. And the group modulo center has order 216 which is
isomorphic to the Hessian group > (216).

B. 3 Representations on VZGGGG

The possible choices of z are A, B and G.
G G G G
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B.31z=A

The space V69C is three-dimensional with a basis {|AA), |BB), |GG)}. Under this
basis, the matrices for the generators o; s are given by

> 0 0
or=03=1[ 0 —?* 0
0 0 w
1 1. 1.2
E(,() 2(,() ﬁ(,()
1 1 1 2
o) =T _260 2&) ﬂw
1.2 1 2
ﬁa) ﬁ“) 0

where t = ¢~ .
This representation is irreducible, and the group generated by them has a structure
of (Zg x Z:3) x S3 with order 162, which is isomorphic to the group D(9, 1, 1; 2, 1, 1).
We recall the definition of D(n, a, b; d, r, s) below. For more information about
this type of subgroups of SU(3), see [12].

Let
01 0 ) 0
E=(0 0 1 F=Fmab=| 0 3" 0
00 0 0 G
2mir
e d 0 0
G=Gd,rs)=| o 0 e
2mi(—r—s)
0 —e  d

Then D(n,a,b;d,r,s) =< E, F(n,a,b),G(d,r,s) >.
Actually one can show that the group generated by the o; s is isomorphic to
D@9, 1,1; 2,1, 1) via a conjugation by some unitary matrix.

B.32z=B

VBG GGG s also three-dimensional with a basis {|GG), |AB), |BA)}. The matrices of
the o; 's are given by

o 0 0 w 0 0
or=1(0 o? 0 o3=1|0 —0? 0
0 0 —o? 0 0 ?
1.2 _1.2
0 ﬁa) ﬁa)
1 1 1
o) =T —ﬁaﬁ Ea) —Ea)
12 1 1
—\/—EO) —§a) EC()

where 7 = e~ 9.
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Again this representation is irreducible, and they generate a group with structure
(Z13 x Zg) »x S3, which is isomorphic to the group D(18, 1, 1; 2, 1, 1) [12]. So it has
order 648.

Let
0 0 1
1 1
r=ln % °
A L 9
V2 V2

Direct calculations show that conjugation by the matrix p gives the isomorphism
from our group generated by the o; 's to D(18, 1, 1; 2, 1, 1).

B.337z=G

VEGGE is now five-dimensional with a basis {|GG), |AG), |GA), |BG), |GB)}. The
matrices of the generators o; 's are as follows:

o 0 0 0 0
0 o> 0 0 0
0 0 0 —w* 0
0O 0 O 0 w
w 0 0 0
0 %a) sz %w —%a)z
1 1 1 1
0y = O za)2 za) —50)2 Qa)
0 %a) —%a)2 %a) %a)z
0 —%a)2 %a) %a)2 %a)
wo 0 0 0 0
0O o 0 O 0
o3=|0 0 > 0 0
0 0 0 w 0
0 0 0 0 —ow?

It is obvious that |GG) is a common eigenvector of the o; ’s. So it spans a 1-dim
irrep of B4. The orthogonal complement spanned by the other 4 basis elements is a
4-dim irrep.

The group generated by the o;’s has order 648. And GAP shows that it has a
structure of (((Zz x ((Zz X Z3) X Zo)) X Zn) X Z3) X Zn.
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