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The Clifford hierarchy is a set of gates that appears in the theory of fault-tolerant quantum computation, but
its precise structure remains elusive. We give a complete characterization of the diagonal gates in the Clifford
hierarchy for prime-dimensional qudits. They turn out to be pmth roots of unity raised to polynomial functions
of the basis state to which they are applied, and we determine which level of the Clifford hierarchy a given gate
sits in based on m and the degree of the polynomial.
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I. INTRODUCTION

We expect that to build a large quantum computer, some
sort of fault-tolerant encoding will be necessary in order to
deal with imperfections in quantum memories and quantum
gates. Arguably the central result in the theory of fault-tolerant
quantum computation, the threshold theorem guarantees that
it is possible to construct reliable fault-tolerant quantum
circuits provided the errors in state preparation, gates, and
measurements are below a certain threshold error rate.

The central idea behind this theorem is to encode quantum
information into quantum error correcting codes, the most
common being stabilizer codes. To process information, we
can choose to use a transversal gate architecture and measure
Pauli observables. These gates prevent errors on a physical
qubit from spreading to others within an encoded block.
Unfortunately, these gates alone are insufficient to achieve
universal quantum computation [1].

Magic state injection is one common approach to overcome
this limitation. Gottesman and Chuang [2] explored what
gates could be implemented via teleportation-based state
injection. They showed that there existed a class of gates
called the Clifford hierarchy that is intimately connected to
fault tolerance and state injection. The connection between
state injection and the third level of the Clifford hierarchy has
been subsequently explored in [3–5]. The Clifford hierarchy is
also important in understanding the possible transversal gates
on stabilizer codes [6,7]. Although previous attempts have
been made in [8], the full structure of gates within the Clifford
hierarchy is still not known.

In this paper, we make partial progress towards answering
this question by giving a complete characterization of the diag-
onal gates in every level of the Clifford hierarchy. We focus on
prime-dimensional qudits, but the result also applies to qudits
of prime-power dimension pr with a standard choice of Pauli
group, since their Clifford group and Clifford hierarchies are
isomorphic to those of r p-dimensional qudits. In particular,
we show that if U is a diagonal gate in any level of the Clifford
hierarchy for qudits of dimension p, it can be written as

U =
∑
j∈Zp

exp

(
2πi

∑
m

δm(j )/pm

)
|j 〉〈j |, (1)

where δm(j ) is a polynomial over Zpm (a multivariate polyno-
mial in the case of multiple qudits). The level of the Clifford
hierarchy in which it appears is determined by the largest value
of m that appears in the sum and the degree of δm(j ) for that m.

Section II reviews some background material and estab-
lishes terminology. In Sec, III, we prove the theorem for a
single qudit. We generalize this result to n qudits in Sec. IV
and make some final comments in Sec. V.

II. BACKGROUND

A single qudit of prime dimension p is associated with the
complex Euclidean spaceCp. Let ω = exp (2πi/p) denote the
pth root of unity. The matrices X and Z are defined by their
action on Cp: for j ∈ Zp,

X|j 〉 = |j + 1〉, Z|j 〉 = ωj |j 〉, (2)

where the addition is performed with respect to the field Zp.
We will be dealing in this paper not just with powers of ω,

but with powers of exp(2πi/pm).
Let P denote the single-qudit Pauli group

P =
{〈i1,X,Z〉 if p = 2

〈ω1,X,Z〉 if p > 2.
(3)

We associate with n qudits the Hilbert space H = (Cp)⊗n.
Pn := P⊗n refers to the n-qudit Pauli group. The Pauli group
defines the first level in the Clifford hierarchy: C(1) = {eiφ}Pn.
We have added all global phases for later convenience. We
define

X(v) =
n⊗

i=1

Xvi , (4)

and similarly for Z(v). Here, v is an element of Zn
p, an n-

dimensional vector over Zp.
The normalizer of the Pauli group is called the Clifford

group and is denoted C(2). These gates play a central role in
the theory of quantum error correction and fault tolerance.
However, circuits composed entirely of gates from C(2) are not
universal for quantum computation.
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To get around this problem, we need gates from the third
level of the Clifford hierarchy, C(3), defined as

C(3) := {U |UPU † ∈ C(2), ∀P ∈ Pn}. (5)

Any gate from the set C(3) \ C(2) can be used to construct a
universal quantum circuit in conjunction with the Clifford
group.

This can be generalized to define C(k), the kth level of the
Clifford hierarchy on H,

C(k) := {U |UPU † ∈ C(k−1), ∀P ∈ Pn}. (6)

This set of gates was first defined by Gottesman and Chuang [2]
who showed that such gates can be implemented exactly via
teleportation.

For k � 3, the set of gates in the Clifford hierarchy no
longer forms a group. However, diagonal Clifford operators
C(k)

d ⊂ C(k) in the kth level of the Clifford hierarchy do form a
group.

Theorem 1 ([8]). C(k)
d is a group.

Proof. The proof works by induction on k. Since C(2) is a
group, so is C(2)

d . To prove the result for larger k, the main
observation is that if unitary U is diagonal (regardless if it is
in C(k)

d or not), then

UX(v)U † = V (v)X(v), (7)

with V (v) also a diagonal unitary. Since U ∈ C(k)
d commutes

with Z(v), we only need to consider conjugation of X(v).
Now consider U1,U2 ∈ C(k)

d . Then we have that V1(v) and
V2(v) are in C(k−1)

d , so

(U1U2)X(v)(U1U2)† = U1V2(v)X(v)U †
1 (8)

= V2(v)V1(v)X(v), (9)

since diagonal unitaries commute. By the inductive hypothesis,
C(k−1)

d is a group, so V2(v)V1(v) ∈ C(k−1)
d and U1U2 ∈ C(k)

d .
In addition, U †X(v)U = V ′(v)X(v) implies that

[V ′(v)]†X(v) = UX(v)U † = V (v)X(v), (10)

so V ′(v) = V (v)† ∈ C(k−1)
d , again by the inductive hypothesis.

This implies that U † ∈ C(k)
d . �

III. SINGLE-QUDIT DIAGONAL UNITARY GATES
AND THE CLIFFORD HIERARCHY

Let p be some prime number and m ∈ N be a fixed natural
number. The ring Zpm is defined as

Zpm := {0,1, . . . ,pm − 1}. (11)

Any element c ∈ Zpm can be expressed as

c0 + c1p + · · · + cm−1p
m−1, (12)

where {ci}m−1
i=0 are some constants in Zp.

Let � : Zp ↪→ Zpm be an arbitrary function. It can be
constructed using polynomials of degree at most p − 1. This
can be seen as follows. Let δk(j ) be a delta function such that
it is 1 when j = k and 0 otherwise. � can then be expressed
as

�(j ) =
∑

k

θkδk(j ), (13)

for some constants θk ∈ Zpm . δk(j ) is a polynomial of degree
at most p − 1 since it can be expressed as

δk(j ) =
∏

k′ ∈ Zp

k′ 
= k

(j − k′)
(k − k′)

. (14)

We shall be interested in studying diagonal unitary opera-
tors of the form

U =
∑
j∈Zp

exp

(
2πi

pm
�(j )

)
|j 〉〈j |. (15)

In this context, we shall refer to m as the precision of the
unitary U . Note that all unitary operators U of precision m can
be expressed in the manner above.

We begin by focusing on unitaries constructed using
monomial �.

Definition 1. For m ∈ N, 1 � a � p − 1, the diagonal uni-
tary gate Um,a is defined as

Um,a :=
∑
j∈Zp

exp

(
2πi

pm
ja

)
|j 〉〈j |. (16)

We ignore a = 0 because such unitaries are only a constant
phase times the identity operator.

We then define the set of diagonal unitaries Dm,a recur-
sively:

Definition 2. We can define the group of diagonal gates
with precision m and degree a as

Dm,a = 〈Um,b〉ab=1{eiφ}Dm−1,p−1. (17)

As mentioned earlier, polynomials of degree p − 1 can be
used to construct arbitrary functions � : Zp ↪→ Zpm . Hence,
Dm,p−1 can be used to construct any diagonal unitary of
precision m.

Note that D1,1 = 〈Z〉 is simply the set of all diagonal Pauli
operators with global phase φ. Hence we may write

D1,1 = C(1)
d . (18)

Among all the diagonal unitary gates, we single out a special
class of gates called phase gates.

Definition 3. For m ∈ N, Pm(k) is the phase gate that
changes the phase of |k〉:

Pm(k) =
p−1∑
j = 0
j 
= k

|j 〉〈j | + exp

(
2πi

pm

)
|k〉〈k|. (19)

Phase gates are not actually distinct diagonal unitary gates.
Since the function δk(j ) can be represented as a polynomial of
degree p − 1, the phase gate Pm(k) ∈ Dm,p−1. Nevertheless, it
will be helpful to be able to refer to Pm(k) directly.

The main result of this section is the following theorem.
Theorem 2. For m ∈ N, and 1 � a � p − 1,

Dm,a = C[(p−1)(m−1)+a]
d . (20)

To prove this, we shall break the result into two lemmas,
each showing containment of one group in the other.

Lemma 1. For m ∈ N, and 1 � a � p − 1,

Dm,a ⊆ C[(p−1)(m−1)+a]
d . (21)
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Proof. The proof proceeds via induction on both m and a.
Base case. By definition, D1,1 is the group of all diagonal

Pauli operators and therefore

D1,1 = C(1)
d . (22)

This implies the weaker result

D1,1 ⊆ C(1)
d . (23)

Induction on a. Suppose we have proved (1) ∀m′ < m,
∀ b ∈ Zp, that

Dm′,b ⊆ C[(p−1)(m′−1)+b]
d (24)

and (2) ∀ a′ such that 1 � a′ < a � p − 1, that

Dm,a′ ⊆ C[(p−1)(m−1)+a′]
d . (25)

Consider the conjugation

Um,aXU †
m,a =

p−1∑
j=1

exp

(
2πi

pm
[ja − (j − 1)a]

)
|j 〉〈j − 1|

+ exp

(
−2πi

pm
(p − 1)a

)
|0〉〈p − 1| (26)

=
p−1∑
j=1

exp

[
2πi

pm

(
−

a−1∑
d=0

cdj
d

)]
|j 〉〈j − 1|

+ exp

[
−2πi

pm

(
a∑

d=0

cdp
d

)]
|0〉〈p − 1|, (27)

where

cd =
(

a

d

)
(−1)a−d . (28)

We have separated the sum over j into two parts because
this allows us to write it as a product of gates that can be
easily identified. First, note that the entire expression contains
a constant phase

exp

(
2πi

pm
(−1)a+1

)
that arises from the d = 0 terms and can be removed.

In Eq. (27), the sum over j arises from a diagonal unitary
Wm,a−1 times X, where Wm,a−1 ∈ Dm,a−1: this unitary has the
form

Wm,a−1 =
∑
j∈Zp

exp

(
2πi

pm
aja−1

)
|j 〉〈j |. (29)

We have ignored terms of the form

1

pn
jd (30)

if n < m or if n = m but d < a − 1 since they are in Dm,d ⊆
Dm,a−1 and will therefore not affect the level of the hierarchy.

The next term of expression (27) is a product of phase
gates Pm−d (0) times X, where d is at least 1. To pin down
which level of the Clifford hierarchy Um,a lies in, we only
need to consider the finest phase rotations, i.e., the terms with
the largest precision; the rest of the gates are lower in the
hierarchy and can safely be ignored.

With this observation, we can write the above expression
as

exp

(
2πi

pm
(−1)a+1

)
Pm−1(0)Wm,a−1X. (31)

This can be further simplified. The phase gate
Pm−1(0) ∈ Dm−1,p−1 ⊆ Dm,a−1 and therefore the product
Pm−1(0)Wm,a−1 := Vm,a−1 ∈ Dm,a−1. Hence, the above
expression is

exp

(
2πi

pm
(−1)a+1

)
Vm,a−1X. (32)

Using the inductive hypothesis, we know that

Vm,a−1 ∈ C[(p−1)(m−1)+(a−1)]
d ⇒ Um,a ∈ C[(p−1)(m−1)+a]

d . (33)

Therefore,

Dm,a ⊆ C[(p−1)(m−1)+a]
d . (34)

Induction on m. Suppose we have shown that ∀m′ < m and
a ∈ Zp,

Dm′,a ⊆ C[(p−1)(m′−1)+a]
d . (35)

Consider the conjugation

Um,1XU
†
m,1 =

p−1∑
j=1

exp

(
2πi

pm

)
|j 〉〈j − 1|

+ exp

(
−2πi

pm
(p − 1)

)
|0〉〈p − 1| (36)

= exp

(
2πi

pm

)
Pm−1(0)−1X. (37)

Since the phase gate Pm−1(0) ∈ Dm−1,p−1, the inductive
hypothesis stipulates

Pm−1(0) ∈ C[(p−1)(m−1)]
d ⇒ Um,1 ∈ C((p−1)(m−1)+1)

d . (38)

Therefore,

Dm,1 ⊆ C[(p−1)(m−1)+1]
d . (39)

�
Lemma 2. Dm,a ⊇ C[(p−1)(m−1)+a]

d .
Proof. For m,m′ � 1, 1 � a, a′ � p − 1, define (m′,a′) <

(m,a) if m′ < m or m′ = m and a′ < a. Clearly this defines a
total ordering on the set of pairs {(m,a)}, and (m′,a′) < (m,a)
if and only if (m′ − 1)(p − 1) + a′ < (m − 1)(p − 1) + a.

We shall prove this lemma by induction on (m,a) relative
to this ordering.

Base case (m,a) = (1,1). By definition D1,1 = C(1)
d and

therefore,

D1,1 ⊇ C(1)
d . (40)

Induction on (m,a). Suppose we have shown ∀ (m′,a′) <

(m,a) that

Dm′,a′ ⊇ C((p−1)(m′−1)+a′)
d . (41)

Suppose U ∈ C[(p−1)(m−1)+a]
d . Let us express U as

U =
∑
j∈Zp

exp[2πiθ (j )]|j 〉〈j |. (42)
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Without loss of generality we can let θ (0) = 0, absorbing the
difference into a global phase. We would like to show that

U ∈ Dm,a. (43)

For some φ ∈ [0,1), we are guaranteed the existence of a
unitary V ∈ C((p−1)(m−1)+(a−1))

d such that

UXU † = e2πiφV X. (44)

From the inductive hypothesis, V is an element of Dm,a−1

if a � 2, and an element of Dm−1,p−1 if a = 1. Let 	θ denote
the function

	θ (j ) =
{
θ (j ) − θ (j − 1) if j ∈ {1, . . . ,p − 1}
θ (0) − θ (p − 1) if j = 0.

(45)

Together with Eq. (44), this implies that for j =
0,1, . . . ,p − 1, we must have, for some μ(m′,a′) ∈ Zp,

	θ (j ) =
∑

(m′,a′)<(m,a)

μ(m′,a′)
ja′

pm′ + φ mod 1. (46)

Define

∑
(j,a′) :=

j∑
k=1

ka′
. (47)

Then adding up the p equations in (46) we obtain∑
(m′,a′)<(m,a)

μ(m′,a′)

pm′

∑
(p − 1,a′) + pφ = 0 mod 1. (48)

Since Z×
p is a cyclic group, it is direct to show that

∑
(p − 1,a′) =

{
p − 1 mod p, a′ = p − 1

0 mod p, a′ 
= p − 1.
(49)

Substituting (49) into (48), we know that there exist
ν(m′,a′) ∈ Z, w ∈ Z, such that

φ =
∑

(m′,a′) < (m,a)
a′ 
= p − 1

ν(m′,a′)

pm′ +
∑

(m′,a′) < (m,a)
a′ = p − 1

ν(m′,a′)

pm′+1
+ w

p
. (50)

Since (m′,p − 1) < (m,a) implies m′ + 1 � m, there exists
u ∈ Z such that

φ = u

pm
. (51)

Next, θ (j ) can be derived from the inductive formula in
Eq. (46),

θ (j ) =
∑

(m′,a′)<(m,a)

μ(m′,a′)

pm′

∑
(j,a′) + jφ mod 1

=
∑

(m′,a′)<(m,a)

μ(m′,a′)

pm′

∑
(j,a′) + uj

pm
mod 1. (52)

Faulhaber’s formula [9] on sums of powers of positive
integers states that

∑
(j,a′) = 1

a′ + 1

a′∑
k=0

(−1)k
(

a′ + 1

k

)
Bkj

a′+1−k, (53)

where Bk’s are the Bernoulli numbers and B1 = − 1
2 . We use

the following two facts on Bernoulli numbers:

(1) B2n+1 = 0, n � 1.
(2) The denominator of B2n is the product of all prime

numbers q such that q − 1 divides 2n.
In the following we discuss some properties of

∑
(j,a′) in

two cases.
Case 1. a′ 
= p − 1. Since a′ � p − 2, p cannot be a divisor

of the denominator of any B2n for 2n � a′. Let L be the least
common multiplier of the denominators of {B2n | 2n � a′} ∪
{B1}. Then L is coprime to p, and we have

L(a′ + 1)
∑

(j,a′) =
a′∑

k=0

akj
a′+1−k, ak ∈ Z. (54)

Let Im′ ∈ Z be the inverse of L(a′ + 1) modulo pm′
, then

∑
(j,a′) =

a′∑
k=0

Im′akj
a′+1−k mod pm′

. (55)

Case 2. a′ = p − 1. In this case,
∑

(j,a′), just like any
function from Zp to Zpm′ , can be written as a polynomial
�a′ (j ) of degree at most p − 1 over Zpm′ .

Finally, combining Eqs. (52) and (55), we have

θ (j ) =
∑

(m′,a′) < (m,a)
a′ 
= p − 1

μ(m′,a′)

pm′

a′∑
k=0

Im′akj
a′+1−k

+
∑

(m′,a′) < (m,a)
a′ = p − 1

μ(m′,a′)
�a′(j )

pm′ + uj

pm
mod 1. (56)

Again using the fact that (m′,p − 1) < (m,a) implies m′ +
1 � m, we know that the terms in the second line of the above
equation sit in Dm′,p−1 ⊂ Dm,a . It is easy to see the other terms
in the equation are also in Dm,a . Thus U ∈ Dm,a . �

Since C(k)
d is an Abelian group, it can be written as a

product of cyclic groups. Now that we know its structure, it is
straightforward to determine this decomposition explicitly.

Corollary 1. For a � p − 1,

C(a)
d = D1,a

∼= U (1)Za
p. (57)

For m > 1,

C[(p−1)(m−1)+a]
d = Dm,a

∼= U (1)Za
pmZ

p−a−1
pm−1 . (58)

Proof. 〈Um,a〉 is isomorphic to Zpm . It contains 〈Um′,a〉 for
m′ < m but not 〈Um′,a′ 〉 for any a′ 
= a. Therefore, each degree
of polynomial with prefactor 1/pm corresponds to one factor
of Zpm , and each degree with prefactor 1/pm−1 corresponds
to one factor of Zpm−1 . Lower values of m′ < m − 1 do not
give additional factors because all degrees of polynomials up
to p − 1 are already present for m or m − 1. There is also a
global phase, isomorphic to U (1). �

IV. n-QUDIT DIAGONAL GATES AND THE CLIFFORD
HIERARCHY

In this section, we shall generalize the above results to
n qudits. a,b, . . . shall denote vectors in Zn

p. The weight
of a vector a ∈ Zn

p, is defined as wt (a) := ∑n
i=1 ai . A basis

element of H = (Cp)⊗n is represented as |j〉 = ⊗n
i=1 |ji〉. For
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i ∈ {1, . . . ,n}, let ei ∈ Zn
p be the vector whose ith component

is 1 and the rest are 0.
Let � : Zn

p → Zpm be some function. Following a similar
line of reasoning as in the previous section, we can show that
any such function can be constructed using polynomials of
degree at most n(p − 1).

Any diagonal unitary of precision m on n qudits can be
expressed as

U =
∑

j

exp

(
2πi

pm
�(j)

)
|j〉〈j|. (59)

As before, we shall start with unitaries whose exponents
only contain monomial terms.

Definition 4. For m ∈ N and a ∈ Zn
p, such that 0 � ai �

p − 1,

Um,a :=
∑

j

exp

(
2πi

pm
j

a1
1 · · · jan

n

)
|j〉〈j|. (60)

Similar to the single-qudit case, j
a1
1 . . . j an

n : Zn
p → Zpm ,

i.e., the range of these monomials is Zpm .
The set Dm,a shall denote the set of diagonal unitary

operators whose exponents are multivariate polynomials of
degree a.

Definition 5. For m ∈ N, a ∈ Zn
p, and vectors b ∈ Zn

p such
that bi � ai for all i ∈ [n] and wt (b) < wt (a), and for
any vectors c ∈ Zn

p such that 1 � ci � p − 1, and wt (c) �
wt (a) + (p − 1)

Dm,a := 〈Um,a〉{eiφ}
∏

b

D
∏

c

Dm−1,c. (61)

Note that D1,ei
= 〈Z(ei)〉{eiφ} is the set of diagonal Paulis

on the ith qudit with a global phase.
Definition 6. For w ∈ N, let Sw denote the set

Sw = {(m,a)|(p − 1)(m − 1) + wt(a) = w}. (62)

We then define

Dw :=
∏

(m,a)∈Sw

Dm,a. (63)

The main result of this section is the following theorem.
Theorem 3. For w ∈ N,

Dw = C(w)
d . (64)

As in the single-qudit case, we shall break the proof of the
theorem into two lemmas.

Lemma 3. For w ∈ N,

Dw ⊆ C(w)
d . (65)

Proof. Base case. By definition
n∏

i=1

D1,ei
= C(1)

d . (66)

Therefore,

D1,ei
⊆ C(1)

d . (67)

Inductive step. For w′ < w, suppose we have shown that

Dw′ ⊆ C(w′)
d . (68)

Let m ∈ N and a ∈ Zn
p such that

(p − 1)(m − 1) + wt(a) = w. (69)

There are three components making up Dm,a. The first
component is 〈Um,a〉, with (m,a) satisfying the above con-
straint. The second component is elements of Dm,b and
by the condition on b, (p − 1)(m − 1) + wt (b) = w′ < w.
Thus, Dm,b ⊆ Dw′ and the inductive hypothesis implies that
Dm,b ⊆ C(w′)

d . The third component is Dm−1,c and

(p − 1)[(m − 1) − 1] + wt(c) � (p − 1)(m − 1) + wt(a)

= w. (70)

Therefore, to show that Dm,a ⊆ C(w)
d , it suffices to show that

Um,a ∈ C(w). To this end, consider

Um,aX(e1)U †
m,a = V X(e1). (71)

Case 1. If a1 > 1, then it is straightforward to show as
in Lemma 1 that V ∈ Dm,b where b = a − e1. The inductive
hypothesis guarantees V ∈ C(w−1)

d .
Case 2. If a1 = 1, then we can show that V is a product

of two gates, VL and VR . VL ∈ Dm,b where b = a − e1

as before; VR ∈ Dm−1,c where c = (p − 1,b2, . . . ,bn). Since
wt (c) = wt (a) + (p − 2), (m − 1,c) ∈ Sw−1. The product of
VL and VR always lies in Dw−1 and hence, by the inductive
hypothesis, VLVR ∈ C(w−1)

d .
The same argument works for conjugation of X(ei) for

i 
= 1. If

Um,aX(ei)U
†
m,a = ViX(ei), (72)

then

Um,aX(v)U †
m,a =

∏
i

V
vi

i X(v). (73)

Since C(w−1)
d is a group,

∏
i V

vi

i ∈ C(w−1)
d as well. This implies

that

Um,a ∈ C(w)
d . (74)

�
Lemma 4. For w ∈ N,

Dw ⊇ C(w)
d . (75)

Proof. Base case. By definition,
∏

i D1,ei
= C(1)

d and there-
fore,

D1 ⊇ C(1)
d . (76)

Suppose we have shown that for w ∈ N, w′ < w that

Dw′ ⊇ C(w′)
d . (77)

Let U ∈ C(w)
d . It can be expressed as

U =
∑

j

exp[2πiθ (j)]|j〉〈j|, (78)

for some function θ .
For some φ ∈ [0,1), there exists an operator V ∈ C(w−1)

d

such that

UX(e1)U † = e2πiφV X(e1). (79)

We begin by considering only the conjugation with X(e1) for
simplicity.
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Let 	iθ denote the function

	iθ (j1, . . . ,ji, . . . ,jn)

= θ (j1, . . . ,ji, . . . ,jn) − θ (j1, . . . ,ji − 1, . . . ,jn)

	iθ (j1, . . . ,ji = 0, . . . ,jn)

= θ (j1, . . . ,0, . . . ,jn) − θ (j1, . . . ,p − 1, . . . ,jn).

From our inductive assumption it follows that V ∈ Dw−1.
Hence, there exists N ∈ N such that V can be expressed as the
product of unitaries {Vx}Nx=1 ∈ Dw−1 where each unitary can
be expressed as

Vx =
∑

j

exp

(
2πi

pmx
j

bx,1

1 · · · jbx,n

n

)
|j 〉〈j |, (80)

with (mx,bx) ∈ Sα , α � w − 1. That is,
(p − 1)(mx − 1) + wt(bx) = α < w. (81)

We can then express the polynomial 	1θ as

	1θ (j) = φ +
∑

x

1

pmx
μmx,bx

j
bx,1

1 · · · jbx,n

n mod 1 (82)

for some constants μmx,bx
∈ Zp. We have ignored terms of the

form
1

pn
j c, (83)

where n < mx or n = mx and wt (c) < wt (bx).
As in the single-qudit proof (Lemma 2), we find φ = u/pm,

where m = max mx . We again apply Faulhaber’s result. The
argument is the same as the single-qudit case, but this time,
we find multiple leading order terms in θ :

θ (j) =
∑

x

1

pm̃x
αb̃x

j
b̃x,1

1 · · · j b̃x,n

n + uj1

pm
(84)

for some constants αa ∈ Zp and tuples (m̃x,b̃x) such that either
m̃x = mx and b̃1 = b1 + 1 or m̃x = mx + 1 and b̃1 = 1. This
means that these tuples obey

(p − 1)(m̃x − 1) + wt(b̃x) = α + 1 � w. (85)

The other difference from the single-qudit case is that there
are “constants” that appear in the proof of Lemma 2 which
in the multiple-qudit case are actually functions of j2 through
jn, just not j1. For most of these functions, their value in θ

is fixed by the corresponding polynomials in V , and therefore
they are polynomials in θ as well. However, θ (0) disappears
completely in 	θ and now cannot be absorbed into the global
phase either.

By repeating the argument for X(ej ) for j ∈ [n], we find
that θ (0) and therefore U can be expressed as the product of

unitaries U
m̃

j
y ,b̃

j
y

such that

(p − 1)
(
m̃j

y − 1
) + wt

(
b̃j

y

)
� w. (86)

Therefore,

U ∈ Dw, (87)

which implies

Dw ⊇ C(w)
d (88)

as desired. �
Again, we can express C(w)

d as a product of cyclic groups.
Corollary 2. Let

mw,a =
⌊

w − wt (a)

p − 1

⌋
. (89)

Then

C(w)
d

∼= U (1)
∏

a| wt(a)�w

Zpmw,a . (90)

Proof. Again, 〈Um,a〉 ∼= Zpm and includes 〈Um′,a〉 for all
m′ < m but not 〈Um′,a′ 〉 for a′ 
= a. Thus, each value of a with
wt (a) � w gives one factor of Zmw,a . There is also a U (1)
factor from the global phase. �

V. CONCLUSION

We have given a complete characterization of the diagonal
elements of the Clifford hierarchy in terms of polynomials and
pmth roots of unity. One interesting aspect of this result is that it
shines light on the distinction between the qubit Clifford group
and the qudit Clifford groups. C(k)

d over qudits of dimension
p involves only pth roots of unity for k < p. It is only when
k = p that we need other roots of unity. For qubits, this change
is already appearing at k = 2, the Clifford group, whereas for
larger p it is delayed into the more exotic higher levels of the
Clifford hierarchy.

ACKNOWLEDGMENTS

We would like to thank Mark Howard for discussions and
pointing out an error in an earlier version of this paper.
This research was supported in part by CIFAR and by
the Perimeter Institute for Theoretical Physics. Research at
Perimeter Institute is supported by the Government of Canada
through the Department of Innovation, Science and Economic
Development Canada and by the Province of Ontario through
the Ministry of Research, Innovation and Science. S.C.
acknowledges support from the Simons Foundation.

[1] B. Eastin and E. Knill, Restrictions on Transversal En-
coded Quantum Gate Sets, Phys. Rev. Lett. 102, 110502
(2009).

[2] D. Gottesman and I. L. Chuang, Demonstrating the vi-
ability of universal quantum computation using teleporta-
tion and single-qubit operations, Nature (London) 402, 390
(1999).

[3] I. Bengtsson, K. Blanchfield, E. Campbell, and M. Howard, Order
3 symmetry in the Clifford hierarchy, J. Phys. A: Math. Theor.
47, 455302 (2014).

[4] M. Howard, Maximum nonlocality and minimum uncertainty
using magic states, Phys. Rev. A 91, 042103 (2015).

[5] M. Howard and J. Vala, Qudit versions of the qubit π /8 gate,
Phys. Rev. A 86, 022316 (2012).

012329-6

https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1103/PhysRevLett.102.110502
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1088/1751-8113/47/45/455302
https://doi.org/10.1088/1751-8113/47/45/455302
https://doi.org/10.1088/1751-8113/47/45/455302
https://doi.org/10.1088/1751-8113/47/45/455302
https://doi.org/10.1103/PhysRevA.91.042103
https://doi.org/10.1103/PhysRevA.91.042103
https://doi.org/10.1103/PhysRevA.91.042103
https://doi.org/10.1103/PhysRevA.91.042103
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316


DIAGONAL GATES IN THE CLIFFORD HIERARCHY PHYSICAL REVIEW A 95, 012329 (2017)

[6] J. T. Anderson and T. Jochym-O’Connor, Classification of
transversal gates in qubit stabilizer codes, Quantum Inf. Comput.
16, 0771 (2016).

[7] S. Bravyi and R. König, Classification of Topologically Protected
Gates for Local Stabilizer Codes, Phys. Rev. Lett. 110, 170503
(2013).

[8] B. Zeng, X. Chen, and I. L. Chuang, Semi-Clifford oper-
ations, structure of Ck hierarchy, and gate complexity for
fault-tolerant quantum computation, Phys. Rev. A 77, 042313
(2008).

[9] Wikipedia, Faulhaber’s formula (Wikipedia, the free encyclope-
dia, 2015).

012329-7

https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevLett.110.170503
https://doi.org/10.1103/PhysRevA.77.042313
https://doi.org/10.1103/PhysRevA.77.042313
https://doi.org/10.1103/PhysRevA.77.042313
https://doi.org/10.1103/PhysRevA.77.042313



