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Abstract Harnessing non-abelian statistics of anyons to perform quantum compu-
tational tasks is getting closer to reality. While the existence of universal anyons
by braiding alone such as the Fibonacci anyon is theoretically a possibility, acces-
sible anyons with current technology all belong to a class that is called weakly
integral—anyons whose squared quantum dimensions are integers. We analyze the
computational power of the first non-abelian anyon system with only integral quan-
tum dimensions—D(S3), the quantum double of S3. Since all anyons in D(S3) have
finite images of braid group representations, they cannot be universal for quantum
computation by braiding alone. Based on our knowledge of the images of the braid
group representations, we set up three qutrit computational models. Supplementing
braidings with some measurements and ancillary states, we find a universal gate set
for each model.
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1 Introduction

Harnessing non-abelian statistics of anyons to perform quantum computational tasks is
getting closer to reality.While the existence of universal anyons by braiding alone such
as the Fibonacci anyon is theoretically a possibility [15,19], accessible anyons with
current technology all belong to a class that is called weakly integral (WI)—anyons
whose squared quantum dimensions are integers. A famous WI anyon is the Ising
anyon σ with dσ = √

2, which is believed to model the non-abelian quasi-particle in
the fractional quantum Hall liquids at ν = 5

2 [17]. Other WI anyons with Property
F [16] include the metaplectic anyons [6,7] and those in quantum double of finite
groups [5]. Certain topological defects or ends of 1D nanowires also behave as WI
anyons [2,10]. It is conjectured that all WI anyons have finite images of braid group
representations [16], if so then they cannot be universal for quantum computation by
braiding alone.

In this paper, we analyze the computational power of the anyon system D(S3)—the
quantum double of S3. D(S3) is the first non-abelian anyon system with only integral
quantum dimensions [4]. There are 8 anyon types in the theory, which are denoted by
A, B,C, D, E, F,G, H as in [3] with quantum dimensions {1, 1, 2, 3, 3, 2, 2, 2}. It is
known that all braid images are finite [5]. It follows that to obtain a universal quantum
gate set, we have to go beyond braiding. The natural extra resources are measurements
and ancillary states. Using measurement to gain extra computational power is tricky
because universal quantum computation can be performed by measurement alone.
Similar caution applies to ancillary states as cluster state quantum computation shows.
Therefore, we have to be careful in choosing physically reasonable extra resources
from measurements and ancillary states.

In [9] (see also [13]), the anyon of quantum dimension dD = 3, denoted as D,
is made universal for quantum computation by encoding a qutrit in the A,C fusion
channels of a pair of D anyons. In the usual anyonic quantum computing model,
two fusion channels such as A,C of a pair of D anyons would be used to encode a
qubit instead of a qutrit, but the authors split the single fusion channel C into a two-
dimensional internal computational space because the anyonC is the two-dimensional
representation of S3. Since D(S3) is a discrete gauge theory, this encoding is justified
on physical ground and computation is performed using only the color (topological)
degrees of freedom of anyons. Universality based on similar encodings for other finite
groups is established in [14,18]. In this paper, we follow the usual scheme in anyonic
quantum computation by encoding information in the subspace of anyonic fusion
tree basis without splitting any fusion channels, i.e., the computational subspace is
spanned by basis elements from labeling a single fusion tree. Since two pairs of D
anyons has 9 fusion channels, we have many choices of encoding a qutrit by choosing
a three-dimensional fusion subspace. Based on our analysis of the representations of
the braid groups, we propose three different encodings of qutrits: one with 3 fusion
tree bases, and two with superpositions of fusion tree bases. It is possible, as suggested
by Kitaev to the third author, that the splitting of the fusion channel C as in [9] can be
understood as a non-local encoding using superpositions of different fusion trees. Note
that in the encoding in [9], there is a bureau of standards, which is mathematically a
based frame.
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Universal quantum computation with weakly integral anyons 2689

The contents of the paper is as follows. In Sect. 2, we provide the detail of our
adaptive anyonic quantum computing models and prove that a qutrit gate set conve-
nient for our purpose is universal. There are three natural choices in our setup that
are called U -model, V -model and W -model, respectively. We also define the mea-
surements and ancillary states that we are going to use later. In Sect. 3, we prove
that the U - and V -models are universal when braidings are supplemented by the two
measurements defined in Sect. 2, and the W -model needs the extra ancillary state to
become universal. Our major technical advance is organized into two appendices. We
obtained complete solutions of all modular categories with the same fusion rules as
D(S3). But to save space, we list in “Appendix 1” only the complete data for the cat-
egory D(S3). For this paper, any other theory will work equally well. The complete
list of data in “Appendix 1” is used in “Appendix 2” to analyze the images of the
braid group representations of B4. We give complete information of the finite images
as abstract groups and as concretes matrices with respect to the computational bases
of our models. These matrices are braiding quantum circuits of our models. Many
interesting finite groups such as the Hessian group of order 216 appeared as images
of braid group representations.

2 Adaptive anyonic quantum computing model

A pure anyonic quantum computing model as illustrated by Fig. 7.1 in [21] is to
implement a circuit by braiding alone. Measurement is only done in the end by fus-
ing anyons together. In particular, we are not allowed to do measurements in the
middle of the computation. Unlike the standard circuit model, a computation with
measurements during the computing process is not always equivalent to one that all
measurements are postponed to the end of the computation. Since WI anyons pro-
vide only very limited circuits by braiding alone, we have to rely on other resources
to obtain a universal gate set. The obvious places to look for are measurements in
the middle of the computation and ancillary states. Since measurements of anyon
charges beyond fusing two anyons are subtle, we want to do as little measure-
ment as possible so that we do not decohere or leak the protected information in
the computational subspace. In this section, we use D(S3) to illustrate such adap-
tive models that braiding gates are supplemented with measurements and ancillary
states. Our goal is to find minimal extra resources beyond braidings to obtain a
universal gate set. Therefore, though important for physically realizing the extra
resources, we will not justify our choices of measurements or ancillary states phys-
ically. Another important issue that we did not address is the issue of leakage. We
think there is no damaging leakage in our model, but will leave a careful analysis to
the future.

2.1 The integral anyon system D(S3)

The irreducible representations (irreps) of the quantum group D(S3), called the Drin-
feld double or quantum double of S3, correspond to pairs (C, ρu), where C is a
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2690 S. X. Cui et al.

conjugacy class of S3, u an element in C and ρu an irrep of the centralizer of u in
S3. For a fixed conjugacy class C , the corresponding irreps of D(S3) do not depend
on the choice of the element u. There are three conjugacy classes of S3, namely
C1 = {e}, C2 = {(12), (23), (13)}, C3 = {(123), (132)}. For C1, the centralizer of e
is S3, which has three irreps, i.e., the trivial one, the sign one and the two-dimensional
one. We denote them by A, B and C , respectively. For C2, we pick (12) and its cen-
tralizer is isomorphic to Z2, which has two irreps. We denote the trivial one by D
and the other one by E . For C3, the centralizer of (123) is isomorphic to Z3, which
has three irreps, all of which are one-dimensional. More precisely, they correspond

to mapping the generator of Z3 to 1, ω = e
2π i
3 = − 1

2 +
√
3i
2 and ω2. We denote

these three irreps by F , G and H , respectively. Therefore, there are in total 8 irreps
of D(S3). As a unitary modular category, Rep(D(S3)) has 8 isomorphism classes
of simple objects. Since simple objects in unitary modular categories model anyons,
we also call them anyon types. The 8 anyon types were denoted by A, B, C , D, E ,
F , G and H . In the discrete gauge theory, an anyon of type A is called the vacuum;
anyons of types B and C are purely electric charges; anyons of types D and F are
purely magnetic fluxes; while anyons of types E , G and H are dyons. We will not
always distinguish between anyon types (isomorphism classes of simple objects) and
anyons (simple objects) carefully because for D(S3) this distinction will not make any
difference. Detailed explanations of the quantum double of S3 can be found in many
references, e.g., [3,11].

We list the irreps of D(S3) and their quantum dimensions in Table 1 and the fusion
rules in Table 2.

Table 1 D(S3)

Flux (conjugacy class) Centralizer Charge qdim

C1 = {e} Z(e) = S3 1, −1, 2 1, 1, 2

C2 = {(12), (13), (23)} Z((12)) = Z2 = {e, (12)} +,− 3, 3

C3 = {(123), (132)} Z((123)) = Z3 = {e, (123), (132)} 1, ω, ω̄ 2, 2, 2

Table 2 Fusion rules of D(S3)

⊗ A B C D E F G H

A A B C D E F G H

B B A C E D F G H

C C C A⊕B⊕C D⊕E D⊕E G⊕H F⊕H F⊕G

D D E D⊕E A⊕C⊕F⊕G⊕H B⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E

E E D D⊕E B⊕C⊕F⊕G⊕H A⊕C⊕F⊕G⊕H D⊕E D⊕E D⊕E

F F F G⊕H D⊕E D⊕E A⊕B⊕F H⊕C G⊕C

G G G F⊕H D⊕E D⊕E H⊕C A⊕B⊕G F⊕C

H H H F⊕G D⊕E D⊕E G⊕C F⊕C A⊕B⊕H
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Universal quantum computation with weakly integral anyons 2691

The modular representation of SL(2, Z) is given by:

T = diag(1, 1, 1,−1, 1, 1, ω, ω2).

S = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 3 3 2 2 2
1 1 2 −3 −3 2 2 2
2 2 4 0 0 −2 −2 −2
3 −3 0 3 −3 0 0 0
3 −3 0 −3 3 0 0 0
2 2 −2 0 0 4 −2 −2
2 2 −2 0 0 −2 −2 4
2 2 −2 0 0 −2 4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2 Fusion tree basis

An anyon c can split into a pair of anyons (a, b) if the triple (a, b, c) is admissible
[21]. We denote this process by

a b

c

The anyon a can continue to split into another pair of anyons. Consider the following
splitting tree:

a b c

m

d

There is a Hilbert space V abc
d for the 4 anyons a, b, c, d, where the labeled splitting

trees with choices of anyon m that make the splitting tree admissible at each trivalent
vertex formabasis ofV a,b,c

d .We imagine the splitting process as going from the bottom
to the top and then the fusing process going from the top to the bottom. Therefore, we
will often also refer to a splitting tree as a fusion tree.

We also have another splitting tree.

a b c

m

d
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The labeled fusion trees provide another basis for the same Hilbert space V abc
d .

Hence, there is a transformation matrix F that relates these two bases, which is called
an F-matrix.

a b c

m

d

=
n

F abc
d;nm

a b c

n

d

Assume that the fusion tree on the left-hand side of the above equation is the jm-th
basis element and the fusion tree on the right-hand side is the in-th basis element in
the other basis. Then Fabc

d;nm will denote the (in, jm)-entry of Fabc
d when the theory has

no multiplicities in the fusion rules such as D(S3). The numerical values Fabc
d;nm are

called 6 j symbols. In the following, we always assume that there are no multiplicities
in the fusion rules, i.e., the fusion coefficients are either 0 or 1. The matrices Fabc

d can
be chosen to be unitary for a unitary theory.

Remark 1 For the case of D(S3), recall that the eight anyon types are denoted by
A, B, C, D, E, F, G; and H . For some reason, we order the basis elements in
the order A, B, G, D, E, F, C, andH . This is the order we use to compute the
F-matrices in “Appendix 1.” For example, the basis for the following fusion tree is
{A, G, F, C, H}.

D D D

x

D

The Hilbert space V ab
c associated with the following splitting tree is one-

dimensional.

a b

c

Braiding the two anyons a, b corresponds to a unitary transformation Bab
c from

Vab
c to V ba

c . The image of the fusion tree basis of V ab
c under Bab

c is a scalar multiple
of the chosen fusion tree basis of V ba

c . This scalar is denoted by Rba
c , which is called

the R-symbol.
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a b

c

b a

=Rba
c

ab

c

The 6 j-symbols and R-symbols are the data needed to compute the amplitudes
of creating anyons from the vacuum, braiding some of them and then fusing them
back to the vacuum. The approximation of these probabilities for such processes is the
output of anyonic quantum computational models. Similar orthonormal basis exists
for any Hilbert space V ab...c

x . Protected information is encoded into some subspaces
of V ab...c

x , which are called computational subspaces. There are no canonical choices
of computational subspaces.

2.3 Encoding of qudits

Consider the following fusion tree:

m m m m

x y

z

Namely, we start with an anyon of type z and split it into 4 anyons, all of which
have the same anyon type m. All the pairs of (x, y) that make the above splitting
tree admissible form a natural basis of Vmmmm

z . We denote them by {|x, y;m, z〉}.
When there is no confusion, we will use the abbreviation |xy〉 for |x, y;m, z〉. We
use this basis of the Hilbert space Vmmmm

z or linear combinations of some of them
as our computational basis for a 1-qudit. For a particular theory, this Hilbert space
is not big enough for all qudits, but usually we are only interested in a qubit or a
qutrit.

To carry out computation, we can braid the first anyon m with the second, the
second with the third and the third with the fourth anyon. Each of them corresponds to
a unitary transformation on Vmmmm

z ,which we denote by σ1, σ2 and σ3, respectively.
Moreover, they satisfy the relation:

σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1.
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2694 S. X. Cui et al.

This is just the relation that defines the braid group B4 on three generators. So we
obtain a unitary representation of B4 on Vmmmm

z , which we denoted by ρ(m, z). The
computational power of the theory depends on the image of ρ(m, z) in the special
unitary group SU(Vmmm

z ).

Definition 1 Given Vmmmm
z , we will call the unitary representation matricesU (b) for

braids b the braiding quantum circuits. The special braiding circuits U (σ±
i ) for the

braid generators σ±
i will be called the braiding gates.

The same terminologies are extended to multi-anyons for multi-qudits.

Since our computational space is always a subspace of the braid group represen-
tation, the quantum circuits obtained from braiding quantum circuits are really their
restrictions to the computational subspace. We will not make this distinction when no
confusion will arise.

Now we specialize to D(S3). In order to compute the braiding matrices, we
need all the 6 j-symbols and R-symbols. For D(S3), all of them are listed in
“Appendix 1.” To analyze the computational power of 1-qudit braiding circuits, we
need all the representation matrices of B4. We systematically analyzed all B4 rep-
resentations in “Appendix 2.” These two important appendices are our technical
advance.

The natural choice will be to encode a qudit in V DDDD
A . Unfortunately, we did not

succeed in finding a model that could be made universal even with measurements and
ancillary states. Therefore, we turn to V DDDD

G based on our knowledge of the braid
group representations:

D D D D

x y

G

The space V DDDD
G is nine-dimensional with a basis {|GG〉, |AG〉, |GA〉, |FC〉,

|CF〉, |FH〉, |HF〉, |CH〉, |HC〉}. LetU = span{|GG〉, |AG〉, |GA〉}, V = span{ 1√
2

(|FC〉+|CF〉), 1√
2
(|FH〉+|CH〉), 1√

2
(|HF〉+|HC〉)} andW = span{ 1√

2
(|FC〉−

|CF〉), 1√
2
(|CH〉−|FH〉), 1√

2
(|HF〉−|HC〉)}. To remind ourselves that these bases

are used as computational basis, we also write them as {|0〉x , |1〉x , |2〉x , }, x =
U, V, W , where the subscript x indicates which subspace we are referring to, e.g.,
|0〉U = |GG〉.The representation ofB4 splits into the direct sum of a 6-dim irreducible
summand U ⊕ V and a 3-dim irreducible summand W .

To encode 2-qutrits, we consider the following fusion tree:
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D D D D

x1 y1

G

D D D D

x2 y2

G

G

The 2-qutrits are the tensor product of the two qutrits on the two branches. This
encoding of 2-qutrits is called the sparse encoding because encoding with fewer
anyons, called the dense encoding, is also possible. To encode n-qutrits, we sim-
ply use the tensor product of n such branches, so there are totally 4n anyons. See
Fig. 1.

We will refer to the three qutrit models that encode 1-qutrit in the subspaces U ,
V and W , respectively, with the computational bases above as the qutrit U-model,
V-model and W-model, respectively.

To analyze these models, we systematically investigate all relevant braid group
representations in “Appendix 2.” Our results are summarized below in Tables 3 and 4.

Table 3 list of the dimensions and bases of Vmmmm
z , and Table 4 the basic prop-

erties of the representations ρ(m, z). In Table 4, for each pair of anyons (m, z), the
corresponding row lists the dimension of the representation Vmmmm

z , the dimension
of each irreducible subrepresentation in Vmmmm

z and the image of the braid group on
each irreducible subrepresentation.

Note that the group of order 648 in the last row of Table 4 is isomorphic, as an
abstract group, to (((Z3 × ((Z3 × Z3) � Z2)) � Z2) � Z3) � Z2. This isomorphism
is given by the software package GAP.

Fig. 1 Encoding of n qutrits D DD D

G

D DD D

G

D DD D

G
· · ·

···

G

G

G
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2696 S. X. Cui et al.

Table 3 Dimension and basis of Vmmmm
z

m, z Dimension Basis

C, A 3 |AA〉, |BB〉, |CC〉
C, B 3 |CC〉, |AB〉, |BA〉
C,C 5 |CC〉, |AC〉, |CA〉, |BC〉, |CB〉
D, A 5 |AA〉, |CC〉, |FF〉, |GG〉, |HH〉
D, B 4 |CC〉, |FF〉, |GG〉, |HH〉
D,C 9 |CC〉, |AC〉, |CA〉, |GF〉, |FG〉, |GH〉, |HG〉, |FH〉, |HF〉
D, F 9 |FF〉, |AF〉, |FA〉, |GC〉, |CG〉, |GH〉, |HG〉, |CH〉, |HC〉
D,G 9 |GG〉, |AG〉, |GA〉, |FC〉, |CF〉, |FH〉, |HF〉, |CH〉, |HC〉
D, H 9 |HH〉, |AH〉, |H A〉, |GF〉, |FG〉, |GC〉, |CG〉, |FC〉, |CF〉
G, A 3 |AA〉, |BB〉, |GG〉
G, B 3 |GG〉, |AB〉, |BA〉
G,G 3 |GG〉, |AG〉, |GA〉, |BG〉, |GB〉

Table 4 Summary of the representations ρ(m, z) on Vmmmm
z

m, z Dimension of
Vmmmm
z

Dimension of each
irrep in Vmmmm

z

Image of ρ(m, z) on each irrep

C, A 3 2 1 Z3 � Z4 1

C, B 3 3 S4
C,C 5 3 1 1 S4 1 1

D, A 5 3 1 1 A4 1 1

D, B 4 2 2 SL(2, F3) SL(2, F3)

D,C Same as (D, F)

D, F 9 8 1
∑

(216) 1

D,G 9 3 6
∑

(216 ∗ 3)
∑

(216 ∗ 3)

D, H Same as (D,G)

G, A 3 3 D(9,1,1;2,1,1)

G, B 3 3 D(18,1,1;2,1,1)

G,G 5 4 1 Group of order 648 1

2.4 Braiding, measurement and ancilla

Using the encoding above, we can simulate standard qutrit quantum circuits by
braidings of D anyons. Concrete braiding quantum circuits are the braid group repre-
sentation matrices with respect to the fusion tree basis. For 1-qutrit braiding circuits,
we need to know the representation matrices of B4—the 4-strand braid group, and for
2-qutrit braiding circuits, the representation matrices of B8. Since both collections of
matrices are finite [5], they are not sufficient to simulate the standard qutrit circuit
model.
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Universal quantum computation with weakly integral anyons 2697

To gain extra computational power, we consider measurement and ancilla. In anyon
theory, there are twokinds ofmeasurements to determine the total charge of a collection
of anyons: projective and interferometric. Both types of measurements always lead to
some decoherence in the model. Therefore, ideally we should only use them at the end
of the computation. Since we cannot avoid using them for WI anyons, we will allow
ourselves to determine whether or not the total charge of two anyons is trivial in the
middle of the computation. Then based on the outcome, we choose how to continue
our computation. For this reason, we call such models adaptive.

Measurement 1 LetMA = {�A,�A′ } be the projective measurement onto the total
charge=A sector and its complement. ThenMA allows us to distinguish between the
anyon A and other anyons, namely check whether a anyon is trivial or not. Moreover,
the state after measurement for each outcome is still coherent.

The next measurement that we use is problematic, but it is unavoidable due to
our choices of computational subspaces. It allows us to project states back to the
computational subspaces.

Measurement 2 Let S be a subspace of an anyonic space and S⊥ be its orthonormal
complement. Then MS = {�S,�S⊥} is the projective measurement that projects a
state to S or S⊥.

For example, applying MS to S = U in V DDDD
G , we obtain the orthogo-

nal projection to U = span{|GG〉, |AG〉, |GA〉} and its orthogonal complement
V ⊕ W = span{|FC〉, |CF〉, |FH〉, |HF〉, |CH〉, |HC〉}.

The main result of the paper is that braiding supplemented by measurements MA

and MU leads to a universal gate set for the U -model and V -model. To make the
qutrit W -model universal, we need to use the extra ancillary state:

Ancilla 1 The state in the following picture is denoted by |H〉A.

D D D D

H H

A

Then our second result is that braiding supplemented by measurements MA and
MU and ancillary state |H〉A leads to a universal gate set for the W -model.

2.5 A universal gate set for qutrits

Theoretically, there is no advantage to use qutrits instead of qubits. But there are anyon
systems that are more natural to choose qutrits rather than qubits. This is the case when
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2698 S. X. Cui et al.

we useWI anyons of quantum dimensions 3 or
√
3 for anyonic quantum computation.

Moreover, there are some better numbers for qutrits distillation protocols which might
provide some benefits for engineering [1,8]. In this section, we prove that a particular
convenient qutrit gate set for our purpose is universal for the standard qutrit circuit
model.

The generalized Hadamard gate for qutrit is the following:

h = 1√
3

⎛
⎝
1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠,

where ω = e
2π i
3 .

The SUM gate for qudits is a generalized version of CNOT , which maps basis
element |i, j〉 to |i, i + j mod 3〉. To state our theorem, we need to define another
measurement:

Measurement 3 LetM|0〉 = {�|0〉,�|0〉⊥} be the projective measurement that is the
orthogonal projection to span{|0〉} and its orthogonal complement span{|1〉, |2〉} in
a qutrit.

Theorem 1 The 1-qutrit classical gates, generalized Hadamard gate, SUM gate and
Measurement 3 form a universal gate set for the standard qutrit quantum circuit model.

2.5.1 Proof of Theorem 1

We fix |0〉 and |1〉 as a qubit and show that we can implement a universal set of qubit
gates. More explicitly, we use the two-dimensional subspace C

2 = span{|0〉, |1〉}
inside C

3 = span{|0〉, |1〉, |2〉} to do computations. During the computations, we will
go out of the subspace C

2, and eventually come back to it. Though unnecessary, we
can deduce universality for the qutrit models by encoding a qutrit with two qubitsC

2⊗
C
2 ⊂ C

3 ⊗ C
3. That is, we use |00〉, |01〉, |10〉 to encode |0〉, |1〉, |2〉, respectively.

And the basis element |11〉 is left unused.
Our strategy of proof follows from that of [9], and some of the lemmas below are

stated in [9] as exercises.
Note that with 1-qutrit classical gates, the generalized Hadamard gate h and Mea-

surement 3, we can easily construct the following ancilla and measurements:

1. |i〉, i = 0, 1, 2.
2. |̃i〉 = ∑2

j=0 ωi j | j〉 = h|i〉, i = 0, 1, 2.
3. Projection of a 1-qutrit state to any computational state, preserving the coherence

of the orthogonal complement. For example, projection to span{|0〉, |1〉} and its
complement span{|2〉}.

4. Measurement of a qutrit in the standard computational basis.
5. Projection to span{|̃1〉, |̃2〉} and its complement span{|̃0〉}
6. Measurement of a qubit in the standard basis if we take {|0〉, |1〉} as the computa-

tional basis. This follows from 4).
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From the set of operations given in Theorem 1, we show that we can construct the
qutrit (qubit) gates (measurements) in Lemmas 1, 2 and 3.

We define the qutrit gate FLIP2 by the map: FLIP2|0〉 = |0〉, FLIP2|1〉
= |1〉, FLIP2|2〉 = −|2〉.
Lemma 1 The gate FLIP2, can be constructed.

Proof To obtain FLIP2, we first construct the ancilla |ψ〉 = 1√
3
(|0〉 − |1〉 + |2〉) as

follows.
Prepare the state |̃1〉|̃2〉 and project each qutrit to the space span{|0〉, |1〉} to obtain

the state |η〉 = 1
2 (|0〉 + ω|1〉) ⊗ (|0〉 + ω2|1〉). Apply the SUM gate to |η〉 and then

project the first qutrit of the resulting state to the space span{|̃0〉}. It is easy to see on
the second qutrit we get the state |ψ〉.

Now for a state |φ〉 = c0|0〉+c1|1〉+c2|2〉, apply the SUM gate to |φ〉|ψ〉 and then
measure the second qutrit in the standard basis. If the outcome is |0〉, then the first qutrit
is c0|0〉+c1|1〉−c2|2〉. If the outcome is |1〉, then thefirst qutrit is−c0|0〉+c1|1〉+c2|2〉,
and if the outcome is |2〉, then the first qutrit is c0|0〉 − c1|1〉 + c2|2〉. Moreover,
the probability for each case is 1

3 . Therefore, this process changes the sign of some
coefficient randomly. By repeating this process, we will get the gate FLIP2. 
�
Lemma 2 The 3-qubit gate

∧2
(σz) which maps |i, j, k〉 to (−1)i jk |i, j, k〉 can be

constructed. In particular,
∧

(σz) and σz can be constructed since we have the ancilla
|1〉.
Proof Combining the gate FLIP2 obtained in Lemma 1 and the SUM gate, one can
construct the following 2-qutrit and 3-qutrit gates.

|i, j〉 �−→
{

−|i, j〉 i + j = 2 mod 3

|i, j〉 else
(2.1)

|i, j, k〉 �−→
{

−|i, j, k〉 i + j + k = 2 mod 3

|i, j, k〉 else
(2.2)

When applying them to the state |i, j〉 (or |i, j, k〉), we can describe the above two
gates as “ flip the sign if i + j = 2 mod 3”(or “ flip the sign if i + j + k = 2 mod 3”).

One can check applying the following four gates to a 3-qubit state |i, j, k〉 succes-
sively gives rise to

∧2
(σz).

“ flip the sign if i + j + k = 2 mod 3,”
“ flip the sign if i + j = 2 mod 3,”
“ flip the sign if i + k = 2 mod 3,”
“ flip the sign if j + k = 2 mod 3,”

Note that here i , j , k are either 0 or 1. 
�
Let |±〉 = 1√

2
(|0〉 ± |1〉), which are the eigenstates of the qubit gate σx . Note that

the state |+〉 can be obtained by projecting the state |̃0〉 to the space span{|0〉, |1〉}.
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Lemma 3 Measurement of σx can be constructed on a qubit.

Proof For an arbitrary 1-qubit state α|+〉 + β|−〉, a measurement of σx would result
in the state |+〉 with probability |α|2, and in the state |−〉 with probability |β|2.

We denote the measurement which projects a state to span{|̃0〉} and its complement
span{|̃1〉, |̃2〉} by M1 and denote the measurement which projects to span{|0〉, |1〉}
and its complement span{|2〉} by M2.

Note that |−〉 is orthogonal to |̃0〉 while |+〉 is not. So if a state results in |̃0〉 after
M1, then the corresponding probability only depends on the |+〉 component. We
explain this idea explicitly below to construct the measurement of σx .

Consider the following procedure.

O : α|+〉 + β|−〉 M1 �� output
Pr= 2|α|2

3 ��

Pr=1− 2|α|2
3

������������
|̃0〉 �� |+〉

α|+〉+β|−〉− 2α√
6
|̃0〉√

1− 2|α|2
3

M2 �� output
Pr= 2|α|2

9(1− 2|α|2
3 )

��

Pr= 9−8|α|2
9−6|α|2���������������

|2〉 �� |+〉

α|+〉+3β|−〉√
9−8|α|2

(2.3)

So the procedure O consists of two measurementsM1 andM2. If the outcome is
|̃0〉 after M1 or is |2〉 after M2, then we prepare the state |+〉, namely we take the
appearance of these two cases as the outcome |+〉. The probability for either of these
two cases to happen is 8|α|2

9 . Otherwise, we get the state α|+〉+3β|−〉√
9−8|α|2 with probability

1 − 8|α|2
9 , and then, we iterate the procedure O until the above two cases happen or

the required accuracy is satisfied.
More explicitly, let the resulting state be |ψ〉n = αn|+〉 + βn|−〉 after iterating the

procedureOn times with no |+〉 outcome and let bn be the probability to obtain |ψ〉n
from |ψ〉n−1 via the n-th procedure. Then we have the following equations.

αn = αn−1√
9 − 8|αn−1|2

, βn = 3βn−1√
9 − 8|αn−1|2

, bn =1− 8|αn−1|2
9

= |αn−1|2
9|αn|2 (2.4)

From the above equations ,we have

|αn|2 = |α|2
(1 − |α|2)9n + |α|2 ,

n∏
i=1

bi = |β|2 + |α|2
9n

(2.5)

So the probability for iterating the procedure n times with no |+〉 outcome is

b = ∏n
i=1 bi = |β|2 + |α|2

9n , which is very close to |β|2 when n is large. Moreover,
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|〈+|ψn〉|2 = |αn|2 which is close to zero, namely ψn is almost equal to |−〉 up to
a phase. Therefore, it is reasonable to treat the case that no |+〉 appears within n
procedures for some proper large n, as the outcome |−〉.

To sum up, after iterating the procedure n times, we can get the state |+〉 with

probability 1− b = (1− 1
9n )|α|2 and |−〉 with probability b = |β|2 + |α|2

9n . If we take
n large enough, we get the measurement of σx with required accuracy.

Lemma 4 [13] The following set of qubit operations are universal for quantum com-
putation:

1. Create the state |±〉 = 1√
2
(|0〉 ± |1〉), |0〉 and |1〉

2. Measure σz .
3. Measure σx .
4. The Toffoli gate T = ∧2

(σx ).

For a proof of this lemma, see [13].

Lemma 5 [9] The following set of qubit operations are universal for quantum com-
putation:

1. Create the state |+〉 = 1√
2
(|0〉 + |1〉).

2. Measure σz .
3. Measure σx .
4. The gate

∧2
(σz).

Proof We prove this lemma by showing that the set of operations here can be used to
implement all the operations in Lemma 4.

Since we can measure σx and σz, it is clear that |−〉, |0〉 and |1〉 all can be created
from |+〉. Thus, it suffices to show that the Toffoli gate can be created.

For notational convenience, we also denote |̃0〉 = |+〉, |̃1〉 = |−〉 in the following
proof. The readers should not be confused with this notation and the one we used for
a qutrit, since for the moment we only work in qubit space.

With the ancilla |1〉 and the gate
∧2

(σz), we can get the gates
∧

(σz) and σz .
Next we do the following procedure which creates a “ gate” H or σx H ,

|i〉|̃0〉
∧

(σz)−−−−−−→ |i〉|̃i〉 Measure(σx )1−−−−−−−−−−→
{

|̃0〉|̃i〉 outcome is 1

|̃1〉(−1)i |̃i〉 outcome is − 1

By measuring (σx )1, we mean measuring σx on the first qubit.
One checks that both probabilities are 1

2 . If the outcome is −1, then we continue to
apply the gate σz on the first qubit so that the state becomes |̃0〉(−1)i |̃i〉.

Notice that our ancilla starts from the second qubit while ends on the first qubit,
i.e., the working qubit and ancilla qubit are switched. But we show below that this is
not a problem.

Therefore, if the outcome is 1, we produced the gate qubit Hadamard gate H , and
otherwise we produced σx H. We name this sequence of operations by A.
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Now we produce the gate T .

|i, j, k〉|̃0〉 A3,4−−−−−→
{

|i, j, 0̃, k̃〉 outcome 1

(−1)k |i, j, 0̃, k̃〉 outcome − 1

∧2(σz)1,2,4−−−−−−−−−→

{
|i, j, 0̃, ĩ j + k〉
(−1)k |i, j, 0̃, ĩ j + k〉

A4,3−−−−−→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|i, j, i j+k, 0̃〉 outcome (1, 1)

(−1)k |i, j, i j+k, 0̃〉 outcome (−1, 1)

|i, j, i j+k+1, 0̃〉 outcome (1,−1)

(−1)k |i, j, i j+k+1, 0̃〉 outcome (−1,−1)

In the diagram above, A3,4 means applying the operation A with the third qubit
as working bit and the fourth qubit as ancilla. Each pair of outcome happens with
probability 1

4 .

If the outcome is (1,1) or (1,-1), we do nothing.
If the outcome is (-1,1) or (-1,-1), we apply the gate (σz)3

∧
(σz)1,2 to get the state

|i, j, i j + k〉 or −|i, j, i j + k + 1, 0̃〉. The overall phase is not important.
Therefore, if the outcome is (1,1) or (-1,1), we produced the gate T . Otherwise we

got the gate (σx )3T . Both probabilities are 1
2 .

In the latter case, we repeat the procedure, then we either go back to the original
state with probability 1

2 , or we go to the state |i, j, k + 1〉 also with probability 1
2 .

Repeat the procedure again. It is easy to see that after doing this procedure at most 3
times, the probability to get the state |i, j, i j + k〉 is 1

2 + 1
22
.

After at most 2n − 1 times, the probability to get T is 1
2 + 1

22
+ · · · + 1

2n = 1− 1
2n .

Therefore, after repeating enough times, we will eventually produce the gate T . 
�
By the lemmas above in this subsection, all the operations in Lemma 5 can be

created from the operations given in Theorem 1 if we pick a qubit from the qutrit
space. Thus, Lemma 5 implies Theorem 1.

3 Universal adaptive anyonic computing models

In this section, we prove that theU -model, V -model andW -model in Sect. 2.3 can be
made universal provided measurement and ancilla are allowed besides braiding.

Recall thatU = span{|GG〉, |AG〉, |GA〉},V = span{ 1√
2
(|FC〉+|CF〉), 1√

2
(|FH〉

+ |CH〉), 1√
2
(|HF〉 + |HC〉)} and W = span{ 1√

2
(|FC〉 − |CF〉), 1√

2
(|CH〉

− |FH〉), 1√
2
(|HF〉 − |HC〉)}. The computational basis for the three models are

denoted as {|0〉x , |1〉x , |2〉x , } corresponding to the pair of anyons above, x =
U, V, W , where the subscript x indicates which subspace we are referring to.

Our main theorems are as follows:

Theorem 2 Braiding quantum gates and Measurements 1 and 2 provide a universal
gate set for the qutrit U-model and V -model.

Theorem 3 A universal gate set for the W-model can be constructed from braidings
and Measurements 1, 2 when the ancillary state 1 is used.
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The proof of Theorem 2 is given in the next subsection and the proof of Theorem 3
in Sect. 3.2.

3.1 Universality for U- and V -models

U ⊕ V is a 6-dim irreducible representation of B4. Under the basis span{|0〉U , |1〉U ,

|2〉U , |0〉V , |1〉V , |2〉V }, the generators σi
′s have the following matrices:

σ1 =

⎛
⎜⎜⎜⎜⎝

ω2 0 0 0 0 0
0 1 0 0 0 0
0 0 ω2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 ω

⎞
⎟⎟⎟⎟⎠

σ2 = 1

3

⎛
⎜⎜⎜⎜⎜⎝

1 ω ω
√
2ω2

√
2

√
2

ω 1 ω
√
2

√
2

√
2ω2

ω ω 1
√
2

√
2ω2

√
2√

2ω2
√
2

√
2 −ω −ω2 −ω2√

2
√
2

√
2ω2 −ω2 −ω −ω2√

2
√
2ω2

√
2 −ω2 −ω2 −ω

⎞
⎟⎟⎟⎟⎟⎠

σ3 =

⎛
⎜⎜⎜⎜⎝

ω2 0 0 0 0 0
0 ω2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 ω 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

Let p = σ1σ2σ1 and q = σ3σ2σ3. Then

p2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

q2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

p2q2 p2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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Therefore, when restricted to the subspace U or V , p2 and q2 generate all the
classical gates on 1 qutrit and p2q2 p2 is equal to h2, where h is the generalized
Hadamard gate defined in Sect. 2.5.

Let h′ = q2 pq2. Then

h′ = 1√
3

(
h

√
2h−1√

2h−1 −h

)
h′−1 = 1√

3

(
h−1

√
2h√

2h −h−1

)

Define a unitary transformation γ : U −→ V, γ | j〉U = | j〉V , j = 0, 1, 2.

Lemma 6 By alternating use of h′ (or h′−1) and Measurement 2, one can eventually
obtain the generalizedHadamard gate on bothU and V , aswell as the transformations
γ and γ −1. Moreover, the probability to successfully construct these transforma-
tions approaches to 1 exponentially fast in the number of measurements and the
gate h′.

Proof Let the generalized Hadamard gate h act on both the spaces U and V , then we
have

h′| j〉U = 1√
3
(h| j〉U + √

2h−1| j〉V )

and

h′| j〉V = 1√
3
(
√
2h−1| j〉U − h| j〉V )

We first construct the Hadamard gate on U first.
Denote the operation of Measurement 2 byM. Note that on the subspace U or V ,

we have p2q2 p2 = h2 = h−2. Consider the following procedures:

P : | j〉U h′
�� 1√

3
(h| j〉U + √

2h−1| j〉V )
M �� output

Pr= 1
3 ��

Pr= 2
3

����������������������������������� h| j〉U

h−1| j〉V h′
�� 1√

3
(
√
2h2| j〉U − | j〉V )

M �� output
Pr= 2

3 ��

Pr= 1
3������������������������������������� h2| j〉U

p2q2 p2

��
| j〉V | j〉U

(3.1)
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Q : | j〉V h′−1
�� 1√

3
(
√
2h| j〉U − h−1| j〉V )

M �� output
Pr= 2

3 ��

Pr= 1
3

����������������������������������� h| j〉U

−h−1| j〉V h′−1
�� 1√

3
(−√

2| j〉U + h2| j〉V )
M �� output

Pr= 2
3 ��

Pr= 1
3������������������������������������ | j〉U

h2| j〉V
p2q2 p2 �� | j〉V

(3.2)

Thus, if we run the procedure P on the space U , we have a probability 1
3 to obtain

the Hadamard h, 4
9 to obtain the identity and 2

9 to obtain the transformation γ. If we
obtained h, then we are done. If we constructed the identity gate, then we run the
procedure P again. If we got the transformation γ, then we apply the procedureQ to
the resulting state. After runningQ, we have a probability 2

3 to obtain h, 29 to go back
to the original state | j〉U , and 1

9 to get the state | j〉V . Repeat the procedures P and/or
Q, according to which space the resulting state after each procedure is in, until we get
the Hadamard gate h. And it is not hard to show that the probability to construct h
within n procedures is 1 − 2

3 · ( 59 )
n−1, which approaches to 1 exponentially fast.

The Hadamard gate on V can be constructed in the same way.
To construct the transformation γ, see the following procedure:

R : | j〉U h′
�� 1√

3
(h| j〉U + √

2h−1| j〉V )
M �� output

Pr= 1
3

��

Pr= 2
3

�����������������������������������������

h−1| j〉V
h′−1

�� 1
3 (

√
2| j〉U − h2| j〉V )

M
��

h| j〉U
h′−1

��

h2| j〉V
p2q2 p2

��

output

Pr= 2
3

��

Pr= 1
3�� 1√

3
(| j〉U + √

2h2| j〉V )

M

��

| j〉V | j〉U

| j〉U output
Pr= 1

3

��

Pr= 2
3

��
| j〉V h2| j〉V

p2q2 p2
��

(3.3)

So the procedure R has a probability of 4
9 to construct the transformation γ and a

probability of 5
9 to obtain the identity. By repeating it, one can show the probability
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to construct γ within n times is 1 − ( 59 )
n . Therefore, one can obtain γ exponentially

fast.
Similarly, one can construct γ −1. 
�
The following lemma shows that Measurement 3 can be constructed in bothU and

V .

Lemma 7 Using Measurements 1, 2 and braiding, one can perform Measurement 3
in both the spaces U and V .

Proof Note that we used the notation |0〉U = |GG〉, |1〉U = |AG〉, |2〉U = |GA〉.
Given a state |ψ〉 = a|GG〉 + b|AG〉 + c|GA〉 in U , we apply Measurement 1 to
the left half of the state, i.e, we check whether or not the first pair of D anyons in
the 1-qudit splitting tree has total trivial charge. This is essentially the projection to
span{|AG〉} and its orthogonal complement inU , namely the projection to span{|1〉U }
and span{|0〉U , |2〉U }. Since we have all the 1-qutrit classical gates on U , it is clear
that Measurement 3 in U can be constructed.

Measurement 3 in V follows from Lemma 6 that one can construct the transforma-
tion γ, γ −1 to go back and forth between U and V . 
�

Up to now, we only considered gates and operations on one qutrit. Next, we want to
construct a 2-qutrit gate, the Controlled-Z gate

∧
(Z) which maps |i, j〉 to ωi j |i, j〉.

D D D D

x1 y1

G

D D D D

x2 y2

G

G

We use the above fusion tree to encode 2-qutrits. Let s1 = σ2σ1σ3σ2 namely, s1 is
the braiding of the first pair with the second pair. Similarly let s2 = σ4σ3σ5σ4, s3 =
σ6σ5σ7σ6. Clearly s1 exchanges x1 with y1 with a phase in the above 2-qudit splitting
tree, namely it maps |x1, y1; x2, y2〉 to |y1, x1; x2, y2〉 up to a phase. Similarly, s3
exchanges x2 with y2. The gate s2 is much more complicated since it involves F-
moves. Let Crl Z = s−1

1 s22s1s
−1
3 s22s3. Through direct calculations, we found that

Crl Z is a diagonal matrix. Moreover, when restricted to the spaceU , Crl Z is exactly
the Controlled-Z gate

∧
(Z). Again, via the transformation γ, one also obtains the

Controlled-Z gate in the space V .
The SUM gate maps |i, j〉 to |i, i + j〉 and can be obtained by conjugating

∧
(Z)

via the Hadamard. Explicitly,

SUM = (I d ⊗ h)
∧

(Z)−1(I d ⊗ h−1).

So we can also construct the SUM gate in the space U and V .
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To sum up, with Measurements 1, 2 and braiding, we can construct all the 1-qutrit
classical gates, generalized Hadamard gate, SUM gate and Measurement 3 in both the
spaces U and V .

Finally, Theorem 2 follows from Theorem 1 and the arguments in this subsection.

3.2 Universality for W -model

In this subsection, we examine the representation on W . Under the basis of W given
by {|0〉W , |1〉W , |2〉W }, the σi

′s have the matrices:

σ1 =
⎛
⎝
1 0 0
0 1 0
0 0 ω

⎞
⎠ σ3 =

⎛
⎝
1 0 0
0 ω 0
0 0 1

⎞
⎠

σ2 =

⎛
⎜⎜⎝

1
2 +

√
3i
6 − 1

2 +
√
3i
6 − 1

2 +
√
3i
6

− 1
2 +

√
3i
6

1
2 +

√
3i
6 − 1

2 +
√
3i
6

− 1
2 +

√
3i
6 − 1

2 +
√
3i
6

1
2 +

√
3i
6

⎞
⎟⎟⎠

The same as last subsection, define p = σ1σ2σ1, q = σ3σ2σ3. Then

p2 = −
⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ q2 = −

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠

So p2 and q2 generate all the 1-qutrit classical gates in W .
Also from σ1 and σ3, we obtain the generalized Z -gate and Phase gate P:

Z =
⎛
⎝
1 0 0
0 ω 0
0 0 ω2

⎞
⎠ P =

⎛
⎝
1 0 0
0 1 0
0 0 ω

⎞
⎠

where Z maps |i〉 to ωi |i〉 and P maps |i〉 to ω
i2−i
2 |i〉.

Moreover, let h′ = q2 pq2, then h′ = 1√
3i

⎛
⎝
1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠, which is exactly the

generalized Hadamard gate up to a phase.
Therefore, in the space W , we obtained the classical 1-qutrit gates, generalized

Z -gate, the Phase gate and the generalized Hadamard gate by braiding.
Nowwe turn to constructing the 2-qutrit gate

∧
(Z).Onemay try the same braiding

method as we did for the space U . But it turns out that braiding does not work for W .
Instead, we try to construct a transformation similar to γ .

Consider the following picture of braiding.
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G

D D D DD D D D

H H x y

A GAncilla

Let P= σ6σ5σ4σ3σ7σ6σ5σ4, Q = σ2σ1σ1σ2σ6σ7σ7σ6, and let R = P−1QP . Then
the braiding in the picture is given by R.

We denote the state in the picture before braiding by |H〉A|xy〉. Then the braiding
R gives the following transformation:

|H〉A|i〉W �−→ 1

2
(−|H〉A|i〉W + |H〉B |i〉V − √

2|H〉B | − i〉U )

and

|H〉B |i〉U �−→ 1√
2
(|H〉A| − i〉W + |H〉B | − i〉V )

where i = 0, 1, 2 and −i is taken to be modulo 3.
Define a unitary transformation β : |H〉A ⊗ W −→ |H〉B ⊗ U, β(|H〉A|i〉W ) =

|H〉B |i〉U . Here |H〉A is the ancilla.

Lemma 8 With braiding, Measurements 1, 2 and Ancilla 1, the transformation β and
β−1 can be constructed with probability approaching to 1 exponentially fast in the
number of measurements and the gates applied.

Proof In the following diagram, M1 means applying Measurement 1 to the first
qudit (the ancilla part) to check whether the total charge is trivial or not and M2 is
Measurement 2 applied to the second qudit. Consider the following procedure S:
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S : |H〉A|i〉W
R

��
1
2 (−|H〉A|i〉W + |H〉B |i〉V − √

2|H〉B | − i〉U )
M1 �� output

Pr= 1
4

��
Pr= 3

4		��������������������

1√
3
(|H〉B |i〉V − √

2|H〉B | − i〉U )

M2

��

|H〉A|i〉W

output
Pr= 1

3



����������������������

Pr= 2
3

��
|H〉B | − i〉U

Id⊗p2q2 p2

��

|H〉B |i〉V
Id⊗γ −1

��
|H〉B |i〉U |H〉B |i〉U

(3.4)

Starting from the state |H〉A|i〉W with |H〉A as ancilla, we apply the procedure S to
it. From the diagram above, one can see that there is a probability of 1

4 for the state to
remain unchanged in which case we would apply the procedure again. Otherwise, the
state is transformed to |H〉B |i〉U , namely the transformation β is constructed. Note
that in the above procedure, the states in each outcome are considered up to a global
phase, which is of course irrelevant. By repeating the procedure S, β can be obtained
exponentially fast.

β−1 can be constructed in a similar way by repeated use of the following procedure
T :

|H〉B |i〉U R �� 1√
2
(|H〉A| − i〉W + |H〉B | − i〉V )

M1

		����������������

output
Pr= 1

2

��

Pr= 1
2

��

|H〉A| − i〉W Id⊗p2q2 p2 �� |H〉A|i〉W

|H〉B | − i〉V Id⊗p2q2 p2 �� |H〉B |i〉V Id⊗γ −1
�� |H〉B |i〉U

(3.5)


�

By going back and forth between W and U via β and β−1, any operation in the
space U can be performed in W accordingly. In particular, the Controlled-Z gate and
Measurement 3 can be constructed in W .

Collecting the results in this subsection, we finish the proof of Theorem 3.
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Appendix 1: Solutions of the D(S3) fusion rules

Given a set of fusion rules, it is highly non-trivial to solve for all 6 j symbols even with
software packages. Though D(S3) is a large anyon system, recent progress makes it
possible to solve for allmodular categorieswith the same fusion rules. In the following,
we list the complete data only for the D(S3). See Sect. 2.2 for an explanation of the
notations that we use for F-matrices and R-matrices.

The subcategory spanned by {A, B,G} is a near-group category of type (Z2, 1)
and analyzed completely in [20]. (The objects A, B,G here are the ε, g,m in [20],
respectively.)

The only monoidal structure which allows braiding is the following one [20].When
we list 6 j symbols, all the admissible ones that are equal to 1 are omitted.

FBGG
GGG = FGBG

GGG = FGGB
GGG = FGGG

BGG = −1,

FGGG
G =

⎛
⎝

1/2 1/2 1/
√
2

1/2 1/2 −1/
√
2

1/
√
2 −1/

√
2 0

⎞
⎠

Note that we normalize the trivalent basis to obtain unitary F matrices, while the
original F matrices in [20] are not unitary.

There are three braiding structures on the subcategory depending on a choice of
ω ∈ {1, e2π i/3, e4π i/3}.

RAA
A = RAB

B = RBA
A = RBB

A = RAG
G = RGA

G = 1,

RBG
G = RGB

G = −1,

RGG
A = ω2,

RGG
B = −ω2,

RGG
G = ω.

The subcategory is balanced for all choices of ω ∈ {1, e2π i/3, e4π i/3}. Siehler
claimed that the ω = 1 structure is balanced but ω �= 1 structures are not (without
explicit proof, see Proposition 10.1 in [20] ). However, it is easy to see that all structures
are balanced. Balancing equation is

Bala,b
c : θc = θaθbR

a,b
c Rb,a

c

With twists θA = 1, θB = 1, θG = ω, all non-trivial balancing equations BalB,G
G ,

BalG,B
G , BalG,G

B , BalG,G
G hold for any third root of unity ω.

However, the caseω = 1 cannot be extended to get a braiding of thewhole category.
Here is the argument. Consider the hexagon equation on G summand in the product
D ⊗ D ⊗G with the intermediate summand D in G ⊗ D and summand E in D ⊗G,
which is RDG

E FDGD
G;EDR

DG
D = FDDG

G;E AR
AG
G FGDD

G;AD +FDDG
G;EG RGG

G FGDD
G;GD . With the value
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of RGG
G = 1, the right-hand-side is 1√

2
· 1 · 1√

2
+ (− 1√

2
) · 1 · 1√

2
= 0, while FDGD

G;ED =
−

√
3
2 , thus one of the two R-symbols on the left-hand sidemust be zero, a contradiction.
The other two cases with ω = e2π i/3, e4π i/3 can both be extended to the whole

category to get a braiding. Moreover, their braiding structures are conjugate to each
other; thus, we assume that ω = e2π i/3 from now on.

There are three monoidal structures that extend to all other simple objects. We
will focus on the structure that we used in this paper. For simplicity, let G = {A, B},
C1 = {G}, C2 = {D, E}, and C3 = {C, F, H}. In the following, we list associativity
matrices according to types upon three upper objects in Fabc

d . For example, GGC2−
type contains all associativity matrices with two objects from G and one from C2.
Using this notation, all GGG−, GGC1−, GC1C1−, and C1C1C1− types are given above.

A. 1 The rest of the 6 j symbols

Beside the 6 j-symbols above, the rest are as follows:
GGC2− type:

• FBDB
D = FBEB

E = −1

GC1C2− type:

• −1 for FBDG
E , FBEG

D , FGDB
E , FGEB

D

GC1C3− type:

• −1 for
FBGC
H , FBGH

F , FBGH
C , FBFG

C , FBCG
F , FBCG

H , FBHG
C , FGBF

H , FGBC
H , FGBH

C ,

FGFB
C , FGCB

F , FGCB
H , FGHB

C , FFBG
H , FCBG

H , FCGB
H , FHBG

C , FHGB
F , FHGB

C

GC2C2− type:

• −1 for
FBDD
F , FBED

F , FDBD
B , FDBE

G , FDBE
C , FDBE

H , FDDB
F , FDEB

F , FEBD
G , FEBD

C ,

FEBD
H , FEBE

B

GC2C3− type:

• −1 for
FBDC
E , FBDH

E , FBEC
D , FBEH

D , FBFD
D , FBFD

E , FDBF
D , FDFB

D , FDFB
E , FEBF

D ,

FFBD
D , FFBE

D , FCDB
E , FCEB

D , FHDB
E , FHEB

D

GC3C3− type:

• −1 for
FBFF
F , FBFC

H , FBFH
G , FBCC

C , FBCH
G , FBHC

G , FBHC
F , FBHH

H , FFBF
F , FFBC

G ,

FFBH
C , FFFB

F , FCBF
G , FCBC

C , FCBH
G , FCFB

H , FCCB
C , FCHB

G , FCHB
F , FHBF

C ,

FHBC
G , FHBH

H , FHFB
G , FHCB

G , FHHB
H

C1C1C2− type:

• 1√
2

(
1 1
1 −1

)
for FG,G,D

D , FGGE
E , FDGG

D , FEGG
E
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• 1√
2

(
1 −1
1 1

)
for FG,G,D

E , FGGE
D

• 1√
2

(
1 1

−1 1

)
for FDGG

E , FEGG
D

• 1
2

( −1 −√
3

−√
3 1

)
for FGDG

D

• 1
2

(−√
3 1

1
√
3

)
for FGDG

E , FGEG
D

• 1
2

(
1

√
3√

3 −1

)
for FGEG

E

C1C1C3− type:

• 1√
2

(
1 1
1 −1

)
for FGGF

F , FGGC
C , FGGH

H , FFGG
F , FCGG

C , FHGG
H

•
(
0 1
1 0

)
for FGFG

F , FGCG
C , FGHG

H

C1C2C2− type:

• −1 for FDGE
B , FEGD

B

• 1√
2

(
1 1
1 −1

)
for

FGDD
G , FGDD

C , FGDD
H , FGEE

G , FGEE
C , FGEE

H , FDDG
G , FDDG

C , FDDG
H ,

FEEG
G , FEEG

C , FEEG
H

• 1√
2

(
1 −1
1 1

)
for

FGDD
F , FGED

F , FDEG
G , FDEG

H , FEDG
G , FEDG

F , FEDG
C , FEEG

F

• 1√
2

(
1 1

−1 1

)
for

FGDE
G , FGDE

F , FGDE
C , FGED

G , FGED
H , FGEE

F , FDDG
F , FDEG

F

• 1√
2

(−1 −1
−1 1

)
for FGDE

H , FGED
C , FDEG

C , FEDG
H

• 1
2

( −1 −√
3

−√
3 1

)
for FDGD

G , FDGD
F

• 1
2

(−1
√
3√

3 1

)
for FDGD

C

•
(
1 0
0 −1

)
for FDGD

H

• 1
2

(−√
3 1

1
√
3

)
for FDGE

G , FEGD
G

• 1
2

(−√
3 −1

1 −√
3

)
for FDGE

F

• 1
2

(√
3 1
1 −√

3

)
for FDGE

C , FEGD
C
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•
(

0 −1
−1 0

)
for FDGE

H , FEGD
H

• 1
2

(−√
3 1

−1 −√
3

)
for FEGD

F

• 1
2

(
1

√
3√

3 −1

)
for FEGE

G

• 1
2

(
1 −√

3
−√

3 −1

)
for FEGE

F , FEGE
C

•
(−1 0

0 1

)
for FEGE

H

C1C2C3− type:

• 1
2

( −1 −√
3

−√
3 1

)
for FGDF

D , FFDG
D

• 1
2

(−√
3 −1

1 −√
3

)
for FGDF

E , FFEG
D

• 1
2

(−1
√
3√

3 1

)
for FGDC

D , FCDG
D

• 1
2

(√
3 1
1 −√

3

)
for FGDC

E , FGEC
D , FCDG

E , FCEG
D

•
(
1 0
0 −1

)
for FGDH

D , FHDG
D

•
(

0 −1
−1 0

)
for FGDH

E , FGEH
D , FHDG

E , FHEG
D

• 1
2

(−√
3 1

−1 −√
3

)
for FGEF

D , FFDG
E

• 1
2

(
1 −√

3
−√

3 −1

)
for FGEF

E , FGEC
E , FFEG

E , FCEG
E

•
(−1 0

0 1

)
for FGEH

E , FHEG
E

• 1√
2

(
1 1

−1 1

)
for

FGFD
D , FGFD

E , FDGF
E , FDGC

E , FDHG
E , FEGF

E , FEGH
D , FEFG

D , FEFG
E , FECG

D ,

FFGD
D , FFGE

D

• 1√
2

(
1 −1
1 1

)
for

FGFE
D , FGFE

E , FGCE
D , FGHD

E , FDGF
D , FDFG

D , FDFG
E , FEGF

D , FFGD
E , FFGE

E ,

FCGD
E , FHGE

D

• 1√
2

(
1 1
1 −1

)
for

FGCD
D , FGCE

E , FGHD
D , FGHE

E , FDGC
D , FDGH

D , FDCG
D , FDHG

D , FEGC
E ,

FEGH
E , FECG

E , FEHG
E , FCGD

D , FCGE
E , FHGD

D , FHGE
E
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• 1√
2

(−1 −1
−1 1

)
for

FGCD
E , FGHE

D , FDGH
E , FDCG

E , FEGC
D , FEHG

D , FCGE
D , FHGD

E

C1C3C3− type:

• 1√
2

(
1 1
1 −1

)
for FGFF

G , FGCC
G , FGHH

G , FFFG
G , FCCG

G , FHHG
G

• −1 for
FGCH
B , FGHF

B , FGHC
B , FFGC

B , FFHG
B , FCGF

B , FCGH
B , FCHG

B , FHGC
B , FHCG

B

•
(
0 1
1 0

)
for FFGF

G , FCGC
G , FHGH

G

C2C2C2− type:

• 1
3

⎛
⎜⎜⎜⎜⎝

1
√
2

√
2

√
2

√
2√

2 −1 −1 −1 2√
2 −1 2 −1 −1√
2 −1 −1 2 −1√
2 2 −1 −1 −1

⎞
⎟⎟⎟⎟⎠

for FDDD
D , FEEE

E

• 1√
3

⎛
⎜⎜⎝

−1 −1 1 0
−1 0 −1 −1
1 −1 0 −1
0 −1 −1 1

⎞
⎟⎟⎠ for FDDD

E , FDDE
D , FDED

D , FEDD
D

• 1
3

⎛
⎜⎜⎜⎜⎝

1 −√
2

√
2 −√

2 −√
2√

2 1 −1 1 −2√
2 1 2 1 1√
2 1 −1 −2 1√
2 −2 −1 1 1

⎞
⎟⎟⎟⎟⎠

for FDDE
E , FEED

D

• 1
3

⎛
⎜⎜⎜⎜⎝

−1
√
2

√
2

√
2

√
2√

2 1 1 1 −2√
2 1 −2 1 1√
2 1 1 −2 1√
2 −2 1 1 1

⎞
⎟⎟⎟⎟⎠

for FDED
E , FEDE

D

• 1
3

⎛
⎜⎜⎜⎜⎝

1
√
2

√
2

√
2

√
2

−√
2 1 1 1 −2√
2 −1 2 −1 −1

−√
2 1 1 −2 1

−√
2 −2 1 1 1

⎞
⎟⎟⎟⎟⎠

for FDEE
D , FEDD

E

• 1√
3

⎛
⎜⎜⎝

1 −1 −1 0
−1 0 −1 −1
−1 −1 0 1
0 −1 1 −1

⎞
⎟⎟⎠ for FDEE

E , FEDE
E , FEED

E , FEEE
D

C2C2C3− type:

• −1 for
FDDF
B , FDCE

B , FDHE
B , FEDF

B , FECD
B , FEHD

B , FFDD
B , FFDE

B
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• 1√
2

(
1 1

−1 1

)
for

FDDF
G , FDDF

H , FDDC
H , FDDH

F , FDDH
C , FDEH

F , FEDF
G , FEDF

H , FEEC
H , FEEH

C ,

FFED
G , FFED

H , FFEE
G , FFEE

F , FFEE
H , FCDE

C , FCED
G , FCED

C , FHDE
G , FHDE

F ,

FHDE
H , FHED

H , FHEE
F

• 1√
2

(
1 1
1 −1

)
for

FDDF
F , FDDF

C , FDDC
G , FDDC

F , FDDC
C , FDDH

G , FDDH
H , FDEC

F , FEDF
C , FEEC

G ,

FEEC
C , FEEH

G , FEEH
H , FFDD

F , FFDD
C , FFDE

C , FCDD
G , FCDD

F , FCDD
C , FCED

F ,

FCEE
G , FCEE

C , FHDD
G , FHDD

H , FHEE
G , FHEE

H

• 1√
2

(
1 −1
1 1

)
for

FDEF
G , FDEF

H , FDEC
G , FDEC

C , FDEH
H , FEDC

C , FEDH
G , FEDH

F , FEDH
H , FEEF

G ,

FEEF
F , FEEF

H , FEEH
F , FFDD

G , FFDD
H , FFDE

G , FFDE
H , FCDD

H , FCEE
H ,

FHDD
F , FHDD

C , FHED
F , FHEE

C

• 1√
2

(−1 −1
1 −1

)
for

FDEF
F , FDEC

H , FEDF
F , FEDH

C

• 1√
2

(−1 1
1 1

)
for

FDEF
C , FDEH

C , FEDC
F , FEDC

H , FEEF
C , FEEC

F , FFED
C , FFEE

C , FCDE
F , FCDE

H ,

FCEE
F , FHED

C

• 1√
2

(−1 −1
−1 1

)
for

FDEH
G , FEDC

G , FCDE
G , FHED

G

• 1
2

( −1 −√
3

−√
3 1

)
for

FDFD
G , FDFD

C , FDFD
H , FDCD

F , FDCD
H , FDHD

F , FDHD
C

•
(
1 0
0 −1

)
for FDFD

F , FDCD
C , FDHD

G

• 1
2

(−√
3 1

−1 −√
3

)
for FDFE

G , FDFE
C , FDFE

H , FECD
F , FEHD

F

•
(
0 1
1 0

)
for FDFE

F , FEFD
F

• 1
2

(−1
√
3√

3 1

)
for FDCD

G , FDHD
H

• 1
2

(√
3 1
1 −√

3

)
for FDCE

G , FDHE
H , FECD

G , FEHD
H

• 1
2

(−√
3 −1

1 −√
3

)
for FDCE

F , FDHE
F , FEFD

G , FEFD
C , FEFD

H

•
(

0 −1
−1 0

)
for FDCE

C , FDHE
G , FECD

C , FEHD
G
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• 1
2

(−√
3 1

1
√
3

)
for FDCE

H , FDHE
C , FECD

H , FEHD
C

• 1
2

(
1 −√

3
−√

3 −1

)
for

FEFE
G , FEFE

C , FEFE
H , FECE

G , FECE
F , FEHE

F , FEHE
H

•
(−1 0

0 1

)
for FEFE

F , FECE
C , FEHE

G

• 1
2

(
1

√
3√

3 −1

)
for FECE

H , FEHE
C

• 1√
2

(−1 1
−1 −1

)
for FFDE

F , FFED
F , FCED

H , FHDE
C

C2C3C3− type:

• 1√
2

(
1 1
1 −1

)
for

FDFF
D , FDFC

D , FDFC
E , FDCF

D , FDCC
D , FDHH

D , FECF
D , FECC

E , FEHH
E , FFFD

D ,

FFCD
D , FFCE

D , FCFD
D , FCFD

E , FCCD
D , FCCE

E , FHHD
D , FHHE

E

• 1√
2

(−1 1
−1 −1

)
for

FDFF
E , FDHC

E , FEFF
D , FECH

D

• 1√
2

(
1 −1
1 1

)
for

FDFH
D , FDFH

E , FDCH
D , FDHF

D , FDHC
D , FECH

E , FEHF
D , FEHC

E , FFFE
E , FFHD

E ,

FFHE
E , FCCD

E , FCCE
D , FHFE

D , FHFE
E , FHHD

E , FHHE
D

• 1√
2

(−1 1
1 1

)
for

FDCF
E , FDCH

E , FEFC
D , FEFC

E , FECF
E , FEHC

D , FFCD
E , FFCE

E , FCFE
D , FCFE

E ,

FCHE
D , FHCD

E

• 1√
2

(
1 1

−1 1

)
for

FDCC
E , FDHF

E , FDHH
E , FEFF

E , FEFH
D , FEFH

E , FECC
D , FEHF

E , FEHH
D ,

FFHD
D , FFHE

D , FCHD
D , FCHE

E , FHFD
D , FHFD

E , FHCD
D , FHCE

E

•
(
1 0
0 −1

)
for FFDF

D , FCDC
D

•
(
0 1
1 0

)
for FFDF

E , FFEF
D

• 1
2

( −1 −√
3

−√
3 1

)
for

FFDC
D , FFDH

D , FCDF
D , FCDH

D , FHDF
D , FHDC

D

• 1
2

(−√
3 1

−1 −√
3

)
for FFDC

E , FFDH
E , FCEF

D , FHEF
D

•
(−1 0

0 1

)
for FFEF

E , FCEC
E
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• 1
2

(−√
3 −1

1 −√
3

)
for FFEC

D , FFEH
D , FCDF

E , FHDF
E

• 1
2

(
1 −√

3
−√

3 −1

)
for FFEC

E , FFEH
E , FCEF

E , FHEF
E , FHEH

E

• 1√
2

(−1 −1
1 −1

)
for FFFD

E , FFFE
D , FCHD

E , FHCE
D

•
(

0 −1
−1 0

)
for FCDC

E , FCEC
D

• 1
2

(−√
3 1

1
√
3

)
for FCDH

E , FCEH
D , FHDC

E , FHEC
D

• 1
2

(
1

√
3√

3 −1

)
for FCEH

E , FHEC
E

• 1
2

(−1
√
3√

3 1

)
for FHDH

D

• 1
2

(√
3 1
1 −√

3

)
for FHDH

E , FHEH
D

C3C3C3− type:

• −1 for FFFF
B , FFCH

B , FCCC
B , FHCF

B , FHHH
B

• 1
2

⎛
⎝

1 1
√
2

1 1 −√
2√

2 −√
2 0

⎞
⎠ for FFFF

F , FCCC
C , FHHH

H

• 1√
2

(
1 −1
1 1

)
for FFFC

C , FCCF
F , FCCH

H , FHHC
C

• 1√
2

(
1 1
1 −1

)
for FFFH

H , FFHH
F , FHFF

H , FHHF
F

•
(
0 1
1 0

)
for FFCF

C , FFHF
H , FCFC

F , FCHC
H , FHFH

F , FHCH
C

• 1√
2

(
1 1

−1 1

)
for FFCC

F , FCFF
C , FCHH

C , FHCC
H

A. 2 The rest of R-symbols

Beside the R-symbols at the beginning of the section, the rest are:

• 1 for
RBB
A , RGH

F , RGH
C , RDF

D , RDC
D , REF

E , REC
E , RFD

D , RFE
E , RFF

A , RFF
F , RCD

D , RCE
E ,

RCC
A , RCC

C , RHG
F , RHG

C , REE
A , REE

F , REE
C• −1 for

RBG
G , RBF

F , RBC
C , RBH

H , RGB
G , RFB

F , RFF
B , RCB

C , RCC
B , RHB

H , RDD
A , RDD

F , RDD
C

• i for RBD
E , RDB

E , REF
D , REC

D , RFE
D , RCE

D , RDE
B , RED

B
• −i for RBE

D , RDF
E , RDC

E , REB
D , RFD

E , RCD
E , RDE

F , RDE
C , RED

F , RED
C

• ω2 for
RGG
A , RGF

H , RGC
H , RDH

D , REH
E , RFG

H , RFC
G , RFH

C , RCG
H , RCF

G , RCH
F , RHD

D , RHE
E ,

RHF
C , RHC

F , RHH
H , REE

G
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• −ω2 for RGG
B , RDD

G• ω for
RGG
G , RGD

D , RGE
E , RGF

C , RGC
F , RDG

D , REG
E , RFG

C , RFC
H , RFH

G , RCG
F , RCF

H , RCH
G ,

RHF
G , RHC

G , RHH
A , REE

H
• −ω for RDD

H , RHH
B

• ωi for RGE
D , REG

D
• −ωi for RGD

E , RDG
E , RDE

H , RED
H

• ω2i for REH
D , RHE

D
• −ω2i for RDE

G , RED
G , RDH

E , RHD
E

Appendix 2: Representations of braid group B4

In this appendix, mathematically, we study whether or not the representations of B4
are irreducible and identify the images of those representation on each irreducible
summand. We will refer to each irreducible summand as a sector. For our application
to anyonic quantum computation, we also determine whether or not there are unitary
transformations (braiding quantum circuits) in the images that are powerful for quan-
tum computation, especially whether or not these circuits lead to a universal gate set.

We will provide explicitly the braiding matrices for σ1, σ2, σ3 and then compute
what is the group generated by them. Without loss of generality, we may multiply
the σi

′s by a common factor so that they all have determinant = 1 (Note that all the
σi

′s are conjugate to each other). We still denote the new representation by ρ(m, z).
We will focus on sectors which are three-dimensional. In this case, the images of the
representation on such sectors are subgroups of SU(3). As will be seen later, some
interesting subgroups of SU(3) will arise as the image.

As in Sect. 2, the representations are denoted by ρ(m, z) on the space Vmmmm
z ,

which corresponds to the following splitting tree:

m m m m

x y

z

Our results are summarized in Tables 3 and 4 in Sect. 2. Now we examine each
representation explicitly in the following subsections.

Remark 2 The matrices σi
′s depend on the fusion rules of the two anyons m, the

6 j-symbols and the R-symbols Rmm
x . From this point of view, the anyons A and B are

not interesting because their R-matrices are trivial. It follows that their representations
are also projectively trivial. Also, the anyons C and F have identical R-matrices. D
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and E are identical if we multiply the R-matrices of D by −1. Similarly, G and H are

identical if we replaceω = − 1
2 +

√
3i
2 in the R-matrices ofG by its complex conjugate.

Therefore, it suffices to consider the cases where the anyon m is C , D, and G.

B. 1 Representations on VCCCC
z

There are three choices for z that make the following splitting tree admissible, namely
A, B or C .

C C C C

x y

z

B. 1.1 z = A

The basis of VCCCC
A is {|AA〉, |BB〉, |CC〉}. Under this basis,

σ1 = σ3 =
⎛
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎠ σ2 = −1

2

⎛
⎝

1 −1
√
2

−1 1
√
2√

2
√
2 0

⎞
⎠

This representation splits into two sectors S1 and S2, where S1 is a 1-dim irrep

mapping σi to −1 and S2 is a 2-dim irrep spanned by {|BB〉,
√
3
3 |AA〉 −

√
6
3 |CC〉}.

The matrices of the σi
′s under the basis of S2 are given by:

σ1 = σ3 = i

(
1 0
0 −1

)
σ2 = i

2

( −1 −√
3

−√
3 1

)

They generate a group which is isomorphic to Z3 � Z4.

B. 1.2 z = B

The Hilbert space VCCCC
B is also three-dimensional with basis {|CC〉, |AB〉, |BA〉}.

The matrices of the σi
′s are given by:
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σ1 =
⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠ σ2 = −1

2

⎛
⎝

0 −√
2 −√

2
−√

2 1 −1
−√

2 −1 1

⎞
⎠

σ3 =
⎛
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎠

The representation is irreducible with image isomorphic to the permutation group
S4.

B. 1.3 z = C

The Hilbert space VCCCC
C is five-dimensional with basis {|CC〉, |AC〉, |CA〉, |BC〉,

|CB〉}. And the image of the σi
′s is given by :

σ1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

σ2 = 1

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 1 1 −1
0 1 1 −1 1
0 1 −1 1 1
0 −1 1 1 1

⎞
⎟⎟⎟⎟⎠

σ3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

VCCCC
C splits into the direct sum of two trivial irreps and a 3-dim irrep V. V has a

basis { 1√
2
(|AC〉 − |CA〉), |BC〉, |CB〉}. Under this basis, the σi

′s have the following
image:

σ1 =
⎛
⎝

−1 0 0
0 1 0
0 0 −1

⎞
⎠ σ2 = −1

2

⎛
⎝

0
√
2 −√

2√
2 1 1

−√
2 1 1

⎞
⎠ σ3 =

⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠

And they generate a group which is also isomorphic to S4.
Therefore, if we braid four anyons C , then all the images of the representations are

very small.

B. 2 Representations on V DDDD
z

There are six choices for z, namely A, B, C , F , G and H . By Remark 2, we only need
to consider cases where z = A, B, F and G.
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D D D D

x y

z

B. 2. 1 z = A

The space V DDDD
A is five-dimensional with basis {|AA〉, |GG〉, |FF〉, |CC〉, |HH〉}.

Under this basis, the matrices of the σi
′s are as follows:

σ1 = σ3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ω2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ω

⎞
⎟⎟⎟⎟⎠

σ2 = 1

6

⎛
⎜⎜⎜⎜⎝

2
√
2 + √

6i 2
√
2 2

√
2 −√

2 − √
6i

−√
2 + √

6i 1 + √
3i 1 − √

3i 1 − √
3i 4

2
√
2 1 − √

3i 4 −2 1 + √
3i

2
√
2 1 − √

3i −2 4 1 + √
3i

−√
2 − √

6i 4 1 + √
3i 1 + √

3i 1 − √
3i

⎞
⎟⎟⎟⎟⎠

where ω = − 1
2 +

√
3i
2 is a third root of unity.

This representation splits into the direct sum of two trivial representations and a
three-dimensional sector S, which is spanned by the basis {|GG〉, |HH〉, 1

2 (−
√
2|AA〉

+ |CC〉 + |FF〉)}. The representation on S is generated by the following matrices:

σ1 = σ3 =
⎛
⎝

ω2 0 0
0 ω 0
0 0 1

⎞
⎠ σ2 = 1

6

⎛
⎝

1 + √
3i 4 2 − 2

√
3i

4 1 − √
3i 2 + 2

√
3i

2 − 2
√
3i 2 + 2

√
3i −2

⎞
⎠

They generate a group of order 12 which is isomorphic toA4, the alternating group.

B. 2. 2 z = B

V DDDD
B is four-dimensional with basis {|GG〉, |FF〉, |CC〉, |HH〉}. The matrices of

the generators are as follows:
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σ1 = σ3 =

⎛
⎜⎜⎝

ω2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω

⎞
⎟⎟⎠

σ2 = 1

6

⎛
⎜⎜⎝

3 − √
3i 3 + √

3i 3 + √
3i 0

3 + √
3i 0 −2

√
3 −3 + √

3i
3 + √

3i −2
√
3 0 3 − √

3i
0 −3 + √

3i 3 − √
3i 3 + √

3i

⎞
⎟⎟⎠

This representation splits into the sum of two two-dimensional sectors S1 and
S2, where S1 is spanned by {|GG〉, 1√

2
(|CC〉 + |FF〉)}, and S2 is spanned by

{|HH〉, 1√
2
(|FF〉 − |CC〉)}.

On the sector S1, the generators have matrices:

σ1 = σ3 =
(

ω 0
0 ω2

)
σ2 =

(
− 1

2 −
√
3i
6 −

√
6i
3

−
√
6i
3 − 1

2 +
√
3i
6

)

They generate a group of size 24 which is isomorphic to SL(2, F3). Modulo the
center, we get A4.

The representation on the other sector S2 is exactly the same of that on S1.

B. 2. 3 z = F

The space V DDDD
F is nine-dimensional and has a basis {|FF〉, |AF〉, |FA〉, |GC〉,

|CG〉, |GH〉, |HG〉, |CH〉, |HC〉}.The generators ofB4 have the followingmatrices:

σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
ω2

1
ω2

ω

1
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1

ω2

ω

ω2

ω

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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σ2 = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 ω2 ω2 1 1 ω ω

1 1 1 ω 1 ω ω2 1 ω2

1 1 1 1 ω ω2 ω ω2 1
ω2 ω 1 1 ω2 ω 1 1 1
ω2 1 ω ω2 1 1 ω 1 1
1 ω ω2 ω 1 1 1 ω2 1
1 ω2 ω 1 ω 1 1 1 ω2

ω 1 ω2 1 1 ω2 1 1 ω

ω ω2 1 1 1 1 ω2 ω 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This representation splits into the sum of a 1-dim trivial representation and an 8-dim
irrep. The 1-dim irrep is spanned by the element 1√

3
(|FF〉+|AF〉+|FA〉).The 8-dim

irrep has an image in U(8) of size 216 which is isomorphic to the famous Hessian
group

∑
(216) in physics literature. The following is a presentation of

∑
(216) from

analyzing the matrices of the generators σi :

< a, b, c|aba = bab, bcb = cbc, ac = ca, a3 = (ab)6 = (bc)6 = (abcaba)2 = 1 > .

As an abstract group, it is isomorphic to ((Z3 × Z3) � Q8) × Z3, where Q8 is the
quaternion group of order 8.

We will see this group again later.

B. 2. 4 z = G

The space V DDDD
G is also nine-dimensional with a basis {|GG〉, |AG〉, |GA〉, |FC〉,

|CF〉, |FH〉, |HF〉, |CH〉, |HC〉}. As always, we first look at the matrices of the
σi

′s:

σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2

1
ω2

1
1

1
ω

1
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2

ω2

1
1

1
ω

1
ω

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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σ2 = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ω ω ω2 ω2 1 1 1 1
ω 1 ω 1 1 1 ω2 1 ω2

ω ω 1 1 1 ω2 1 ω2 1
ω2 1 1 1 ω2 1 ω ω 1
ω2 1 1 ω2 1 ω 1 1 ω

1 1 ω2 1 ω 1 1 ω2 ω

1 ω2 1 ω 1 1 1 ω ω2

1 1 ω2 ω 1 ω2 ω 1 1
1 ω2 1 1 ω ω ω2 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The representation splits into the sum of a 6-dim irrep and a 3-dim irrep.
Denote this 3-dim irrep by W , which is spanned by the basis { 1√

2
(|FC〉 −

|CF〉), 1√
2
(|CH〉 − |FH〉), 1√

2
(|HF〉 − |HC〉)}. If we use this subspace W as com-

putational space, we will have a qutrit. The three basis elements above correspond to
|0〉, |1〉, |2〉.

Under this basis, the matrices of the σi
′s(unnormalized) on W are as follows:

σ1 =
⎛
⎝
1 0 0
0 1 0
0 0 ω

⎞
⎠ σ3 =

⎛
⎝
1 0 0
0 ω 0
0 0 1

⎞
⎠

σ2 =

⎛
⎜⎜⎝

1
2 +

√
3i
6 − 1

2 +
√
3i
6 − 1

2 +
√
3i
6

− 1
2 +

√
3i
6

1
2 +

√
3i
6 − 1

2 +
√
3i
6

− 1
2 +

√
3i
6 − 1

2 +
√
3i
6

1
2 +

√
3i
6

⎞
⎟⎟⎠

The group generated by them has order 648 with a center of size 3. The elements
in the center are scalar matrices. And the group modulo center has order 216 which is
isomorphic to the Hessian group

∑
(216).

B. 3 Representations on VGGGG
z

The possible choices of z are A, B and G.

G G G G

x y

z
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B. 3. 1 z = A

The space VGGGG
A is three-dimensional with a basis {|AA〉, |BB〉, |GG〉}. Under this

basis, the matrices for the generators σi
′s are given by

σ1 = σ3 = τ

⎛
⎝

ω2 0 0
0 −ω2 0
0 0 ω

⎞
⎠

σ2 = τ

⎛
⎜⎝

1
2ω − 1

2ω
1√
2
ω2

− 1
2ω

1
2ω

1√
2
ω2

1√
2
ω2 1√

2
ω2 0

⎞
⎟⎠

where τ = e− π i
9 .

This representation is irreducible, and the group generated by them has a structure
of (Z9×Z3)�S3 with order 162, which is isomorphic to the group D(9, 1, 1; 2, 1, 1).

We recall the definition of D(n, a, b; d, r, s) below. For more information about
this type of subgroups of SU(3), see [12].

Let

E =
⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠ F = F(n, a, b) =

⎛
⎜⎝
e
2π ia
n 0 0

0 e
2π ib
n 0

0 0 e
2π i(−a−b)

n

⎞
⎟⎠

G = G(d, r, s) =
⎛
⎜⎝
e
2π ir
d 0 0

0 0 e
2π is
d

0 −e
2π i(−r−s)

d

⎞
⎟⎠

Then D(n, a, b; d, r, s) := < E, F(n, a, b),G(d, r, s) >.
Actually one can show that the group generated by the σi

′s is isomorphic to
D(9, 1, 1; 2, 1, 1) via a conjugation by some unitary matrix.

B. 3. 2 z = B

VGGGG
B ) is also three-dimensional with a basis {|GG〉, |AB〉, |BA〉}. The matrices of

the σi
′s are given by

σ1 = τ

⎛
⎝

ω 0 0
0 ω2 0
0 0 −ω2

⎞
⎠ σ3 = τ

⎛
⎝

ω 0 0
0 −ω2 0
0 0 ω2

⎞
⎠

σ2 = τ

⎛
⎜⎜⎜⎝

0 − 1√
2
ω2 − 1√

2
ω2

− 1√
2
ω2 1

2ω − 1
2ω

− 1√
2
ω2 − 1

2ω
1
2ω

⎞
⎟⎟⎟⎠

where τ = e− π i
9 .
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Again this representation is irreducible, and they generate a group with structure
(Z18 × Z6) �S3, which is isomorphic to the group D(18, 1, 1; 2, 1, 1) [12]. So it has
order 648.

Let

p =

⎛
⎜⎜⎝

0 0 1

1√
2

− 1√
2

0

1√
2

1√
2

0

⎞
⎟⎟⎠

Direct calculations show that conjugation by the matrix p gives the isomorphism
from our group generated by the σi

′s to D(18, 1, 1; 2, 1, 1).

B. 3. 3 z = G

VGGGG
G is now five-dimensional with a basis {|GG〉, |AG〉, |GA〉, |BG〉, |GB〉}. The

matrices of the generators σi
′s are as follows:

σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω 0 0 0 0

0 ω2 0 0 0

0 0 ω 0 0

0 0 0 −ω2 0

0 0 0 0 ω

⎞
⎟⎟⎟⎟⎟⎟⎠

σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω 0 0 0 0

0 1
2ω

1
2ω

2 1
2ω − 1

2ω
2

0 1
2ω

2 1
2ω − 1

2ω
2 1

2ω

0 1
2ω − 1

2ω
2 1

2ω
1
2ω

2

0 − 1
2ω

2 1
2ω

1
2ω

2 1
2ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω 0 0 0 0

0 ω 0 0 0

0 0 ω2 0 0

0 0 0 ω 0

0 0 0 0 −ω2

⎞
⎟⎟⎟⎟⎟⎟⎠

It is obvious that |GG〉 is a common eigenvector of the σi
′s. So it spans a 1-dim

irrep of B4. The orthogonal complement spanned by the other 4 basis elements is a
4-dim irrep.

The group generated by the σi
′s has order 648. And GAP shows that it has a

structure of (((Z3 × ((Z3 × Z3) � Z2)) � Z2) � Z3) � Z2.
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