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Four dimensional topological quantum field theories

from G -crossed braided categories

Shawn X. Cui

Abstract. We construct a state-sum type invariant of smooth closed oriented 4-manifolds

out of a G-crossed braided spherical fusion category (G-BSFC) for G a finite group.

The construction can be extended to obtain a .3 C 1/-dimensional topological quantum

field theory (TQFT). The invariant of 4-manifolds generalizes several known invariants

in literature such as the Crane–Yetter invariant from a ribbon fusion category and Yetter’s

invariant from homotopy 2-types. If theG-BSFC is concentrated only at the sector indexed

by the trivial group element, a cohomology class in H4.G; U.1// can be introduced to

produce a different invariant, which reduces to the twisted Dijkgraaf–Witten theory in a

special case. Although not proven, it is believed that our invariants are strictly different

from other known invariants. It remains to be seen if the invariants are sensitive to smooth

structures. It is expected that the most general input to the state-sum type construction of

.3C 1/-TQFTs is a spherical fusion 2-category. We show that a G-BSFC corresponds to a

monoidal 2-category with certain extra structure, but that structure does not satisfy all the

axioms of a spherical fusion 2-category given by M. Mackaay. Thus the question of what

axioms properly define a spherical fusion 2-category is open.
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1. Introduction

The notion of a topological quantum field theory (TQFT) was invented by E. Wit-

ten based on path integrals in physics [63] and was given a mathematical formula-

tion in terms of axioms by M. Atiyah [1] in the 1980s. Since then there has been a

vast study of TQFTs both from the physics side and mathematics side. Throughout

the paper, we work in the category of smooth oriented manifolds. Roughly speak-

ing, for every positive integer d , a .d C 1/-dimensional TQFT (.d C 1/-TQFT for

short) associates to every closed d -manifold a finite dimensional Hilbert space and

to every .dC1/-manifold a vector in the Hilbert space corresponding to its bound-

ary. These assignments should satisfy certain compatibility properties as specified

by the axioms. The empty set is considered as a special closed d -manifold and the

Hilbert space associated to it is required to be C. Then a .d C 1/-TQFT produces

a complex scalar, called the partition function, for each closed .d C 1/-manifold,

and the scalar is an invariant of closed .d C 1/-manifolds. This is an important

application of TQFT to topology.

The study of TQFTs is closely related to higher category theory [42, 3]. In

general, a .d C 1/-TQFT is to be described by the data of a d -category. On

one hand, strict d -categories are well-defined for any d , see [21, 16], but this is

insufficient for the purpose of TQFTs since many important d -categories are not

strict and can not be strictified either [2]. On the other hand, weak d -categories

are only rigorously defined for small d (such as d D 1; 2; 3),1 and it is still

controversial what should be the right notion of weak d -categories for higher d ,

although there have been many efforts in this direction [53, 4, 54]. In the following,

by d -categories we always mean weak d -categories. Special d -categories can be

obtained from k-categories with certain extra structure for k < n. For instance,

a monoidal 1-category is a 2-category and a braided monoidal 1-category is a

3-category [32, 28, 29]. Higher categories are natural resources for TQFTs as

shown below. We first give a brief overview of some categorical constructions of

.2C 1/- and .3C 1/-TQFTs.

There has been a fundamental achievement in .2C 1/-TQFTs which builds a

nontrivial connection between monoidal categories, Hopf algebras, and 3-mani-

folds. N. Reshetikhin and V. Turaev constructed an invariant of 3-manifolds using

modular tensor categories, which is believed to be the mathematical realization of

E. Witten’s TQFT from nonAbelian Chern–Simons theories [48]. V. Turaev and

O. Viro gave a state-sum invariant of 3-manifolds (Turaev–Viro invariant) from the

quantum 6j symbols of Uq.sl2/ for q a certain root of unity [59]. Later J. Barrett

1 A definition of weak 4-categories was given in [55], which was further clarified in [31]
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and B. Westbury generalized this construction (Turaev–Viro–Barrett–Westbury

invariant, or TVBW for short) by using any spherical fusion category [11]. These

invariants can all be extended to define a .2 C 1/-TQFT.2 Apart from the cate-

gorical constructions, another approach is by using Hopf algebras, among which

the Kuperberg invariant [41] and the Hennings invariant [37, 30] are nonsemisim-

ple generalizations of the TVBW invariant and the Reshetikhin–Turaev invariant,

respectively. A special case of the Kuperberg invariant (and also the TVBW in-

variant) reduces to the Dijkgraaf–Witten theory [19]. The study of .2C1/-TQFTs

has led to applications in quantum groups, 3d topology, and topological quan-

tum computing. For example, the Turaev–Viro invariant can distinguish certain

3-manifolds which are homotopy equivalent.

In one dimension higher, the theory of .3 C 1/-TQFTs, however, is not un-

derstood as well as its counterpart in dimension .2 C 1/. The Dijkgraaf–Witten

invariant [19] in dimension .3C 1/, as well as in other dimensions, measures the

number of group morphisms from the fundamental group of a closed manifold to

a given finite group. L. Crane and I. Frankel constructed a 4-manifold invariant

out of some algebraic structure, called Hopf categories [12]. In [15], L. Crane and

D. Yetter gave a state-sum invariant (Crane–Yetter invariant) using a semisimple

subquotient of the category of representations of Uq.sl2/ for q a certain principal

root of unity. L. Crane, L. Kauffman, and D. Yetter generalized the construction to

ribbon fusion categories [14],3 which reduces to the (untwisted) Dijkgraaf–Witten

invariant for the category of finite dimensional representations of a finite group [8].

The Walker–Wang model [60] is believed to be a Hamiltonian realization of the

Crane–Yetter invariant. The modular Crane–Yetter invariant, which is obtained

from a modular tensor category, turns out to be a function of the Euler character-

istics and the signature [13], and thus is a classical invariant. From a different direc-

tion, D. Yetter gave a construction of .3C 1/-TQFT from homotopy 2-types [66],

which is equivalent to a crossed module or a categorical group. Along a similar

line, A. Kapustin [33] and M. Mackaay [44] obtained 4-manifold invariants from

2-groups with some additional structures. More recently, R. Kashaev produced a

.3C 1/-TQFT out of a cyclic group ZN , see [34].

Topology in 4d is different from all other dimensions. R4 is the only Euclidean

space accepting more than one smooth structure (infinitely many actually) [27].

After the work of M. Freedman [25], topological 4-manifolds are fairly well

understood. However, classifying smooth 4-manifolds remains one of the most

2 The Reshetikhin–Turaev TQFT has an anomaly, but this is not the concern of this paper.

3 In [14], they were called semisimple tortile categories. The generalized invariant is still

called the Crane–Yetter invariant.
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difficult open problems. Nontrivial .3C 1/-TQFTs are rare since any such TQFT

gives rise to an invariant of smooth 4-manifolds. The categorical constructions of

invariants mentioned above are not known to be sensitive to smooth structures.

The main result of this paper is a state-sum construction of an invariant of

4-manifolds from aG-crossed braided spherical fusion category (G-BSFC) where

G is a finite group. G-BSFCs were introduced by V. Turaev [57] in the con-

text of homotopy quantum field theories where they were called ribbon crossed
G-categories. A. Kirillov later studiedG-BSFCs in the context of conformal field

theories where they were called G-equivariant categories [40]. G-BSFCs were

also studied in [23, 20, 17] and have applications in condensed matter physics [9].

Roughly, a G-BSFC C�
G consists of the following structures (see Section 2 for a

detailed definition).

(1) C�
G is a spherical fusion category.

(2) C�
G D

L

g2G Cg is graded by G where Cg is a full subcategory and

Cg1
˝ Cg2

� Cg1g2
, g; g1; g2 2 G.

(3) There is a G-action on C�
G by pivotal functors such that for any g; g0 2 G,

the action of g maps Cg0 to Cgg0g�1 .

(4) There is a G-crossed braiding

¹cX;Y WX ˝ Y �! Yg ˝X j X 2 Cg ; Y 2 C�
Gº;

which satisfies certain compatibility conditions.

Given a G-BSFC C�
G and a closed oriented 4-manifold M , the procedure of

constructing the invariant of M from C�
G goes as follows. Take a triangulation

T of M . A coloring S assigns an element of G to each 1-simplex and a simple

object of C�
G to each 2-and 3-simplex. These assignments are subject to certain

constraints. To avoid distraction from technical details here, we simply present

the invariant in the form

ZC�
G
.M;T/ D

X

S

Y

�42T4

ZS.�4/
Y

�22T2

ZS.�2/
Y

�02T0

ZS.�0/

Y

�32T3

ZS.�3/
Y

�12T1

ZS.�1/
; (1)

where Ti is the set of i-simplices and ZS.�i / is some factor associated with the

i-simplex �i . Thus for each coloring S, every simplex in T contributes a factor to

the invariant. Usually, the contributions from the top dimensional simplices are

the most important ones. See Section 3 for more details. The following is the main

theorem of the paper.
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Theorem 1.1 (main, informal). The formula for ZC�
G
.M;T/ is independent of the

choice of the triangulation T and thus ZC�
G
.M/ WD ZC�

G
.M;T/ is an invariant of

closed smooth oriented 4-manifolds.

Moreover, the construction can be extended to obtain a .3 C 1/-TQFT. The

following theorem shows that the 4-manifold invariant constructed here is rather

rich and it generalizes several known categorical invariants in literature.

Theorem 1.2. If G is the trivial group, then C�
G is a ribbon fusion category and

ZC�
G
.M/ is equal to the Crane–Yetter invariant of M from C�

G .

If all the simple objects of C�
G are invertible, then C�

G corresponds to a crossed
module (or equivalently a categorical group), and ZC�

G
.M/ is equal to Yetter’s

invariant from the corresponding categorical group.

If the G-action is trivial and Cg D 0 for all g ¤ e 2 G, then again C�
G is a

ribbon fusion category, and ZC�
G
.M/ is the product of the untwisted Dijkgraaf–

Witten invariant from G and the Crane–Yetter invariant from C�
G .

Further generalizations of our invariant are also possible. In particular, we

show that if C�
G D

L

g2G Cg is a G-BSFC such that Cg D 0 for all g ¤ e,

then we can introduce a 4-cohomology class ! 2 H 4.G; U.1// and the new

partition function takes the same form as equation (1) except for each 4-simplex

� D .ijklm/, ZS.�4/ is replaced with,

ZS.�4/
0 D ZS.�4/ ! .S.ij /; S.jk/; S.kl/; S.lm// :

Denote the new partition function by ZC�
G
;!.M;T/.

Theorem 1.3. ZC�
G
;!.M;T/ is again independent of the choice of the triangula-

tion T, and is thus an invariant of closed smooth oriented 4-manifolds.

As a special case, we have the the following proposition.

Proposition 1.4. If the G-action is trivial and Cg D 0 for all g ¤ e 2 G, then
ZC�

G
;!.M;T/ is the product of the !-twisted Dijkgraaf–Witten invariant from G

and the Crane–Yetter invariant from C�
G .

From a different perspective, in dimension .2C1/, the typical state-sum model

(Turaev–Viro–Barrett–Westbury invariant) involves a spherical fusion (1-)cate-

gory. Thus in dimension .3 C 1/, one would expect there to be a notion of a

‘spherical fusion 2-category’ which results in the most general construction of
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state-sum .3C 1/-TQFTs and all known categorical invariants .TQFTs/ of state-

sum type should fit into this framework. Monoidal 2-categories are defined in [32]

and monoidal 2-categories with duals are given in [5]. In [43], M. Mackaay pro-

posed a definition of spherical fusion 2-categories4 as monoidal 2-categories with

some additional structures. Based on his definition, he formally defined a 4-man-

ifold invariant. However, as explained later, his definition is too restrictive and

excludes many interesting examples. In particular, his construction does not cover

the invariant from a G-BSFC due to the following proposition.

Proposition 1.5 (informal). A monoidal 2-category D.C�
G/ with duals can be

constructed from a G-BSFC C�
G , but D.C�

G/ does not satisfy the axioms of a
spherical fusion 2-category according to the definition in [43].

On the other hand, in [10] spherical Gray categories are defined where a

Gray category is a semistrict 3-category (tricategory). A semistrict monoidal

2-category can be viewed as a Gray category with one object. It will be shown that

D.C�
G/ does become a spherical 2-category (or rather, a spherical Gray category) if

we adapt the definition of sphericity for Gray categories to monoidal 2-categories.

It is not clear though that a spherical 2-category in the sense of [10] leads to a

.3C 1/-TQFT. We leave this as a future direction of study.

Lastly, G-BSFCs are not rare. In [20, 39, 38], it has been proved that equiv-

alence classes of G-BSFCs are in one-to-one correspondence, by equivarianti-

zation and de-equivariantization, with equivalence classes of spherical braided

fusion categories containing Rep.G/ as a subcategory. Also, given a group mor-

phism fromG to the group of automorphisms of a unitary braided fusion category

C, if certain obstructions vanish, then C can be extended to a unitary G-crossed

braided fusion category, which is also a G-BSFC, with C as the sector indexed by

the trivial group element [23].

The structure of the paper is organized as follows. In Section 2, we give a

review of G-BSFCs. A G-BSFC can be understood either by embedding it into a

strictG-BSFC (Section 2.2) or by extracting from it a set of discrete data satisfying

certain equations (2.3). Section 3 is the core of the paper where three equivalent

definitions of the invariant are given and the main theorem is stated. In Section 4,

we give several examples of the invariants and also introduce a variation of the

invariants. Section 5 contains the proof of the main theorem. In Section 6 we

show that a monoidal 2-category with certain extra structure can be constructed

from aG-BSFC. Finally in Section 7 we provide some open questions for research.

4 In [43] they are called nondegenerate finitely semisimple semistrict spherical 2-categories
of nonzero dimension.
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2. G -crossed braided spherical fusion categories (G -BSFCs)

We assume the readers are familiar with the concepts tensor (monoidal) categories

and their various specializations such as fusion categories, spherical categories,

and ribbon categories. Some knowledge of functors and natural transformations

is also expected. We use the word ‘monoidal’ and ‘tensor’ interchangeably.

There are a number of excellent references developing these concepts. See for

instance [36, 24, 6, 22, 61]. Since our main object to use is a G-crossed braided

spherical fusion category (G-BSFC) whereG is a finite group, we give a review of

such categories. See [40, 57] for more detailed discussions. But notice that these

categories are called G-ribbon categories in [57] and G-equivariant categories

in [40]. Some conventions from this paper are also different from the references.

If C is a category, denote the set of objects by C0 and the set of morphisms by

C1. We follow the convention that compositions in a category are read from right

to left, namely, if f 2 Hom.X; Y /; g 2 Hom.Y; Z/; then g ı f 2 Hom.X;Z/.

The identity map on an objectX is denoted by IX , or IdX . The subscript will often

be dropped. Throughout the paper, G denotes a finite group.

2.1. Definition of G -BSFCs. Let .C;˝; 1; a; l; r/ be a tensor category, where

a; l; r are the structure isomorphisms,

aX;Y;Z W .X ˝ Y /˝Z
'
�! X ˝ .Y ˝Z/;

lX W 1˝ X
'
�! X;

rX WX ˝ 1
'
�! X;

which satisfy the Pentagon Identity and Triangle Identity. When no confusion

arises, we often drop the structure symbols and claim C as a tensor category.

Denote by Aut˝.C/ the tensor category where objects are tensor auto-equiva-

lences of C, morphisms are natural transformations, and the tensor product of two

tensor equivalences is the composition of functors. Denote by
x
G the tensor cate-

gory where the objects are elements ofG and the tensor product is given by group

multiplication. There is only one morphism, the identity map, from an object to

itself, and no morphism between different objects.

Definition 2.1. For a tensor category C, a G-action on C is a tensor functor

x
G ! Aut˝.C/.

The above is a compact way to describe a G-action. To be more clear, we

unpack the definition into a set of specific axioms. Let

.F; �; �/W
x
G �! Aut˝.C/
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be a tensor functor. For g 2 G;X 2 C0; f 2 C1, we often write F.g/.X/ and

F.g/.f / as Xg and fg , respectively. For each object g 2
x
G0, i.e., an element

g 2 G, F.g/ is a tensor auto-equivalence and hence it is endowed with natural

isomorphisms,


gIX;Y W .X ˝ Y /
g '

�! Xg ˝ Yg ;

�g W 1g
'
�! 1;

which are compatible with the tensor structure of C. Since .F; �; �/ is a ten-

sor functor, there are natural isomorphisms �g;hWF.gh/ ! F.g/ ı F.h/ and

�WF.e/ ! IdC. Or more specifically, for each X 2 C0, there are isomorphisms

�g;hIX W Xgh ! . Xh /
g

and �X W X
e ! X , such that the following diagrams com-

mute:

Xgh . Xh /
g

Ygh . Yh /
g

 

!
�g;hIX

 !fgh  ! . fh /
g

 

!
�g;hIY

Xe X

Ye Y

 

!
�X

 !fe  ! f

 

!
�Y

(2)

.X ˝ Y /gh . .X ˝ Y /h /
g

. Xh ˝ Yh /
g

Xgh ˝ Ygh . Xh /
g

˝ . Yh /
g

 

!
�g;hIX˝Y

 !
ghIX;Y

 

!
.
hIX;Y /

g
 ! 
gI Xh ; Yh

 

!
�g;hIX ˝�g;hIY

(3a)

.X ˝ Y /e X ˝ Y

Xe ˝ Ye

 

!
�X˝Y

 !
eIX;Y  

!
�X ˝�Y

(3b)

Xghk . Xk /
gh

. Xhk /
g

. . Xk /
h

/
g

 

!
�gh;kIX

 !�g;hkIX  ! �g;hI Xk

 

!
.�h;kIX /

g

(4)

Xge . Xe /g

Xg

 

!
�g;eIX

 

!I Xg

 ! .�X /
g

Xeg . Xg /e

Xg

 

!
�e;gIX

 

!I Xg

 ! � Xg (5)
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Definition 2.2. A G-crossed braided spherical fusion category (G-BSFC) is a

G-graded spherical fusion category C�
G D

L

g2G Cg together with a G-action

and a family of natural isomorphisms

¹cX;Y WX ˝ Y �! Yg ˝X j X 2 Cg ; Y 2 C�
Gº; (6)

such that the following conditions are satisfied.

(1) Each Cg , called the g-sector, is a full subcategory. The only morphism

between two objects from different sectors is the zero morphism. Moreover,

Cg ˝ Cg0 � Cgg0 and .Cg0/g � Cgg0g�1 .

(2) The cX;Y
0s, called G-crossed braidings, are self consistent, namely, for

X 2 Cg ; Y 2 Ch; Z 2 Ck , the following diagrams commute:

.X ˝ Y /˝Z

. Yg ˝X/˝ Z X ˝ .Y ˝ Z/

Yg ˝ .X ˝Z/ .Y ˝Z/g ˝X

Yg ˝ . Zg ˝X/ . Yg ˝ Zg /˝X

 

!

cX;Y ˝I

 

!

aX;Y;Z

 !a Yg ;X;Z  ! cX;Y ˝Z

 !I˝cX;Z  ! 
gIY;Z˝I

 

!

a Yg ; Zg ;X

(7)

. . Xk /
h

˝ Y /˝Z

.Y ˝ Xk /˝ Z . Xhk ˝ Y /˝Z

Y ˝ . Xk ˝Z/ Xhk ˝ .Y ˝Z/

Y ˝ .Z ˝X/ .Y ˝Z/˝X

 

!

c�1

Y; Xk
˝I  

!

.��1
h;kIX

˝I/˝I

 !a
Y; Xk ;Z  ! a Xhk ;Y;Z

 !I˝c�1
Z;X

 ! c�1
Y ˝Z;X

 

!

aY;Z;X

(8)
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(3) The isomorphism cX;Y is natural with respect to both X and Y . That is, for

X; X 0 2 Cg ; Y; Y
0 2 Cg0 ; � 2 Hom.X;X 0/;  2 Hom.Y; Y 0/;

X ˝ Y X 0 ˝ Y

Yg ˝ X Yg ˝X 0

 

!
�˝I

 ! cX;Y  ! cX0;Y

 

!
I˝�

X ˝ Y X ˝ Y 0

Yg ˝X Y 0g ˝X

 

!
I˝ 

 ! cX;Y  ! cX;Y 0

 

!
 g ˝I

(9)

(4) The G-action is consistent with the G-crossed braiding. Namely, for X 2

Cg ; Y 2 C�
G , the following diagram commutes:

.X ˝ Y /g0

Xg
0
˝ Yg

0

. Yg ˝X/g0

. Yg
0
/

g0gg0�1

˝ Xg
0

. Yg /g0

˝ Xg
0

Yg0g ˝ Xg
0

 !.cX;Y /
g0

 

!

g0IX;Y

 ! c Xg0
; Yg0

 !
g0I Yg ;X

 

!
��1

g0;gIY
˝I

 !�
g0gg0�1;g0IY

˝I

(10)

(5) The G-action is consistent with the pivotal structure. Thus, if ıX WX ! X��

is the pivotal structure, then the following diagram commutes:

Xg .X��/g

. Xg /��

 

!
.ıX /

g

 

!ı Xg

 ! ' (11)

The vertical arrow above represents the canonical isomorphism induced by

the action of g.

Note that ifG is trivial, then the definition above is the same as that of spherical

braided fusion categories, so an ¹eº-BSFC is simply a spherical braided fusion

category, or a ribbon fusion category. It should be noted that in general aG-BSFC

is not a braided tensor category. However, the sector Ce is indeed always a ribbon

fusion category. We also do not require the grading to be faithful. For instance,

one can take an arbitrary ribbon fusion category C and set Ce D C;Cg D 0; g ¤ e,

then C�
G D

L

g2G Cg D C is aG-BSFC with the trivialG-action. More interesting

examples are provided in Section 4.
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There are two opposite directions to study a G-BSFC. One direction is stricti-

fying aG-BSFC, where one shows that aG-BSFC is equivalent, in some properly

defined sense, to a G-BSFC in which the structure isomorphisms aX;Y;Z , lX , rX ,


gIX;Y , �g , �g;hIX , and �X are all identity maps. A G-BSFC is called strict if it

satisfies the above properties. The advantage of using strict G-BSFCs is that it is

easy to deduce identities of morphisms and moreover, identities which hold in a

strict category also hold in an equivalent but nonstrict category after appropriately

inserting certain structure isomorphisms. The other direction is skeletonizing a

G-BSFC, where a representative for each isomorphism class of simple objects is

chosen, and the category is described by a set of discrete data which satisfy some

equations involving the representatives. This method is useful when one needs to

perform calculations in a category. For instance, in Section 3, the discrete data

will be used to compute the invariant of a 4-manifold. We elaborate these two

concepts in Section 2.2 and Section 2.3, respectively.

2.2. Strictifying G -BSFCs. A G-BSFC is called strict, if it is a strict spheri-

cal fusion category and the structure isomorphisms 
gIX;Y ; �g ; �g;hIX ; �X are the

identity maps. Every G-BSFC is equivalent to a strict one as indicated in the

following theorem. Roughly speaking, an equivalence of G-BSFCs is an equiv-

alence as a tensor functor that preserves all additional structures, e.g., crossed

braiding, G-action, etc. In particular, we require such an equivalence to preserve

the G-grading. That is, it maps the g-sector to the g-sector. For a rigorous defini-

tion, see [45].

Theorem 2.3 ([45]). Let C�
G be a G-BSFC, then there exists a strict G-BSFC D

and an equivalence F WC�
G ! D of G-BSFCs.

In a strict G-BSFC, it is convenient to represent morphisms with colored

graph diagrams. We only list the basic rules for this representation. For detailed

treatment, see [56]. But note that we will follow a slightly different convention.

A graph diagram is a collection of rectangles,5 immersed segments, and im-

mersed circles in R � Œ0; 1�. The segments and circles are called 1-strata of the

diagram. The following conditions are required to be satisfied.

� All rectangles are disjoint from each other and lie in R � .0; 1/. We assume

that the longer sides of each rectangle are parallel to R�¹0º (i.e., horizontal)

and the shorter sides vertical to R � ¹0º.

5 In [56], they are called coupons.
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� The 1-strata end either on R�¹0; 1º or on the horizontal sides of a rectangle.

The interior of the 1-strata lies in R � .0; 1/ and does not intersect with any

rectangles.

� The 1-strata are directed and may only have double crossings in R � .0; 1/

with overcrossing/undercrossing data.

See Figure 1 for an example of a graph diagram. Usually we will not draw the

dashed lines representing R � ¹0; 1º explicitly and assume that the bottom (resp.

the top) of a graph diagram is bounded by the line R � ¹0º (resp. R � ¹1º).

R � ¹0º

R � ¹1º

Figure 1. Example of a graph diagram.

Given a graph diagram G, we think of the 1-strata broken at the undercrossings,

namely, the 1-strata decomposing into a collection of arcs, where each arc starts

and ends either at an undercrossing or at one of the end points of the 1-strata. For

instance, the graph diagram in Figure 1 contains seven arcs. Denote by G0; G1;

and G2 the set of crossings, arcs, and rectangles, respectively.

If A 2 Cg is an object, denote jAj D g. A C�
G-coloring of a graph diagram G is

an assignment
�

¹ ˛W ˛ 2 G0º; ¹Aˇ W ˇ 2 G1º; ¹f
 W 
 2 G2º
�

where the  ˛
0s and

f

0s are morphisms in C�

G and theAˇ
0s are homogeneous objects of C�

G , such that

the following conditions are satisfied.

� For each rectangle 
 , denote by ˇ1; : : : ; ˇm the set of arcs incident to the

bottom of 
 and by ˇ1; : : : ; ˇn the set of arcs incident to the top of 
 , both

enumerated from left to right. Note that some of the ˇi
0s and ǰ

0s could be

the same arc. For each ˇi (resp. ˇj ), define �i (resp. �j ) to beC1 if ˇi (resp.

ˇj ) is directed downwards near 
 , and �1 otherwise. Let

A
 WD

m
O

iD1

A
�i

ˇi
and A
 WD

n
O

jD1

A�
j

ˇj ;

where for an object B , BC1 WD B andB�1 WD B�. Ifm D 0, define A
 WD 1.
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Similarly if n D 0, define A
 WD 1: Then we require f
 to be a morphism

in Hom.A
 ; A

/. For instance, in Figure 2 .a/, we represent the coloring

by placing an object beside each arc and a morphism inside each rectangle.

Then f 2 Hom.A1 ˝ A2 ˝ A
�
3; B

�
1 ˝ B2/.

� There are two types of crossings, the positive crossing (Figure 2 .b/) and

the negative crossing (Figure 2 .c/). Again, we represent the coloring of

a crossing by placing a morphism beside it. Let the arc corresponding to

the overcrossing, the arc entering the undercrossing, and the arc leaving the

undercrossing be colored by the objects A, B1, and B2, respectively. In the

case of a positive crossing, we require  to be an isomorphism B2
jAj Ï

! B1,

and in the case of a negative crossing, we require  to be an isomorphism

B1
jAj Ï

! B2. We use the convention that if  D I , then we drop it from the

diagram.

A1 A2 A3

B1 B2

f

.a/

B1

B2A

 

.b/

B1

B2 A

 

.c/

Figure 2. Colorings of a graph diagram.

Remark 2.4. The motivation for labeling crossings is as follows. Consider the

positive crossing in Figure 2 .b/. As shall be illustrated below, the crossing is to

be interpreted as the G-crossed braiding cA;B2
,

cA;B2
WA˝ B2 �! B2

jAj ˝ A:

That means we need to have B2
jAj D B1. However, as a common principle

in categories, it is more natural to require two objects to be isomorphic rather

than equal on the nose. Thus we endow the crossing with an isomorphism

 W B2
jAj ! B1.

The second condition on the coloring implies that jAj jB2j D jB1j jAj for a

positive crossing and jB2j jAj D jAj jB1j for a negative crossing. We will think

of the diagram G as living in R � Œ0; 1� �R with the identification R � Œ0; 1� with

R � Œ0; 1� � ¹0º, where the positive z-axis (the third axis) points outward of the

plane R� Œ0; 1�. We then push the 1-strata of G near an undercrossing slightly into

the plane. Denote this deformed graph by zG. It is not hard to see that a coloring
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of G determines a group morphism from �1.R � Œ0; 1� � R n zG; pt/ to G where

the base point pt can be chosen to be any point with a large z coordinate. Given a

coloring of G, let ˇ1; : : : ; ˇm (resp. ˇ1; : : : ; ˇn) be the set of arcs intersecting with

R�¹0º (resp. R�¹1º) listed from left to right, and similarly define �i ; �
j for each

arc ˇi ; ˇ
j as in the definition of a coloring. Let

AG WD

m
O

iD1

A
�i

ˇi
and AG WD

n
O

jD1

A�
j

ˇj :

And again let AG D 1 ifm D 0 and AG D 1 if n D 0. By [56], a C�
G-colored graph

diagram G can be interpreted as a morphism of C�
G in Hom.AG; A

G/. The rules of

the interpretation are as follows.

� If G is one of the graph diagrams listed in Figure 3, then it is interpreted as

the morphism shown below the corresponding diagram.

� If G contains a single rectangle and a set of arcs each of which is either a

vertical segment connecting R � ¹0º and the lower side of the rectangle or a

vertical segment connecting R�¹1º and the upper side of the rectangle, (see

Figure 2 .a/ for instance), then it is interpreted as the coloring labeling the

rectangle.

� Stacking a graph diagram on top of another corresponds to the composition

of the morphisms they represent, and juxtaposition of diagrams corresponds

to the tensor product of morphisms.

A

IA

A

IA�

B1

B2A

 

. ˝ IA/ ı cA;B2

B1

B2 A

 

c�1
A;B1

ı . �1 ˝ IA/

A

bA

A

dA

A

b0
A

A

d 0
A

Figure 3. Interpretations of a graph diagram.

Moreover, the morphism represented by a colored diagram is invariant under

regular isotopies of the diagram, some of which are drawn in figures 4 and 5,

where for simplicity we assume the coloring at each crossing is the identity map.

We refer the readers to [56] for the treatment of more general cases.
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A

AjAj

A

D

A

.a/

A B

BjAj

A B

D

A B

.b/

A B C

BjAj

CjAj

CjAjjBj

D

A B C

CjBj

CjAjjBj BjAj

.c/

Figure 4. Regular isotopies of a graph diagram (I).

A B

C

f

CjAj

D

CjAj

BjAj

fjAj

A B

.a/

CA

B

f

CjBj

D

BCjAj

f

A C

.b/

Figure 5. Regular isotopies of a graph diagram (II). Note that in .b/, jAj D jBj.
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Similar to the case of braided spherical fusion categories, here we can also

define the twist �AWA ! AjAj for a homogeneous object A by the diagram in

Figure 6.

A

AjAj

Figure 6. The twist �A.

The following proposition states properties of the twist parallel to those in a

spherical braided category.

Proposition 2.5 ([40]). In a G-BSFC, the twist �.�/ satisfies

(1) �A˝B D .� Agh Ng ˝ � Bg / ı c Bg ;A ı cA;B , for A 2 Cg ; B 2 Ch, and Ng WD g�1;

(2) �A� D .�A/
�;

(3) �1 D Id;

(4) .�A/
h D � Ah .

2.3. Skeletonizing G -BSFCs. Let C�
G be aG-BSFC. We extract a set of discrete

data to characterize C�
G . See [9] for a similar treatment. Let zL D zL.C�

G/ be

a complete set of representatives of simple objects, namely, zL.C�
G/ contains a

representative for each isomorphism class of simple objects. We assume C�
G to

have the property that zL can be chosen to be closed under the G-action and taking

duals.6 For simplicity, we also assume C�
G is multiplicity-free, but the method

presented here can be easily adjusted to the general case. A convention within

this subsection is that all the variables in a summation are implicitly assumed to

be in the range of zL unless otherwise stated. An undirected graph diagram means
that all the segments are directed downwards. AG-BSFC is described by the data

.zL; S.�/; j � j; .�/.�/ / together with the data .N c
ab
; F abc
d Inm

; ta; Ug.a; bI c/; �a.g; h/; R
ab
c /

defined as follows, where a; b; c; d;m; n 2 zL, g; h 2 G.

Simple objects. As defined above, zL is a complete set of representatives of

simple objects. There is a special element, the unit object 1 2 zL.

6 Any G-BSFC is equivalent to one with such a property.
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The dual. S.�/W zL! zL is an involution giving the dual of an object. We write the

dual Na and a� interchangeably. The unit object is self-dual, i.e., 1� D 1.

G -grading. j � jW zL! G denotes the grading map, namely, if a 2 zL is an object

from the g-sector, then jaj WD g. In particular, j1j is the identity element of G.

G -action. .�/.�/ WG � zL ! zL denotes the G-action on zL which commutes with

the map S.�/ of taking the dual. The action of the group element g on an object

a 2 zL is then given by ag .

Fusion rule. We have

a˝ b '
M

c

N c
ab c; N c

ab D 0; 1: (12)

A triple .a; b; c/ is called admissible ifN c
ab
D 1. In this case the morphism spaces

Hom.c; a˝b/ and Hom.a˝b; c/ are both one-dimensional and we choose a basis

element Babc 2 Hom.c; a ˝ b/, Bc
ab
2 Hom.a ˝ b; c/ so that they satisfy the

following normalization conditions.7

Bc
0

ab ı B
ab
c D ıc;c0 Idc and

X

c

Babc ı B
c
ab D Ida˝b ; (13)

where Bc
ab

and Babc are defined to be zero whenever N c
ab
D 0. See Figure 7 for

their graphical representations.

a b

c a b

c

Bab
c

Bc
ab

a b

c

c0

Dıc;c0

c

P

c

a b

c

a b

D

a b

Figure 7. Graphical definition and normalizations of Bc
ab

and Bab
c .

7 The normalization conditions here are different from those in the physics literature where

they take Bc0

ab
ı Bab

c D ıc;c0

q

dadb

dc
Idc . But the data to be described below will be the same

under the two normalizations.
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F -symbol (6j -symbol). When Hom.d; a˝b˝ c/ ¤ 0, it has two sets of bases,

B1 D ¹.B
ab
m ˝ I / ı B

mc
d j m 2

zL; .a; b; m/; .m; c; d/ admissibleº;

B2 D ¹.I ˝ B
bc
n / ı B

an
d j n 2

zL; .b; c; n/; .a; n; d/ admissibleº:

These two bases are represented graphically in Figure 8. The matrix relat-

ing the two bases is called an F -matrix and the matrix elements are called

F -symbols or 6j -symbols. Explicitly, given a 6-tuple .a; b; c; d;m; n/ 2 zL6, if

.a; b; m/; .m; c; d/; .b; c; n/; and .a; n; d/ are all admissible, (we say the 6-tuple

is admissible) then the F abc
d Inm

and .F �1/abc
d Imn

are defined as shown in figures 9

and 10, respectively. Otherwise, F abc
d Inm

WD .F�1/abc
d Imn

WD 0. By definition, if the

6-tuple .a; b; c; d;m; n/ is admissible, we have

X

k

F abcd Ink.F
�1/abcd Ikm D ın;m:

�
�
�
��

❅
❅

❅
❅❅

�
��

a b c

m

d

B1

�
�
�
��

❅
❅

❅
❅❅

❅
❅❅

a b c

n

d

B2

Figure 8. Two bases B1 and B2.

�
�
�
��

❅
❅

❅
❅❅

�
��

a b c

m

d

=
P

n

F abc
d Inm

�
�
�
��

❅
❅

❅
❅❅

❅
❅❅

a b c

n

d

Figure 9. Definition of the F -symbol.
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Figure 10. Definition of the F�1-symbol.

t-symbol. For a 2 zL, ta is a nonzero scalar such that ta IdW a ! NNa corresponds

to the pivotal structure of C�
G (see Section 4:2 of [61]).

U -symbol. For any g 2 G; a; b; c 2 zL such that .a; b; c/ is admissible, .Babc /
g

is a scalar multiple of B
ag bg

cg . Denote this scalar by Ug .a; bI c/. Graphically, this

is represented by Figure 11.

a b

c

g

D Ug.a; bI c/

ag bg

cg

Figure 11. Definition of U -symbol.

�-symbol. For g; h 2 G; a 2 zL, �a.g; h/ is the scalar such that �a.g; h/ Id

represents the isomorphism �.g; hI a/W agh ! . ah /
g

.

R-symbol. If .a; b; c/ is admissible, then Rabc is defined to be the scalar such

that ca;b ı B
ab
c D Rabc B

bjaj a
c , or equivalently c�1

a;b
ı B

bjaj a
c D .Rabc /

�1Babc . See

Figure 12 for a graphical definition of the R-symbol.

Figure 12. Definition of the R-symbol Rba
c .
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Translating the axioms of a G-BSFC to the data .N c
ab
; F abc
d Inm

; ta; Ug.a; bI c/;

�a.g; h/; R
ab
c /, we arrive at equations (14)–(22), where a; b; c; d;m; n; l; p; q 2

zL.C�
G/; g; h; k 2 G,

N c
ab D N

b
Nac D N

a

c Nb
D N c

bjaj a
D N

cg

ag bg ; (14a)

N 1
ab D ıa; Nb; N c

ab D 0 if jajjbj ¤ jcj; (14b)

X

m

Nm
abN

d
mc D

X

n

N n
bcN

d
an; (14c)

F a1b
cIba D 1 whenever .a; b; c/ is admissible; (15a)

F a Naa
aI11 ¤ 0; (15b)

Fmcdf IqnF
abq

f Ipm
D

X

l

F abcnIlmF
ald
f IpnF

bcd
pIql ; (15c)

t1 D 1; t Na D t
�1
a ; t ag D ta; (16a)

t�1a t�1b tc D F
ab Nc
1I NacF

b Nca

1I Nb Na
F Ncab

1Ic Nb
whenever .a; b; c/ is admissible, (16b)

F
ag bg cg

dg I ng mg D F abcd Inm

Ug.b; cI n/Ug.a; nI d/

Ug.a; bIm/Ug.m; cI d/
; (17)

�a.gh; k/� ak .g; h/ D �a.g; hk/�a.h; k/; (18)

�a.g; h/�b.g; h/

�c.g; h/
D
Ug. a

h ; bh I ch /Uh.a; bI c/

Ugh.a; bI c/
; (19)

Rabm F
bjaj ac

d Inm
Racn D

X

l

F abcd IlmUjaj.b; cI l/R
al
d F

bjaj cjaj a

d In ljaj ; (20)

.R
b ajcj

m /�1F
b ajcj c

d In;m
.Rcan /

�1 D
X

l

�a.jbj; jcj/
�1F

ajbjjcj bc

d Ilm
.Rlad /

�1F bcad Inl ; (21)

R
ag bg

cg D Rabc
Ug . bjaj ; aI c/�b.gjajg

�1; g/

Ug.a; bI c/�b.g; jaj/
: (22)
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There is a gauge freedom in relabeling the elements of zL as well as modifying

the choice of the basis elements Bc
ab

and Babc . For instance, one can also choose
zBc
ab
WD �.a; bI c/Bc

ab
and zBabc WD �.a; bI c/�1Babc for arbitrary nonzero scalars

�.a; bI c/. Then the discrete data set, namely, the F -symbols, R-symbols, etc.,

will also be changed correspondingly. We call two such data sets gauge equivalent.
Conversely, given a discrete data set .zL; S.�/; j � j; .�/.�/ / and .N c

ab
; F abc
d Inm

; ta;

Ug .a; bI c/; �a.g; h/; R
ab
c / satisfying equations (14)–(22), there is a canonical way

to construct a G-BSFC with the property that each isomorphism class contains

exactly one object. A category with such a property is called skeletal. The

construction is similar to that in [18, 64] except here we also need to define the

G-action. Since this is straightforward and it will not be used for the rest of the

paper, we omit the details.

In Section 3.3, we will give a formula for the invariant of a closed 4-manifold

in terms of the data mentioned above.

3. Partition function

In this section we introduce the key construction of the 4-manifold invariant from

a G-BSFC. The invariant, also called the partition function, is a state-sum model

and a 4d analogue of the Turaev–Viro–Barrett–Westbury invariant. Although

we will only describe the invariant for oriented closed 4-manifolds, there should

be no conceptual difficulty in extending the construction to produce a .3 C 1/-

TQFT. See [62] for a Hamiltonian realization of this TQFT. By 4-manifolds

we always mean closed oriented smooth 4-manifolds unless otherwise stated. In

sections 3.1, 3.2, and 3.3, three equivalent definitions of the partition function

based on ordered triangulations will be given. To show that this indeed defines

an invariant of 4-manifolds, one needs to prove that the partition function is

independent of the choice of ordered triangulations. Considering the proof is quite

technical and lengthy, we defer it to Section 5.

3.1. Definition of partition function I. An ordered triangulation T of a 4-man-

ifold M is a triangulation ofM with an ordering of its vertices by 0; 1; 2; : : : : For

k D 0; 1; 2; 3; 4, let Tk be the set of k-simplices. The restriction of the ordering on

each k-simplex � 2 Tk induces a relative ordering of the vertices of � . Under this

relative ordering, we write � as .0 1 : : : k�1/ and any n-face of � as .i1 i2 : : : in/,

0 � i1 < � � � < in � k � 1. The definition of the partition function only depends

on the relative ordering as shall be seen below. For each � 2 T4, define the sign,

�.�/, of � to be ‘C’ if the orientation on � induced fromM coincides with the one
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determined by the relative ordering of its vertices; �.�/ is defined to be ‘�’ other-

wise. Let C�
G D

L

g2G Cg be aG-BSFC, and letL.C�
G/ be the set of isomorphism

classes of simple objects.

Definition 3.1. AC�
G-coloring of .M;T/ is a pair of mapsF D .g; f /, gWT1 ! G,

f WT2 ! L.C�
G/, such that for any simplex ˇ D .012/ 2 T2 with the induced

ordering on its vertices,

f .012/ 2 Cg.02/�1g.01/g.12/:

Given a C�
G-coloring F D .g; f /, for each ˇ D .012/ 2 T2, we arbitrarily

choose a representative in the class f .012/ and denote the representative by f012

or just 012 when no confusion arises. For an edge .ij /, we also denote g.ij / by

gij or ij and denote g.ij /�1 by Ngij or ij .

Assume now a representative for the color of each 2-simplex has been chosen.

Let � D .0123/ 2 T3 be any 3-simplex with the induced ordering on its vertices,

and consider the boundary map,

@.0123/ D .123/ � .023/C .013/ � .012/:

We assign to � D .0123/ two vector spaces,

V C
F .0123/ WD Hom.f023 ˝ f

Ng23

012 ; f013 ˝ f123/;

V �
F .0123/ WD Hom.f013 ˝ f123; f023 ˝ f

Ng23

012 /:

Note that by the definition of a coloring, bath f023˝ f
Ng23

012 and f013˝ f123 are

in the sector C Ng03g01g12g23
. This is a necessary requirement since otherwise the

spaces V C
F .0123/ and V �

F .0123/ would equal 0.

For any X; Y in a spherical fusion category, a pairing on Hom.X; Y / �

Hom.Y; X/ is defined as,

h�; �iWHom.X; Y / �Hom.Y; X/�! C;

.�;  / 7�! Tr.� /:
(23)

By [22], for each simple object a, Tr.Ida/, namely, the quantum dimension of a, is

nonzero. It is straightforward to show that the pairing h�; �i is nondegenerate, and

thus induces a natural isomorphism between V C
F .0123/ and V �

F .0123/
�, as well

as V �
F .0123/ and V C

F .0123/
�.

Let � D .01234/ 2 T4 be any 4-simplex with the induced ordering on its

vertices, consider the boundary map,

@.01234/ D .1234/ � .0234/C .0134/ � .0124/C .0123/:
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We define Z
�.�/
F .�/ as follows. If �.�/ D C, we first define a linear functional

zZC
F .01234/WV

C
F .0234/˝ V

C
F .0124/˝ V

�
F .1234/˝ V

�
F .0134/˝ V

�
F .0123/

�! C;

by the graph diagram shown in Figure 13 (Left), the meaning of which requires

some explanations. This is a graph diagram as defined in Section 2.2 where the

segments are implicitly colored and directed, but the rectangles are not. The three

long vertical segments on the right part of the diagram (which correspond to

taking the trace) are directed upwards, and all remaining segments are directed

downwards. The colors of the segment are assigned in such a way that any

morphism from the morphism space indicated in a rectangle can be used to color

that rectangle. For instance, for the rectangle containing V C
F .0234/ D Hom.034˝

02334 ; 024 ˝ 234/, the four segments incident to it, (lower left, lower right,

upper left, upper right), are colored by (034; 02334 ; 024; 234), respectively. Note

that here .034/ really denotes f034. For the top rectangle containing V �
F .0123/,

the Ng34 on the upper left corner means the action of Ng34 on V �
F .0123/. Since

V �
F .0123/ D Hom.013 ˝ 123; 023 ˝ 01223 /, the four segments incident to the

top rectangle, (lower left, lower right, upper left, upper right) are colored by

. 01334 ; 12334 ; 02334 ; 01334�23 /, respectively. In the case of a strict G-BSFC,

the only crossing in the diagram is colored by the identity map. In the nonstrict

case, it is colored by some natural isomorphism involving the �a.g; h/
0s defined

in Section 2.3. One can check that the above rules for the coloring are compatible.

Given an element �0 ˝ �1 ˝ �2 ˝ �3 ˝ �4 in the domain of zZC
F .01234/, we

now color each rectangle by some �i which is from the space the rectangle

contains. The resulting colored graph diagram can be interpreted as a morphism

in Hom.1; 1/ ' C according to Section 2.2. Since any such morphism is a scalar

times Id1, we define zZC
F .01234/.�0˝�1˝�2˝�3˝�4/ to be that scalar, or less

rigorously to be (the evaluation of) the colored graph diagram.

Remark 3.2. We give some intuition on how the graph diagrams in Figure 13

are derived. Roughly, if one views each rectangle as a vertex, then the two graph

diagrams are both the 1-skeleton of the dual triangulation of S3 D @.01234/. Of

course, one has to be careful in projecting the 1-skeleton to the plane, so that the

projected diagram is consistent with the colorings and the interpretation of the

colored diagrams as the trace of certain morphisms in the category makes sense.

See also [14, 43] for a similar diagram.
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Ng34

VF .0123/

V C
F

.0234/

Ng34

V C
F

.0123/

VF .0234/

V C
F

.0134/

V C
F

.0124/ V C
F

.1234/

VF .0134/

VF .1234/ VF .0124/

Figure 13. Left: zZC
F
.01234/. Right: zZ�

F
.01234/.
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Using the nondegenerate pairing h�; �i, we can define a linear map ZC
F .01234/,

ZC
F .01234/WV

C
F .0234/˝ V

C
F .0124/ �! V C

F .1234/˝ V
C
F .0134/˝ V

C
F .0123/;

such that

hZC
F .01234/.�0 ˝ �1/; �2 ˝ �3 ˝ �4i D

zZC
F .01234/.�0 ˝ �1 ˝ �2 ˝ �3 ˝ �4/:

Similarly, if �.�/ D �, consider instead the functional

zZ�
F .01234/ WV

�
F .0234/˝ V

�
F .0124/˝ V

C
F .1234/˝ V

C
F .0134/˝ V

C
F .0123/

�! C

defined by the graph diagram shown in Figure 13 (Right), which is obtained by

reflecting the one in Figure 13 (Left) along a horizon line. By the same way of

interpreting the diagram as above, we get a linear map

Z�
F .01234/WV

C
F .1234/˝ V

C
F .0134/˝ V

C
F .0123/ �! V C

F .0234/˝ V
C
F .0124/;

such that

hz�0 ˝ z�1; Z
�
F .01234/.

z�2 ˝ z�3 ˝ z�4/i D zZ
�
F .01234/.

z�0 ˝ z�1 ˝ z�2 ˝ z�3 ˝ z�4/:

From the boundary equations,

@.C01234/ D .1234/ � .0234/C .0134/ � .0124/C .0123/;

@.�01234/ D �.1234/C .0234/ � .0134/C .0124/ � .0123/;

we see that the domain of Z˙
F .01234/ always corresponds to the negative bound-

aries of ˙.01234/ and the codomain to positive boundaries of ˙.01234/. Each

3-simplex � is the intersection of exactly two 4-simplices �1 and �2. If � is a neg-

ative boundary in �.�1/�1, it must be a positive boundary in �.�2/�2, and vice

versa. Thus, V C
F .�/ appears exactly once in the domain for some 4-simplex and

codomain for some other 4-simplex. Then,
O

�2T4

Z
�.�/
F .�/W

O

�2T3

V C
F .�/ �!

O

�2T3

V C
F .�/:

Definition 3.3. Given a G-BSFC C�
G and an ordered triangulation T of a 4-man-

ifold M , the partition function ZC�
G
.M IT/ of the pair .M;T/ is defined by

ZC�
G
.M IT/ D

X

FD.g;f /

�D2

jGj

�jT0j� Y

ˇ2T2

df .ˇ/

�

Tr
�

O

�2T4

Z
�.�/
F .�/

�

.D2/jT
1j

; (24)
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where F runs through all C�
G-colorings of T, and

D2 WD
X

a2L.C�
G
/

d2a

with da the quantum dimension of the object a.

In the above definition, D2 is called the total dimension square. For g 2 G,

we define

D2
g WD

X

a2L.C�
G /\Cg

d2a :

Let Gr.C�
G/ be the subset of G that contains all elements g such that Cg is not

zero. Then Gr.C�
G/ is a normal subgroup of G. By [58], we have D2

g D D2
e for

any g 2 Gr.C�
G/. Of course,D2

g D 0 for g … Gr.C�
G/. Hence,D2 D D2

e jGr.C�
G/j.

Theorem 3.4 (main theorem). Let C�
G ;M;T be as above, then the partition func-

tion ZC�
G
.M IT/ is an invariant of smooth closed oriented 4-manifolds.

To prove the Main Theorem, one needs to show thatZC�
G
.M IT/ is independent

of

(1) the choice of a representative for the color of each 2-simplex,

(2) the ordering of vertices of a triangulation,

(3) the choice of a triangulation.

These will be proved in sections 5.1, 5.2, and 5.4, respectively.

If C�
G and D�

G are two equivalent G-BSFCs, let F be an equivalence between

such two categories. Note that F maps each Cg to Dg . It is not hard to see that

the action of F on morphism spaces preserve the pairing in equation (23) and

the functionals zZ˙
F .01234/, hence we have ZC�

G
.M IT/ D ZD�

G
.M IT/. That is,

ZC�
G
.M IT/ only depends on the equivalence class of C�

G .

Below we derive two other equivalent formulas for the partition function,

which will be used in the proof of invariance. They each have different flavors,

and depending on the situation it is more convenient to use one over another.

3.2. Definition of partition function II. The nondegenerate pairing h�; �i de-

fined in equation (23) for two objects X; Y in a spherical fusion category in-

duces canonical isomorphisms Hom.X; Y / ' Hom.Y; X/� and Hom.Y; X/ '

Hom.X; Y /�. Let h�; �i�X;Y be the dual map of h�; �iX;Y ,

h�; �i�X;Y WC �! Hom.X; Y /� ˝ Hom.Y; X/� ' Hom.Y; X/˝Hom.X; Y /;
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and let �X;Y D h�; �i
�
X;Y .1/. If ¹viºi2I and ¹wj ºj2I are a basis of Hom.X; Y / and

Hom.Y; X/, respectively, such that hvi ; wj i D ciıi;j for some nonzero numbers ci ,

then �X;Y D
P

i2I c
�1
i wi ˝ vi .

Now assume a coloring F D .g; f / and a representative for the color of each

2-simplex have been chosen. For each 3-simplex � D .0123/ 2 T3, there is thus

the element

�F I� WD �
f023˝ f

Ng23
012

;f013˝f123
2 V �

F .0123/˝ V
C
F .0123/:

Let

VF WD
O

�2T3

V �
F .�/˝ V

C
F .�/ and �F WD

O

�2T3

�F I� ;

then �F 2 VF . From the definition of zZ
�.�/
F .�/, we see that each V ˙

F .�/ appears

exactly once as a tensor component of the domain for some � 2 T4. Therefore,

the map
N

�2T4
zZ
�.�/
F .�/ is a functional on VF .

Proposition 3.5 (definition of partition function II). Let �F D
N

�2T3 �F I� 2 VF
be as above, then ZC�

G
.M IT/ is given by the following formula:

ZC�
G
.M IT/ D

X

FD.g;f /

�D2

jGj

�jT0j� Y

ˇ2T2

df .ˇ/

�

.D2/jT
1j

�

O

�2T4

zZ
�.�/
F .�/

�

.�F /: (25)

Proof. It suffices to prove, for a fixed coloring F D .g; f / and a chosen represen-

tative for the color of each 2-simplex, we have,

Tr
�

O

�2T4

Z
�.�/
F .�/

�

D
�

O

�2T4

zZ
�.�/
F .�/

�

.�F /:

For any � 2 T3, choose a basis ¹vC
i .�/W i 2 I�º of V C

F .�/ and a basis ¹v�
j .�/W

j 2 I�º of V �
F .�/, such that hvC

i .�/; v
�
j .�/i D ıi;j . Then

�F;� D
X

i2I�

v�
i .�/˝ v

C
i .�/:
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Thus,

Tr
�

O

�2T4

Z
�.�/
F .�/

�

D
X

�2T3

i� 2I�

D

O

�2T3

v�
i�
.�/;

�

O

�2T4

Z
�.�/
F .�/

��

O

�2T3

vC
i�
.�/

�E

D
X

�2T3

i� 2I�

�

O

�2T4

zZ
�.�/
F .�/

��

O

�2T3

vC
i�
.�/

O

�2T3

v�
i�
.�/

�

D
�

O

�2T4

zZ
�.�/
F .�/

�

.�F /: �

3.3. Definition of partition function III. We give a third formulation of the

partition function as a state sum model, which is convenient in terms of calcula-

tions. For simplicity, let us assume the category C�
G is multiplicity-free. The more

general case can be treated in a similar way except that the formula involved will

be more complicated.

Let zL.C�
G/ be an arbitrary complete set of representatives, one for each iso-

morphism class of simple objects. Recall from Section 2.3 that, for each triple

.a; b; c/ of simple objects such that N c
ab
D 1, namely, .a; b; c/ being admissible,

we can choose a basis element Babc 2 Hom.c; a ˝ b/ and Bc
ab
2 Hom.a ˝ b; c/

such that for any c; c0 2 zL.C�
G/,

Bc
0

ab ı B
ab
c D ıc;c0 Idc and

X

c

Babc ı B
c
ab D Ida˝b :

The graphical representations of Bc
ab
; Babc and their relations are illustrated in

Figure 7.

c d

e

a b

Figure 14. Graphical representation of Be
ab;cd

.

For simple objects .a; b; c; d/, let Be
ab;cd

D Bcde ı B
e
ab

, which is represented

by the graph diagram in Figure 14. Then

¹Beab;cd W e 2
zL.C�

G/; .a; b; e/; .c; d; e/ admissibleº

forms a basis of Hom.a˝ b; c ˝ d/, and moreover, hBe
ab;cd

; Be
0

cd;ab
i D ıe;e0de .



Four dimensional topological quantum field theories 621

Definition 3.6. An extended C�
G-coloring of the pair .M;T/ is a triple

yF D .g; f; t /; gWT1 �! G;

f WT2 �! L.C�
G/;

t WT3 �! L.C�
G/;

such that

(1) for any ˇ D .012/ 2 T2, f .012/ 2 C Ng02g01g12
;

(2) for any � D .0123/ 2 T3, t .0123/ 2 C Ng03g01g12g23
.

As before, we choose arbitrarily a representative for each f .012/ and t .0123/,

and denote these representatives as f012 and t0123 or simply as 012 and 0123.

Given an extended coloring yF D .g; f; t /, thenF D .g; f / is a coloring according

to Definition 3.1. As noted in Section 3.1, for each 3-simplex � D .0123/,

f023 ˝ f
Ng23

012 and f013 ˝ f123 are both in the sector C Ng03g01g12g23
, which is

why in Definition 3.6 we also require t .0123/ to be in the sector C Ng03g01g12g23
.

More explicitly, as t varies, the set

¹B
t0123

f023 f
Ng23

012
;f013f123

W t0123 2 C Ng03g01g12g23
; t0123 2 zL.C

�
G/º

forms a basis of V C
F .0123/. Similarly, the set

¹B
t0123

f013f123;f023 f
Ng23

012

W t0123 2 C Ng03g01g12g23
; t0123 2 zL.C

�
G/º

forms a basis of V �
F .0123/. Graphically, these two sets of bases are represented in

Figure 15. Note that

hB
t0123

f023 f
Ng23

012
;f013f123

; B
t 0
0123

f013f123;f023 f
Ng23

012

i D dt0123
ıt0123;t

0
0123

:

f023

f013 f123

f
Ng23

012

(a)

t0123 D t0123

�

C

(b)

f013 f123

f023 f
Ng23

012

(c)

Dt0123 t0123

C

�

(d )

Figure 15. .a/ B
t0123

f023 f
Ng23

012 ;f013f123

; .b/ short notation; .c/ B
t0123

f013f123;f023 f
Ng23

012

;

.d / short notation.
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Rewriting the formula in Proposition 3.5 under this B-basis, we obtain a state-

sum model. Explicitly, for each � 2 T4, the 25j -symbol yZ
�.�/

yF
.�/ is defined

to be the evaluation of the graph diagram in Figure 16 (Left) if �.�/ D C and

Figure 16 (Right) if �.�/ D �. As in Section 3.1, the three long vertical segments

representing the trace in each diagram are implicitly directed upwards and all other

segments are directed downwards. And the 34 symbol in each diagram means the

action of 34 on the morphism enclosed by the parenthesis. In the diagram we also

have dropped the letters g; f; t , and thus the labels, e.g., 024; 0234, etc. denote

the colors on the corresponding simplices. In a more compact form, yZ
�.�/

yF
.�/ is

defined by the diagram in Figure 17 (left) in the case �.�/ D C and by Figure 17

(right) otherwise.

Proposition 3.7 (definition of partition function III). The partition function has
the state sum model

ZC�
G
.M IT/ D

X

yFD.g;f;t/

�D2

jGj

�jT0j� Y

ˇ2T2

df .ˇ/

��

Y

�2T4

yZ
�.�/

yF
.�/

�

.D2/jT
1j

�

Y

�2T3

dt.�/

� : (26)

Proof. The right hand side of equation (26) can be written as

X

FD.g;f /

�D2

jGj

�jT0j Y

ˇ2T2

df .ˇ/

.D2/jT
1j

X

yFD.F;t/

Y

�2T4

yZ
�.�/

yF
.�/

Y

�2T3

dt.�/
:

For each 3-simplex � D .0123/, we have

�F;� D
X

t0123

1

dt0123

B
t0123

f013f123;f023 f
Ng23

012

˝ B
t0123

f023 f
Ng23

012
;f013f123

:

Thus, for a fixed coloring F D .g; f /,

�

O

�2T4

zZ
�.�/
F .�/

�

.�F / D
X

yFD.F;t/

Y

�2T4

yZ
�.�/

yF
.�/

Y

�2T3

dt.�/
: �
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The 25j -symbol yZ
�.�/

yF
.�/ in Figure 16 can be expressed as a concrete formula

in terms of the data .N c
ab
; F abc

d Inm
; Ug.a; bI c/; �a.g; h/; R

ab
c / given in Section 2.3.

Explicitly, let � D .01234/ and assume an extended coloring yF has been assigned

to the triangulation, then yZC
yF
.�/ and yZ�

yF
.�/ are given by equations (27) and (28),

respectively. The way to obtain these formulas is by inserting the identity mor-

phism shown in Figure 18 to the bottom of the diagrams in Figure 16 and using the

diagrammatic equations in Section 2.3 to simplify the diagrams:

yZC
yF
.�/

D
X

d;a

F
024;234; 01234�23

d Ia;0234
��1
012.34; 23/�

�1
012.24 � 23 � 34; 34 � 23/R

234; 01234�23

a

.F�1/
024; 01224 ;234

d I0124;a
F
014;124;234

d I1234;0124
.F�1/

014;134; 12334

d I0134;1234
F
034; 01334 ; 12334

d I 012334 ;0134

U34.023; 01223 I 0123/U�1
34
.013; 123I 0123/.F�1/

034; 02334 ; 01234�23

d I0234; 012334
dd ;

(27)

yZ�
yF
.�/

D
X

d;a

U�1
34
.023; 01223 I 0123/U34.013; 123I 0123/F

034; 02334 ; 01234�23

d I 012334 ;0234

.F�1/
034; 01334 ; 12334

d I0134; 012334
F
014;134; 12334

d I1234;0134
.F�1/

014;124;234

d I0124;1234
F
024; 01224 ;234

d Ia;0124

�012.24 � 23 � 34; 34 � 23/.R
234; 01234�23

a /�1

�012.34; 23/.F
�1/

024;234; 01234�23

d I0234;a
dd :

(28)

4. Examples and variations

In this section, we give several examples of the partition function defined in

Section 3. Some of the known invariants in literature emerge as special cases

of our construction. At the end of this section, a variation of the partition function

is introduced when the G-BSFC has a trivial grading. In this case, a cocycle in

H 4.G; U.1// can be included to produce a different invariant. A particular case

reduces to the twisted Dijkgraaf–Witten invariant.
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Figure 16. Left: yZC
yF
.01234/. Right: yZ�

yF
.01234/:
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Figure 17. Compact form. Left: yZC
yF
.01234/. Right: yZ�

yF
.01234/:
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P

a;d

034 02334 01234�23

034 02334 01234�23

d

a

a

D

034 02334 01234�23

034 02334 01234�23

Figure 18. Identity morphism.

4.1. Crane–Yetter invariant. The Crane–Yetter invariant was introduced in [15],

where the authors gave a state sum construction of 4-manifold invariants with the

modular tensor category Rep.Uq.sl2//, where Rep.Uq.sl2// is the category of

representations of Uq.sl2/ with q some principal 4r-th root of unity. Later on the

construction was generalized to any semisimple ribbon category C[14].8 This gen-

eralized state sum invariant is still called the Crane–Yetter invariant and denoted

by CYC.�/.

For a G-BSFC C�
G D

L

g2G Cg , if G D ¹eº is the trivial group, then C�
G has

only one sector C D Ce and it is a ribbon fusion category as noted in Section 2.1.

In this case, the only color on a 1-simplex is the unit e, so we can just assume

there is no color at all on 1-simplices. The colors on each 2-and 3-simplex run

through a complete set of representatives in C. For each colored 4-simplex, the

partition function is given by Figure 16 where all the relevant group elements and

group actions are trivial, and this is equal to the 15j -symbol defined in [14]. The

state-sum formula is given by

ZC�
¹eº
.M IT/ D

X

yFD.f;t/

.D2/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ
�.�/

yF
.�/

�

.D2/jT
1j

�

Q

�2T3

dt.�/

� : (29)

It is then direct to see that the resulting partition function ZC�
¹eº
.M/ is exactly

the Crane–Yetter invariant CYC.M/ (up to the translation of some conventions).

4.2. Yetter’s invariant from homotopy 2-types. A (strict) categorical group

is a rigid tensor category G such that .˝; 1; .�/�/ satisfies the axioms of a group

strictly and that every morphism is invertible. Note that here the morphism spaces

8 In [14], such a category was called semisimple tortile category.
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are not required to be a vector space. Namely, in a categorical group, all the

structural isomorphisms a; l; r are identity maps and A� ˝ A D A ˝ A� D 1,

f ˝ .f �1/� D Id; .f �1/� ˝ f D Id for any object A and morphism f . There

is a one-to-one correspondence between categorical groups and crossed modules

which are defined below.

Let G;H be two finite groups. A crossed module is a quadruple .H;G; �; �/

where �WH ! G is a group morphism and �WG �H ! H is a group action of

G on H , such that the following two conditions are satisfied.

(1) � commutes with the G-action, i.e., for any g 2 G; h 2 H; �.�.g; h// D

�.h/g ; where the right hand side is the conjugation action.

(2) The action � extends the conjugation action of H on itself, i.e., for any

h; h0 2 H , �.�.h0/; h/ D hh
0

.

We will usually write the action as �.g; h/ D hg . The inverse of a group element

g is also denoted by Ng.

Given a categorical group G, let G D G0 andH D tg2G Hom.1; g/. It is clear

that G is a group with the product ˝, the unit e D 1, and the inverse S.�/ D .�/�.

Define �WH ! G to be the target map, namely �.h/ is the target of g, and define

the G-action by �.g; h/ D Idg ˝h ˝ Id Ng . We leave it as an exercise to check

that H is also a group, and .H;G; �; �/ is a crossed module, which we denote by

Mod.G/.

For the converse direction, given a crossed module .H;G; �; �/, define the

categorical group G.H;G; �; �/ as follows.

(1) Objects are elements ofG. Forg1; g2 2 G, Hom.g1; g2/ WD �
�1.g1g2/ � H .

The composition of morphisms are the product in H .

(2) For h 2 Hom.g1; g2/; h
0 2 Hom.g0

1; g
0
2/, g1 ˝ g

0
1 WD g1g

0
1, and h ˝ h0 WD

hg
0
1 h0. The unit 1 is the unit in G. The structure isomorphisms a; l; r are

identity maps.

(3) For g 2 G, the dual g� WD g, and the bg ; dg are identities.

Proposition 4.1. If .H;G; �; �/ is a crossed module and G is a categorical group,
then Mod.G.H;G; �; �//D .H;G; �; �/ and G.Mod.G// D G.

Proof. Direct verification. �
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On the other hand, from a crossed module .H;G; �; �/ we can also con-

struct a G-BSFC denoted by D D D.H;G; �; �/ D
L

g2G Cg . As a category,

D.H;G; �; �/ is the same as VectH , the category ofH -graded finite dimensional

vector spaces. We identify the simple objects in D with elements of H . For each

g 2 G, the g-sector Cg is spanned by all simple objects in ��1.g/. This defines a

G-grading on D due to the fact that � is a group morphism. TheG-action on sim-

ple objects of D is defined to be the action � on H . It can be checked that this is

a well-defined action, and the first condition in the definition of crossed modules

guarantees that the G-action g sends the g0-sector to the g0g
-sector.

Let h 2 Cg ; h
0 2 Cg0 , namely, �.h/ D g; �.h0/ D g0, then h˝ h0 D hh0 2 Cgg0 ;

and h0g ˝ h D h0�.h/ ˝ h D h0h ˝ h D hh0 2 Cgg0 , where the second equality

is due to the second condition in the definition of crossed modules. We define the

G-crossed braiding by the identity map, namely,

ch;h0 WD IdW h˝ h0 �! h0g
˝ h:

We now describe the partition function associated with D.H;G; �; �/. Let
yF D .g; f; t / be an extended coloring. Then for each 2-simplex .012/, f012 2

C Ng02g01g12
. For any 3-simplex .0123/, if the space V ˙.0123/ is to be nonzero, we

need to have

f023 f012
Ng23 D f013f123 D t0123 (30)

Thus the color on a 3-simplex is uniquely determined by those on its boundary

faces. Given an extended coloring such that the condition from equation (30)

is satisfied for every 3-simplex, it is direct to see that for each 4-simplex � ,
yZ˙.�/ D 1 by Figure 16.

Definition 4.2. Given a crossed module .H;G; �; �/ and an ordered triangulation

T of M , an admissible coloring is a map F D .g; f /, gWT1 ! G, f WT2 ! H ,

such that,

(1) for any 2-simplex .012/, �.f012/ D Ng02g01g12;

(2) for any 3-simplex .0123/, f023 f012
Ng23 D f013f123.

An admissible coloring is a G.H;G; �; �/-color in the sense of [66]. The fol-

lowing property shows actually the partition function associated withD.H;G;�;�/

is exactly the Yetter’s invariant YG.H;G;�;�/ associated with G.H;G; �; �/ in [66].

Proposition 4.3. Let D D D.H;G; �; �/ be theG-BSFC obtained from a crossed
module, then

ZD.M IT/ D
jH jjT

0j�jT1j

jGjjT
0j

#.H;G; �; �/ D YG.H;G;�;�/.M/;

where #.H;G; �; �/ is the number of admissible colorings.
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Proof. In D, it is clear that the quantum dimension of each simple object is 1,

and the total dimension square D2 D jH j. Then the first equality follows from

equation (26). The second equality follows from [66]. �

If H D ¹eº is the trivial group, there is a unique group morphism �0 from

H to G and a unique action (the trivial action) �0 of G on H . Then according

to Definition 4.2, an admissible coloring is simply a map gWT1 ! G, such that

for each 2-simplex .012/, Ng02g01g12 D e. In this case the partition function is

reduced to the untwisted Dijkgraaf–Witten invariant DWG.M/, see [19].

Proposition 4.4. Let D0 D D.¹eº; G; �0; �0/, then

ZD0
.M IT/ D

1

jGjjT
0j

#.¹eº; G; �0; �0/

D
jHom.�1.M/; G/j

jHom.�0.M/; G/j

D DWG.M/;

(31)

where �0.M/ is the set of connected components of M and Hom.�0.M/; G/ is
the set of maps from �0.M/ to G.

Proof. The first equality is by Proposition 4.3.

Note that the two sides of the second equality are both multiplicative with

respect to disjoint union of connected components. Thus it suffices to prove the

equality for a connected manifold M , namely, j�0.M/j D 1.

Choose a maximal spanning treeK, which is a sub complex of T1 with jT0j�1

edges. Then it is easy to see that there is a jGjjT
0j�1 to one correspondence

between the set of admissible colorings and Hom.�1.M/; G/. �

4.3. Trivial G -grading with a trivial G -action. Given a ribbon fusion category

C and a finite group G, we can construct a G-BSFC C�
G D

L

g2G Cg , where

Cg D C if g D e, and Cg D 0 otherwise, andG acts on C�
G by the identity functor.

We consider the partition function associated to C�
G .

Since the nontrivial part of C�
G is constrained in the trivial sector, the coloring

g on 1-simplices needs to satisfy the Dijkgraaf–Witten coloring rule, namely,

Ng02g01g12 D e for each 2-simplex .012/. The colorings on 2-and 3-simplices

are independent of those on 1-simplices, and they are the same as the colorings

of Crane–Yetter model. Moreover, the partition function corresponding to each

4-simplex does not depend on the colors on 1-simplices and is the same as that of

Crane–Yetter since the group action here is trivial. We therefore have the following

result.
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Proposition 4.5. If C�
G has a trivial G-grading and a trivial G-action where the

trivial sector of C�
G is C, then ZC�

G
.M IT/ D CYC.M/DWG.M/.

Proof. By equation (26) and the argument above,

ZC�
G
.M IT/ D

X

yFD.g;f;t/

.D2=jGj/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ
�.�/

yF
.�/

�

.D2/jT
1j

�

Q

�2T3

dt.�/

�

D
X

g

1

jGjjT
0j

X

f;t

.D2/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ�.�/.�/
�

.D2/jT
1j

�

Q

�2T3

dt.�/

�

D
X

g

1

jGjjT
0j
CYC.M/

D DWG.M/CYC.M/;

where yZ�.�/.�/ is the 25j -symbol of � for which we have hidden the dependence

on the coloring.

�

In Section 4.4, we will give a variation of the construction of the partition

function, in which the twisted Dijkgraaf–Witten invariant appears as a special

case.

4.4. Variation: trivial G -grading. In this section, we study a variation of the

construction of the partition function, which produces a different invariant of

4-manifolds.

Let C be a ribbon fusion category and let C�
G D

L

g2G Cg be a G-BSFC with

a trivial G-grading, namely, Ce D C and Cg D 0 for g ¤ e. Thus C�
G is a ribbon

fusion category endowed with a G-action. In this case, we show that a 4-cocycle

! 2 H 4.G; U.1// can be introduced in the construction of the partition function.

Since theG-grading is trivial, the colors g on 1-simplices must satisfy the con-

dition Ng02g01g12 D e for each 2-simplex .012/. The colors on 2-and 3-simplices

run through a complete set of representatives in C. For each fixed coloring, we

will introduce an ! factor to the partition function. Explicitly, using the notations

in Section 3, the new invariant can be defined as follows.
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Definition 4.6. Given a G-BSFC C�
G with a trivial G-grading, a 4-cocycle ! 2

H 4.G; U.1//, and an ordered triangulation T of a 4-manifold M , the partition
function ZC�

G
;!.M IT/ of the pair .M;T/ is defined by

ZC�
G ;!

.M IT/

D
X

FD.g;f /

.D2=jGj/jT
0j

�

Q

ˇ2T2

df .ˇ/

�

Tr
�

N

�2T4

Z
�.�/
F .�/!.g01; g12; g23; g34/

�.�/
�

.D2/jT
1j

;

(32)

or as a state sum model,

ZC�
G
;!.M IT/

D
X

yFD.g;f;t/

.D2=jGj/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ
�.�/

yF
.�/!.g01; g12; g23; g34/

�.�/
�

.D2/jT
1j

�

Q

�2T3

dt.�/

� ;
(33)

where we write each � as .01234/ with the induced ordering, and !.: : : /�.�/ is

!.: : : / if �.�/ D C and !.: : : /�1 otherwise.

Theorem 4.7. ZC�
G
;!.M;T/ is independent of the choice of the triangulation T,

and is thus an invariant of closed smooth oriented 4-manifolds.

The proof of invariance of ZC�
G
;!.M IT/ can be processed in a similar way

as that of ZC�
G
.M IT/ with slight modifications, so we will omit the details. For

instance, to show that it is invariant under the 3-3 Pachner move, equation (51)

will be replaced by equation (34),

X

I2;I3

� d024

d0124d0234d0245
yZC.01234/ yZC.01245/ yZC.02345/

!.01; 12; 23; 34/!.01; 12; 24; 45/!.02; 23; 34; 45/
�

D
X

I 0
2
;I 0

3

� d135

d0135d1235d1345
yZC.01235/ yZC.01345/ yZC.12345/

!.01; 12; 23; 35/!.01; 13; 34; 45/!.12; 23; 34; 45/
�

:

(34)
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In equation (34), the product of the three ! factors on the left hand side is equal

to the product of the three factors on the right hand side, and this is precisely

because ! is a 4-cocycle and the colors on 1-simplices satisfy Ng02g01g12 D e

for each 2-simplex .012/. Cancelling the ! factors on both sides, we get back to

equation (51).

Proposition 4.8. If C�
G D C is a G-BSFC with a trivial G-grading and a trivial

G-action, and ! 2 H 4.G; U.1//, then

ZC�
G
;!.M IT/ D DW

!
G .M/CYC.M/; (35)

where DW !
G .M/ is the twisted Dijkgraaf–Witten invariant [19]. In particular, If

C�
G D Vect , then ZC�

G
;! D DW

!
G .M/.

Proof. A similar argument as that in Section 4.3 shows thatZC�
G
;! can be written

as follows:

ZC�
G ;!

.M IT/

D
X

yFD.g;f;t/

.D2=jGj/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ
�.�/

yF
.�/!.g01; g12; g23; g34/

�.�/
�

.D2/jT
1j

�

Q

�2T3

dt.�/

� ;

D
X

g

Q

�2T4

!.g01; g12; g23; g34/
�.�/

jGjjT
0j

X

f;t

.D2/jT
0j

�

Q

ˇ2T2

df .ˇ/

��

Q

�2T4

yZ�.�/.�/
�

.D2/jT
1j

�

Q

�2T3

dt.�/

�

D
X

g

Q

�2T4

!.g01; g12; g23; g34/
�.�/

jGjjT
0j

CYC.M/

D DW !
G .M/CYC.M/: �

5. Proof of Theorem 3.4

In this section we will prove in turn that ZC�
G
.M IT/ is independent of the choice

of representatives (Section 5.1), the ordering of vertices of a triangulation (Sec-

tion 5.2), and the choice of a triangulation (Section 5.4).
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5.1. Invariance under choice of representatives. In defining the partition func-

tion ZC�
G
.M IT/, for each coloring F D .g; f /, we chose arbitrarily a represen-

tative fˇ for the triangle color f .ˇ/, ˇ 2 T2. In the following, we show that

Tr.
N

�2T4 Z
�.�/
F .�// is independent of the choice of representatives, and thus

ZC�
G
.M IT/ is also independent of the choice of representatives by Definition 3.3.

Let �AWA
�
! A0; �B WB

�
! B 0 be isomorphisms in C�

G . Denote by T
�B

�A
the

following linear isomorphism,

T
�B

�A
WHom.A; B/

�
�! Hom.A0; B 0/;

�BA 7�! �B ı �
B
A ı �

�1
A :

Thus, diagram (36) commutes:

B B 0

A A0

 

!
�B

 !�B
A

 

!
�A

 !T�B
�A

.�B
A
/ (36)

The isomorphism T
�B

�A
satisfies functorial properties, namely,

(1) if �C WC
�
! C 0, then

T
�C

�B
.�CB / ı T

�B

�A
.�BA / D T

�C

�A
.�CB ı �

B
A /I

(2) T
�A

�A
.IdA/ D IdA0 .

Lemma 5.1. T
�B

�A
preserves the pairing, i.e., for �BA 2 Hom.A; B/ and �AB 2

Hom.B; A/,

h�AB ; �
B
A i D hT

�A

�B
.�AB /; T

�B

�A
.�BA /i:

Proof. Direct verification. �

For the rest of the section, we fix a coloring F D .g; f /. For each 2-sim-

plex .ijk/ 2 T2, assume we have arbitrarily chosen two representatives of

f .ijk/ denoted by ijk and ijk0, respectively. To distinguish these two choices,

we attach an apostrophe to all quantities related to the second the choice, e.g.,

V C
F .0123/

0; Z�
F .01234/

0; etc.
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For each ˇ D .ijk/ 2 T2; choose any isomorphism �ijkW ijk ! ijk0. If

� D .0123/ 2 T3, let ��� , �C� be the isomorphisms defined below:

��� WD �023 ˝ .�012/
23 W 023˝ 01223 �

�! 0230 ˝ 012023
;

�C� WD �013 ˝ �123 W 013˝ 123
�
�! 0130 ˝ 1230:

Then we have the isomorphisms

T
�C�

���
WV C
F .�/ �! V C

F .�/
0;

T
���

�C�
WV �
F .�/ �! V �

F .�/
0:

See diagram (37):

013˝ 123 0130 ˝ 1230

023˝ 01223 0230 ˝ 012023

 

!
�C�

 !�

 

!
���

 !T
�C�
���

.�/ (37)

When it is clear from the context, we will drop the subscript/superscript and write

T
�C�

���
as T

Lemma 5.2. For any 4-simplex � D .01234/ 2 T4, diagrams (38) and (39) both
commute:

V C
F .0234/˝ V

C
F .0124/˝ V

�
F .1234/˝ V

�
F .0134/˝ V

�
F .0123/ C

V C
F .0234/

0 ˝ V C
F .0124/

0 ˝ V �
F .1234/

0 ˝ V �
F .0134/

0 ˝ V �
F .0123/

0

 

!
zZ

C
F
.01234/

 ! T˝T˝T˝T˝T 

!

zZ
C
F
.01234/0

(38)

V �
F .0234/˝ V

�
F .0124/˝ V

C
F .1234/˝ V

C
F .0134/˝ V

C
F .0123/ C

V �
F .0234/

0 ˝ V �
F .0124/

0 ˝ V C
F .1234/

0 ˝ V C
F .0134/

0 ˝ V C
F .0123/

0

 

!
zZ�

F
.01234/

 ! T˝T˝T˝T˝T 

!

zZ�
F
.01234/0

(39)

Proof. We only prove the case for diagram (38). The other case can be proved

in the same way. Let �0 ˝ �1 ˝ �2 ˝ �3 ˝ �4 be in the domain of zZC
F .01234/:
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Consider the following diagram, where it is not hard to see that the the two maps

on the two sides of each horizontal arrow represent the same map:

034˝ 02334 ˝ 01234:23 0340 ˝ 023034 ˝ 012034:23

034˝ 01334 ˝ 12334 0340 ˝ 013034 ˝ 123034

014˝ 134˝ 12334 0140 ˝ 1340 ˝ 123034

014˝ 124˝ 234 0140 ˝ 1240 ˝ 2340

024˝ 01224 ˝ 234 0240 ˝ 012024 ˝ 2340

024˝ 234˝ 01234:23 0240 ˝ 2340 ˝ 012034:23

034˝ 02334 ˝ 01234:23 0340 ˝ 023034 ˝ 012034:23

 

!
��0234˝ .�012/

34:23

�034˝ .��0123/
34

 

!
��0134˝ .�123/

34

�034˝ .�C0123/
34

 !Id ˝ �4
34  !Id ˝ T .�4/

34

 

!
�014˝��1234

�C0134˝ .�123/
34

 !�3˝Id  !T .�3/˝Id

 

!
�C0124˝�234

�014˝�C1234

 !Id ˝�2

 !Id ˝T .�2/

 

!
��0124˝�234

�024˝ . .�012/
34:23 /

24:23:34

˝�234

 !�1˝Id  !T .�1/˝Id

 

!
�C0234˝ .�012/

34:23

�024˝�234˝ .�012/
34:23

 !Id ˝c
234; 01234:23

 !Id ˝c
2340; 012034:23

 

!
��0234˝ .�012/

34:23

 !�0˝Id  !T .�0/˝Id

(40)

The second square diagram from the bottom commutes by the naturality of the

G-crossed braiding. All other square diagrams commute by diagram (37). Thus,

the whole diagram commutes.

Denote the composition of the vertical maps on the left (resp. right) side by L

(resp. R), then

zZC
F .01234/.�0 ˝ �1 ˝ �2 ˝ �3 ˝ �4/ D Tr.L/;

zZC
F .01234/

0.T .�0/˝ T .�1/˝ T .�2/˝ T .�3/˝ T .�4// D Tr.R/:

Since L;R are conjugate by the above diagram, thus Tr.L/ D Tr.R/ and we have
zZC
F .01234/ D

zZC
F .01234/

0.T˝5/: �



636 S. X. Cui

Proposition 5.3. For any � D .01234/ 2 T4, Z�.�/F .�/ commutes with T . More
precisely, the following diagrams commute:

V C
F .0234/˝ V

C
F .0124/ V C

F .1234/˝ V
C
F .0134/˝ V

C
F .0123/

V C
F .0234/

0 ˝ V C
F .0124/

0 V C
F .1234/

0 ˝ V C
F .0134/

0 ˝ V C
F .0123/

0

 

!
Z

C
F
.01234/

 ! T˝T  ! T˝T˝T

 

!
Z

C
F
.01234/0

(41)

V C
F .0234/˝ V

C
F .0124/ V C

F .1234/˝ V
C
F .0134/˝ V

C
F .0123/

V C
F .0234/

0 ˝ V C
F .0124/

0 V C
F .1234/

0 ˝ V C
F .0134/

0 ˝ V C
F .0123/

0

 ! T˝T  ! T˝T˝T

 

!Z�
F .01234/

 

!

Z�
F .01234/

0

(42)

Proof. Again we only prove the case of diagram (41).

Let

�0 ˝ �1 2 V
C
F .0234/˝ V

C
F .0124/;

�2 ˝ �3 ˝ �4 2 V
C
F .1234/˝ V

C
F .0134/˝ V

C
F .0123/I

then

h.T ˝ T ˝ T / ıZC
F .01234/.�0 ˝ �1/; .T ˝ T ˝ T /.�2 ˝ �3 ˝ �4/i

D hZC
F .01234/.�0 ˝ �1/; �2˝ �3 ˝ �4i

D zZC
F .01234/.�0 ˝ �1 ˝ �2 ˝ �3 ˝ �4/

(43)

and

hZC
F .01234/

0 ı .T ˝ T /.�0 ˝ �1/; .T ˝ T ˝ T /.�2 ˝ �3 ˝ �4/i

D zZC
F .01234/

0.T .�0/˝ T .�1/˝ T .�2/˝ T .�3/˝ T .�4//

D zZC
F .01234/

0 ı .T ˝ T ˝ T ˝ T ˝ T /.�0 ˝ �1 ˝ �2 ˝ �3 ˝ �4/

D zZC
F .01234/.�0 ˝ �1 ˝ �2 ˝ �3 ˝ �4/:

(44)

The first “= ” in equation (43) is by Lemma 5.1, and the third “= ” in equation (44)

is by Lemma 5.2.

Since the equalities in equations (43) and (44) hold for any �i ; i D 0; 1; 2; 3; 4.

this implies diagram (41) commutes. �
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Theorem 5.4. Given a coloring F D .g; f /, we have

Tr
�

O

�2T4

Z
�.�/
F .�/

�

D Tr
�

O

�2T4

Z
�.�/
F .�/0

�

:

As a consequence, the partition function ZC�
G
.M IT/ is independent on the choice

of representatives for each triangle color.

Proof. It suffices to prove diagram (45) commutes, which follows from Proposi-

tion 5.3 since each V C
F .�/ is acted on by exactly one Z

�.�/
F .�/.

N

�2T3

V C
F .�/

L

�2T3

V C
F .�/

N

�2T3

V C
F .�/

0
N

�2T3

V C
F .�/

0

 

!

N

�2T
4

Z
�.�/
F

.�/

 !

N

�2T
3

T  !

N

�2T
3

T

 

!
N

�2T
4

Z
�.�/
F .�/0

(45)

�

5.2. Invariance under change of ordering. When defining the partition func-

tion, we require that the triangulation be equipped with an ordering on its vertices.

In this subsection, it is shown that the partition function is actually independent

of the ordering. We take equation (25) as the definition of the partition function

and notations from Section 3.2 will be used.

Let Sn be the permutation group acting on the set ¹0; 1; : : : ; n � 1º with the

standard generators si 2 Sn; i D 0; 1; : : : ; n � 2; swapping i and i C 1. For

each s 2 Sn and any nonempty subset T � ¹0; 1; : : : ; n � 1º, if we order the

elements in T and in s.T /, respectively, by 0; 1; : : : ; jT j � 1 according to their

relative order, then we get a permutation sT , called the restriction of s on T ,
on ¹0; 1; : : : ; jT j � 1º, namely, sT .i/ WD j if s maps the i-th greatest element

in T to the j -th greatest element in s.T /. For example, if s D s0 2 S3, then

s¹0;1º D s0 2 S2; s¹0;2º D Id 2 S2.

Let T be a fixed ordered triangulation with vertices ordered by 0; 1; : : : ; N � 1,

where N D jT0j. Let T0 be any ordered triangulation obtained from T by reorder-

ing its vertices. Apparently, each reordering of vertices corresponds to an element

of SN . To make it clear, if s 2 SN , then we obtain T0 from T by replacing the label i

of a vertex by s.i/. See Figure 19 for the reordering of a 2-simplex. That is, we are
thinking that the ‘physical’ unordered triangulation is fixed all the time; only the
labels on vertices are permuted. For a k-simplex � D .a0a1 : : : ak�1/ 2 Tk, de-

note by �s the corresponding k-simplex .�.a0/�.a1/ : : : �.ak�1// 2 .T
0/k. Note
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that our convention for expressing a k-simplex is to list its labels in increasing

order, thus here �s should really be .�.a0/�.a1/ : : : �.ak�1// rearranged in in-

creasing order. For example, if s.0/ D 3; s.1/ D 2; s.2/ D 4, then the 2-simplex

.012/ 2 T2 corresponds to .012/s D .234/ 2 .T02/. Also note that � and �s are

the same as an unordered simplex. Since every permutation is a composition of

si
0s, it suffices to prove the partition function is invariant under every si , the swap

of two labels i and i C 1. If the vertices labeled by i and i C 1 are not within

any 4-simplex, then after swapping i and i C 1, the relative order of vertices of

any 4-simplex remains the same, and thus the partition function also remains the

same. Hence, we only need to consider the case where the vertices labeled by i

and i C 1 are within some 4-simplex. (They could be contained in more than one

4-simplex.)

0 1

2

!

s.0/ s.1/

s.2/

Figure 19. Reordering by a permutation s.

Here is the basic idea of the proof. Let s D si 2 SN be some swap, and let T0 be

the ordered triangulation obtained from T by s. If � is any k-simplex, s� means the

restriction of s on the set of vertices of � . Note that here we have defined both s�

and �s. We will show there is a one-to-one correspondence between colorings

F D .g; f / of T and colorings F 0 D .g0; f 0/ of T0 such that the following

properties hold.

(1) For each 2-simplex ˇ 2 T2, df .ˇ/ D df 0.ˇs/.

(2) For each 3-simplex � 2 T3, there is an isomorphism,

ˆs;� WV
˙
F .�/

'
�! V

˙�.s� /
F 0 .�s/;

where �.s� / is the sign of �.s� / taking values in ¹C;�º and we use the

convention that CC D �� D C; C� D �C D �. The isomorphism

ˆs;� ˝ˆs;� WV
�
F .�/˝ V

C
F .�/ �! V �

F 0.�s/˝ V
C
F s.�s/

(orˆs;�˝ˆs;� WV
�
F .�/˝V

C
F .�/! V C

F 0.�s/˝V
�
F s.�s/) maps �F;� to �F 0;�s (up

to a permutation of the tensor components). Let ˆs D
N

�2T3.ˆs;� ˝ˆs;� /.

Then ˆs maps �F to �F 0 .
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(3) For each 4-simplex � D .01234/, let

V C
F .@�/ D V

C
F .0234/˝ V

C
F .0124/˝ V

�
F .1234/˝ V

�
F .0134/˝ V

�
F .0123/;

V �
F .@�/ D V

�
F .0234/˝ V

�
F .0124/˝ V

C
F .1234/˝ V

C
F .0134/˝ V

C
F .0123/:

Then zZ
�.�/
F .�/ is a functional on V

�.�/
F .@�/. The map

ˆs;� WD ˆs;0234 ˝ˆs;0124 ˝ˆs;1234 ˝ˆs;0134 ˝ˆs;0123

is an isomorphism from V
�.�/
F .@�/ to V

�.�s/
F 0 .@�s/; and moreover

zZ
�.�/
F .�/ D zZ

�.�s/
F 0 .�s/ ıˆs;� :

The above conditions are sufficient to show ZC�
G
.M IT/ D ZC�

G
.M IT0/, as

illustrated in Theorem 5.7. Now we build the correspondence between F and

F 0. Given a coloring F D .g; f /, define F 0 D .g0; f 0/ as follows.

For each 1-simplex ˛ 2 T1, define g0.˛s/ D g.˛/ if s˛ is the identity

permutation and g0.˛s/ D g.˛/�1 otherwise. (In the latter case, s˛ is the swap

permutation in S2.)

For each 2-simplex ˇ D .012/ 2 T2, there are three possibilities for sˇ , namely,

sˇ D Id; s0; s1. Define

f 0.ˇs/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

f .ˇ/ if sˇ D Id;

f .ˇ/� if sˇ D s0;

f .ˇ/�g.12/ if sˇ D s1:

(46)

Graphically, this is illustrated in Figure 20. One can check that F 0 D .g0; f 0/

satisfies the constraint of a coloring. The correspondence is apparently one-to-

one. Also, it is clear that df .ˇ/ D df 0.ˇs/.

For each 3-simplex � D .0123/, s� could be Id; s0; s1 or s2. If s� D Id, for

every boundary 2-simplex .ijk/ of � , s.ijk/ D Id, thus .ijk/ and .ijk/s have the

same color and V ˙
F .�/ D V

˙
F 0.�s/. In this case, �.s� / D C, and define

ˆId;� D IdWV ˙
F .�/

'
�! V

˙�.s� /
F 0 .�Id/:
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0 1

2

a

bc

A

sˇDId
!

0 1

2

a

bc

A

;

0 1

2

a

bc

A

sˇDs0

!

1 0

2

Na

bc

A�

;

0 1

2

a

bc

A

sˇDs1

!

0 2

1

a

Nbc

.A�/
b

:

Figure 20. The change of coloring on a 2-simplex.

If s� D s0, then s.023/ D s.123/ D Id; s.012/ D s.013/ D s0; s.23/ D Id : Note

that by definition, the correspondence between 2-simplices of � and those of �s is

given by

.023/s D .123/; .123/s D .023/;

.012/s D .012/; .013/s D .013/:

Hence in �s , the coloring of each 2-simplex is given as follows:

f 0.123/D f .023/; f 0.023/D f .123/;

f 0.012/D f .012/�; f 0.013/D f .013/�:

Also, g0.23/ D g.23/. Hence,

V C
F 0.�s/ D Hom.f 0

023 ˝ f 0g0
23

012; f
0
013 ˝ f

0
123/

D Hom.f123 ˝ .f �
012/

Ng23 ; f �
013 ˝ f023/;

V �
F 0.�s/ D Hom.f 0

013 ˝ f
0
123; f

0
023 ˝ f 0g0

23

012/

D Hom.f �
013 ˝ f023; f123 ˝ .f �

012/
Ng23 /:
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Define the isomorphismˆs0;� WV
˙
F .�/! V �

F 0.�s0/ by graph diagrams as shown in

equation (47):

V C
F .�/ D Hom.f023 ˝ f012

Ng23 ; f013 ˝ f123/

ˆs0;�

����! V �
F 0.�s0/ D Hom.f �

013 ˝ f023; f123 ˝ .f �
012/

Ng23 /;

f023 f012
Ng23

f013 f123

7�!

f013

f012
Ng23

f023

f123

;

(47a)

V �
F .�/ D Hom.f013 ˝ f123; f023 ˝ f012

Ng23 /

ˆs0;�

����! V C
F 0.�s0/ D Hom.f123 ˝ .f �

012/
Ng23 ; f �

013 ˝ f023/;

f013 f123

f023 f012
Ng23

7�!

f013

f012
Ng23

f023

f123

:

(47b)

Similarly, if s D s1 or s2, we leave it as an exercise to work out the details of

the colorings of �s . The isomorphisms ˆs1;� and ˆs2;� are defined as shown in

equation 48 and equation 49, respectively:

V C
F .�/ D Hom.f023 ˝ f012

Ng23 ; f013 ˝ f123/

ˆs1;�

����! V �
F 0.�s1/ D Hom.f023 ˝ f

�
123; f013 ˝ f �

012
Ng13�g12 /;

f023 f012
Ng23

f013 f123

7�!

f023

f012
Ng13 g12f013

f123

;

(48a)
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V �
F .�/ D Hom.f013 ˝ f123; f023 ˝ f012

Ng23 /

ˆs1;�

����! V C
F 0.�s1/ D Hom.f013 ˝ f �

012
Ng13�g12 ; f023 ˝ f

�
123/;

f023 f012
Ng23

f013 f123

7�!

f013 f012
Ng13 g12

f023 f123

:

(48b)

and

V C
F .�/ D Hom.f023 ˝ f012

Ng23 ; f013 ˝ f123/

ˆs2;�

����! V �
F 0.�s2/ D Hom.f012 ˝ f �

123
g23 ; f �

023
g23 ˝ f013

g23 /;

f023 f012
Ng23

f013 f123

7�!

f023

f123

f013

f012
Ng23

g23

;

(49a)

V �
F .�/ D Hom.f013 ˝ f123; f023 ˝ f012

Ng23 /

ˆs2;�

����! V C
F 0.�s2/ D Hom. f �

023
g23 ˝ f013

g23 ; f012 ˝ f �
123

g23 /;

f013 f123

f023 f012
Ng23

7�!

f023

f123

f013

f012
Ng23

g23

:

(49b)

The following lemma is straightforward.

Lemma 5.5. The isomorphism ˆs;� ˝ ˆs;� preserves the pairing on V �
F .�/ ˝

V C
F .�/. Consequently, ˆs;� ˝ˆs;� maps �F;� to �F 0;�s .
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Finally we consider the reordering of 4-simplices. Let � D .01234/ be any

4-simplex of T, then s� D Id; s0; s1; s2, or s3. Let

ˆs;� Dˆs;0234 ˝ˆs;0124 ˝ˆs;1234 ˝ˆs;0134 ˝ˆs;0123W

V
�.�/
F .�/ �! V

�.�s/
F 0 .�s/:

If s� D Id, it is clear that for any 3-simplex � of � we have V ˙
F .�/ D V ˙

F 0.�s/,

s� D Id and thus ˆs;� D Id implying ˆs;� D Id. In this case, the equality
zZ
�.�/
F .�/ D zZ

�.�s/
F 0 .�s/ ı ˆs;� automatically holds. The following lemma asserts

that in other cases it also holds.

Lemma 5.6. Let � D .01234/ be any 4-simplex of T, then

zZ
�.�/
F .�/ D zZ

�.�s/
F 0 .�s/ ıˆs;� :

Proof. If s� D Id, the equality is shown above. If s� D s0; s1; s2, or s3, then

�.�/ D ��.�s/. We need to show zZ˙
F .�/ D

zZ�
F 0.�s/ ıˆs;� :

We show the proof for the case s� D s0. Other cases can be done similarly.

If s D s0, then the correspondence between 3-simplices of � and those of �s are

given by

.0234/s D .1234/;

.0124/s D .0124/;

.1234/s D .0234/;

.0134/s D .0134/;

.0123/s D .0123/:

And the restriction of s on each 3-simplex is given by

s.0234/ D Id;

s.0124/ D s0;

s.1234/ D Id;

s.0134/ D s0;

s.0123/ D s0:
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Thus, ˆs;� can be expressed as

V C
F .0234/˝ V

C
F .0124/˝ V

�
F .1234/˝ V

�
F .0134/˝ V

�
F .0123/

�! V C
F 0.1234/˝ V

�
F 0.0124/˝ V

�
F 0.0234/˝ V

C
F 0.0134/˝ V

C
F 0.0123/;

mapping

 0 ˝  1 ˝  2 ˝  3 ˝  4

7�!  0 ˝ˆs0;.0124/. 1/˝  2 ˝ˆs0;.0134/. 3/˝ˆs0;.0123/. 4/:

Then identity zZC
F .�/ D

zZ�
F 0.�s/ıˆs;� is obtained by inserting the  i into the

corresponding rectangle in Figure 13 (Left), inserting the image of  i under the

above map into the corresponding rectangle in Figure 13 (Right), and showing the

resulting two graph diagrams are isotopic. �

Now we are ready to prove the main theorem of the subsection on the indepen-

dence of the partition function on the ordering of vertices.

Theorem 5.7. Let T;T0 be two ordered triangulations of M which are the same
when the ordering is ignored, then ZC�

G
.M IT/ D ZC�

G
.M IT0/.

Proof. As analyzed at the beginning of this subsection, it suffices to consider the

case where T0 is obtained from T by some s D si 2 SN , N D jT0j. Given any

coloring F D .g; f / of T, let F 0 D .g0; f 0/ be the corresponding coloring of T0.

Then for any 2-simplex ˇ 2 T, we have df .ˇ/ D df 0.ˇs/. Let

ˆs D
O

�2T3

ˆs;� ˝ˆs;� WVF

�

D
O

�2T3

V �
F .�/˝ V

C
F .�/

�

'
�!VF 0 :

By Lemma 5.5, .ˆs;� ˝ˆs;� /.�F;� / D �F 0;�s . Therefore, ˆs.�F / D �F 0 .

By Lemma 5.6, for any 4-simplex � , zZ
�.�/
F .�/ D zZ

�.�s/
F 0 .�s/ ıˆs;� . Thus,

O

�2T4

zZ
�.�/
F .�/ D

O

�s2.T0/4

zZ
�.�s/
F 0 .�s/ ı

O

�2T4

ˆs;� :

By virtual of the definition, ˆs D
N

�2T4 ˆs;� . Therefore,

Y

ˇ2T2

df .ˇ/

�

O

�2T4

zZ
�.�/
F .�/

�

.�F /

D
Y

ˇs2.T0/2

df 0.ˇs/

�

O

�s2.T0/4

zZ
�.�s/
F 0 .�s/ ıˆs

�

.�F /

D
Y

ˇs2.T0/2

df 0.ˇs/

�

O

�s2.T0/4

zZ
�.�s/
F 0 .�s/

�

.�F 0/: �
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5.3. Pachner moves. In this subsection, we work in the category of piecewise

linear (PL) manifolds. A PL manifold is a topological manifold endowed with

an equivalence class of PL structures and a triangulation of a PL manifold is

a simplicial complex that corresponds to a choice of a representative from the

equivalence class of PL structures. Any two triangulations of the same manifold

are related by a sequence of Pachner moves. See [51] for detailed discussions.

Let �nC1 be any .nC 1/-simplex. Its boundary, denoted by @.�nC1/, consists

of n C 2 n-simplices. Let @.�nC1/ D I t J be a bi-partition of @.�nC1/ such

that jI j D k and jJ j D n C 2 � k. Two triangulations T and T0 are related by a

Pachner move of type .k; nC 2� k/ if I � T and T0 D .T n I /[ J for some I; J .

Apparently, Pachner moves of types .k; nC 2� k/ and .nC 2� k; k/ are inverse

operations if the partitions are taken to be .I; J / and .J; I / respectively.

Theorem 5.8 ([46]). Let M D M n be a closed PL manifold and T;T0 be two
triangulations of M , then there is a sequence of triangulations of M , T D T0,
T1; : : : ;Tk D T0, such that any two neighboring triangulations in the sequence
are related by a Pachner move of type .k; nC 2� k/, for some 1 � k � n

2
C 1, or

its inverse.

We remark that for n D 4, the category of PL manifolds is equivalent to the

category of smooth manifolds. Namely, each PL manifold admits a unique smooth

structure, and vice versa.

Some examples of Pachner moves are listed here.

If dim.M/ D n D 1; we have Pachner moves of type .1; 2/ and .2; 1/ which

are inverse to each other. See Figure 21.

If n D 2, we have Pachner moves of type .1; 3/, .2; 2/, and .3; 1/. See Figure 22.

We are more interested in the case n D 4, where we have Pachner moves of

types .3; 3/; .2; 4/; .1; 5/ and their inverses. Given a 5-simplex �5, we order its

vertices by 0; 1; 2; 3; 4, and denote the face which does not contain the vertex i by

.0 : : : O{ : : : 4/. For each type of Pachner moves, we pick a specific partition I; J ,

and call it the typical Pachner move. The typical Pachner moves for n D 4 are as

follows:

.02345/.01245/.01234/
.3;3/
 ! .12345/.01345/.01235/;

.02345/.01245/.01234/.12345/
.2;4/
 ! .01345/.01235/;

.02345/.01245/.01234/.12345/.01345/
.1;5/
 ! .01235/:
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.1;2/
 !

Figure 21. Pachner move .1; 2/; n D 1.

.1;3/
 !

.2;2/
 !

Figure 22. Pachner moves .1; 3/, .2; 2/; n D 2.

5.4. Invariance under Pachner moves. We prove that the partition function

ZC�
G
.M IT/ defined in Section 3 is invariant under Pachner moves. Since in

Section 5.2 it has been shown that ZC�
G
.M IT/ does not depend on the ordering

of the vertices, we only need to consider typical Pachner moves of types 3-3, 2-4,

and 1-5. Let T;T0 be two ordered triangulations whose vertices are ordered in

such a way that they only differ by a typical Pachner move. In each of the cases,

let Ik D Tk n .T0/k be the set of k-simplices which belong to T but not T0, and

similarly let I 0
k
D .T0/k n Tk. Tables 1, 2, and 3 list the differences between T

and T0 corresponding to each typical Pachner move 3-3, 2-4, and 1-5, respectively.

Without loss of generality, assume the 4-simplices 02345, 01245, 01234 in T are

positive, then 12345, 01345, 01235 in T0 are positive, and if any of 12345, 01345,

01235 are transported to T, they become negative.

By a complete set of representatives we mean a set of objects which contains

exactly one representative for each isomorphism class of simple objects. For the

rest of the section, a summation variable concerning simple objects in the cate-

gory is always assumed to run through an arbitrary complete set of representatives,

unless otherwise stated. Recall that an extended coloring is a map yF D .g; f; t /,

which assigns a group element to each 1-simplex, an isomorphism class of simple

objects to each 2-, and 3-simplex, such that these assignments satisfy some restric-

tions, see Definition 3.6. Then to define the partition function, a representative is

arbitrarily chosen for each 2-and 3-simplex with an extended coloring. The parti-

tion function is a sum over all extended colorings, see equation (26). In light of

the observations above, we can rephrase the definition of the partition function as

follows.
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Table 1. Comparison of T and T0 for 3-3 move.

Ik I 0
k

k D 4 02345 01245 01234 12345 01345 01235

k D 3 0124 0234 0245 0135 1235 1345

k D 2 024 135

Table 2. Comparison of T and T0 for 2-4 move.

Ik I 0
k

k D 4
02345 01245 01234 01345 01235

12345

k D 3
0124 0234 0245 0135

2345 1245 1234

k D 2
024

245 234 124

k D 1 24

Table 3. Comparison of T and T0 for 1-5 move.

Ik I 0
k

k D 4
02345 01245 01234 12345 01235

01345

k D 3
0124 0234 0245 2345 1245 1234

0134 0145 1345 0345

k D 2
024 245 234 124

034 014 134 045 145 345

k D 1
24

04 14 34 45

k D 0 4

We let each 1-simplex run through the set of all elements in G, and let each

2-, 3-simplex run through an arbitrary complete set of representatives (i.e., each

2-, 3-simplex has its own complete set). Then an extended coloring can be viewed

as a choice of value for 1-, 2-, and 3-simplices, so that the resulting configuration

satisfies the restriction in Definition 3.6. If a configuration is not an extended

coloring, we set its contribution to zero. As before, we denote the color of a

simplex by the simplex itself. Then equation (26) can be rewritten as equation (50),
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where we have omitted the dependence of yZ�.�/.�/ yF :

ZC�
G
.M IT/ D

X

T1;T2;T3

.D2=jGj/jT
0j

.D2/jT
1j

Y

ˇ2T2

dˇ

Y

�2T3

d�

Y

�2T4

yZ�.�/.�/: (50)

By equation (50), to prove ZC�
G
.M IT/ D ZC�

G
.M IT0/, it suffices to show that

equations (51)–(53) hold, corresponding to the typical Pachner move 3-3, 2-4,

1-5, respectively, where all simplices which do not occur in the summation are

assumed to have a fixed coloring on them:

X

I2;I3

d024

d0124d0234d0245
yZC.01234/ yZC.01245/ yZC.02345/

D
X

I 0
2
;I 0

3

d135

d0135d1235d1345
yZC.01235/ yZC.01345/ yZC.12345/;

(51)

X

I1;I2;I3

1

D2

Q

ˇ2I2

dˇ

Q

�2I3

d�
yZC.01234/ yZC.01245/ yZC.02345/ yZ�.12345/

D
X

I 0
3

1

d0135
yZC.01235/ yZC.01345/;

(52)

X

I0;I1;I2;I3

.D2=jGj/jI0j

.D2/jI1j

Q

ˇ2I2

dˇ

Q

�2I3

d�
yZC.01234/ yZC.01245/ yZC.02345/

yZ�.12345/ yZ�.01345/

D yZC.01235/:

(53)

We give the proof of equation (51) below and leave the proof of equation (52)

and equation (53) as an exercise. In the proof, the following simple lemmas will

be used heavily. We take one more convention that all diagrams of morphisms
in figures of this subsection are assumed to have their top and bottom identified,

namely, the diagrams in figures are actually the trace of the morphisms drawn.

Lemma 5.9 (merging formula). LetA;B be two objects of C�
G , and ¹eA;B;i W i 2I º,

¹eB;A;j W j 2 I º be a basis of Hom.A; B/ and Hom.B; A/, respectively, such that
heA;B;i ; eB;A;j i D ˛iıi;j , then for F 2 Hom.A; B/; G 2 Hom.B; A/, we have
hG;F i D

P

i2I
1
˛i
hG; eA;B;i ihF; eB;A;i i. In particular,
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(1) Let F 2 Hom.a˝ b; c ˝ d/; G 2 Hom.c ˝ d; a˝ b/; then

hG;F i D
X

x

1

dx
hF;Bxcd;abihG;B

x
ab;cd i:

(2) Let F 2 Hom.a˝ b˝ c; d ˝ e˝ f /; G 2 Hom.d ˝ e˝ f; a˝ b˝ c/; then

hG;F i D
X

x;y;z

dz

dxdy
hF; .Id˝B

y

zf;bc
/ ı .Bxde;az ˝ Id/i

hG; .Bxaz;de ˝ Id/ ı .Id˝B
y

bc;zf
/i:

The identities in Part 1 and Part 2 are also illustrated in Figure 23 and Figure 24,
respectively.

F

G

a b

c d D
X

x

1

dx

c d

a b

x

F

a b

c d

x

G

Figure 23. Trace identity (1).

F

G

a b c

d e f D
X

x;y;z

dz

dxdy

d e

x

b c

y

F

a

f

z

b c

y

d e

x

G

a

f

z

Figure 24. Trace identity (2).

Lemma 5.10. Let g; g0 2 Gr.C�
G/ � G be fixed and a; b be simple objects of C�

G

such that a ˝ b 2 Cgg0 , then the equality in Figure 25 holds, where c; d; e are
simple objects in the g-, g0-, .gg0/-sector, respectively.
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X

c 2Cg;d2Cg0;

e2Cgg0

dcdd

de

a b a b

c d

e

c d

a b

e

D
D2

jGr.C
G

/j

Figure 25. Dimension identity.

Proof. We have

LHS D
X

c;d;e

dcdd

de
N e
cdB

e
ab;ab

D
X

e2Cgg0

X

c2Cg

dc

de
Beab;ab

X

d2Cg0

dd�N d�

e�c

D
X

e2Cgg0

X

c2Cg

d2c de�

de
Beab;ab

D
X

e2Cgg0

D2
g B

e
ab;ab

D
D2

jGr.C�
G/j

Ida˝b : �

As an application of the above two lemmas and also a warm-up for the proof

of invariance under Pachner moves, we compute the invariant for the 4-sphere S4.

Proposition 5.11. For any C�
G , we have ZC�

G
.S4/ D D2

jGj
.

Proof. Take the triangulation T of S4 which is obtained by identifying a positive

4-simplex �1 D C.01234/ with a negative 4-simplex �2 D �.01234/. We use

equation (50) to compute ZC�
G
.S4IT/. First of all, fix a coloring on T1 so that it is

extendable to T2. The expression

X

T2;T3

Q

ˇ2T2

dˇ

Q

�2T3

d�
yZC.�1/ yZ

�.�2/ (54)
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can be computed as shown in figure 26–37. For each graph diagram in the figure,

the top and the bottom are identified, which means we are taking the trace of

the morphisms represented by the diagrams. The coefficients of the diagrams

are placed below them. The summation, such as the first one over T2;T3, means

summation over all colorings of the simplices contained in the relevant set. Hence,

the first term in the figure corresponds to the expression in equation (54). Also,

Gr denotes the subgroup Gr.C�
G/. We explain the four steps of calculations shown

in the figure.

1 Apply Lemma 5.9.

2 Apply Lemma 5.10 twice.

3 Apply Lemma 5.10 a third time and isotope the diagram.

4 Use the fact that each D2
g equals D2

jGrj
for g 2 Gr.

Then we have

ZC�
G
.S4IT/ D

X

T1

�

D2

jGj

�5

.D2/10

� D2

jGrj

�6

D
ˇ

ˇ

ˇ

G

Gr

ˇ

ˇ

ˇ

4

jGrj10

�

D2

jGj

�5

.D2/10

� D2

jGrj

�6

D
D2

jGj
;

where in the middle equality is due to the fact that the number of extendable

colorings on 1-simplices is jG=Grj4 jGrj10. �

Theorem 5.12. Let T;T0 be two ordered triangulations which differ by a typical
3–3 Pachner move, see Table 1 for their comparison. Then the identity in equa-
tion (51) holds, assuming all simplices which do not present among the summation
variables have been assigned a fixed coloring.

Proof. The proof is best illustrated using picture calculus and Lemma 5.9. Note

that the top and bottom of each diagram (see below) are identified, so within each

diagram morphisms are cyclically ordered, namely, one can move a morphism on

the bottom to the top and vice versa. Also, the summation terms are written below

the diagrams for convenience. It is direct to check that the final diagrams in both

LHS and RHS represent the same morphism, which justifies the equation. Below

we give a brief explanation of each “= ” sign in the diagrams.
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LHS.

1 By definition.

2 Apply 45 to the first diagram. Move the top two morphisms involving

0245; 0234 in the third diagram to the bottom.

3 Apply Lemma 5.9 to the second and third diagram.

4 Isotope the second diagram.

5 Apply Lemma 5.9.

RHS.

1 By definition.

2 Apply Lemma 5.9 to the first and third diagram.

3 Apply Lemma 5.9 to the two diagrams.

4 Isotope the diagram. Note that the group element acting on 0123 changes

from 35 to 45 34 due to braiding. �

D1

1
D D2

2
D D3

3
D D4

4
D

� D2

jGrj

�6

Figure 26. Computing ZC
�
G
.S4IT/.
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0234

C

0124

C

1234
C

1234

C

0124
C

0234
C

X

T
2
1 WDT

2 .013/º;

T
3
1 WDT

3 .0134/;.0123/º

Y

ˇ2T
2
1

dˇ

Y

2T
3
1

d

D2D1

0234

C

0124

C

1234
C

0134
C

0123
34

C

X

T2;T3

Y

ˇ2T2

dˇ

Y

2T3

d

0123
34

C

0134

C

1234

C

0124
C

0234
C

Figure 27. The diagrams D1 and D2.
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D4D3

0124

C

0124
C

234

X

T
2
2 WD¹.012/;.014/;

.024/;.124/;.234/º;

T
3
2 WD¹.0124/º

Y

ˇ2T
2
2

dˇ

Y

2T
3
2

d

D2

jGrj

2

024 01224
234

X

T
2
3 WD¹.012/;.024/;.234/º

Y

ˇ2T
2
3

dˇ

D2

jGrj

3

Figure 28. The diagrams D3 and D4.

LHS
1
D D5

2
D D6

3
D D7

4
D D8

5
D D9

Figure 29. Computing the left hand side.
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D5

X

I2;I3

d024

d0124d0234d0245

0234

C

0124

C

1234
C

0134
C

0123
34

C

0245

C

0125

C

1245
C

0145
C

0124
45

C

0345

C

0235

C

2345
C

0245
C

0234
45

C

Figure 30. The diagram D5.

D6

X

I2;I3

d024

d0124d0234d0245

0234
45

C

0124
45

C

1234
45

C

0134
45

C

0123
C

45 34

0245

C

0125

C

1245
C

0145
C

0124
45

C

0245
C

0234
45

C

0345

C

0235

C

2345
C

Figure 31. The diagram D6.
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X

024;0124;0234

d024

d0124d0234

0234
45

C

0124
45

C

1234
45

C

0134
45

C

0123
C

45 34

0125

C

1245
C

0145
C

0124
45

C

0234
45

C

0345

C

0235

C

2345
C

X

024;0124;0234

d024

d0124d0234

0234
45

C

0124
45

C

1234
45

C

0134
45

C

0123
C

45 34

0125

C

1245
C

0145
C

0124
45

C

0234
45

C

0345

C

0235

C

2345
C

D7 D8

Figure 32. The diagrams D7 and D8.
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0125

C

1245
C

0145
C

1234
45

C

0134
45

C

0123
C

45 34

0345

C

0235

C

2345
C

D9

Figure 33. The diagram D6.

RHS
1
D D10

2
D D11

3
D D12

4
D D13

Figure 34. Computing the right hand side.
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X

I 0
2

;I 0
3

d135

d0135d1235d1345

0235
C

0125
C

1235
C

0135
C

0123
35

C

0345
C

0135
C

1345
C

0145
C

0134
45

C

1345
C

1235
C

2345
C

1245
C

1234
45

C

D10

Figure 35. The diagram D10.
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D11

X

135;0135;1345

d135

d0135d1345

0235
C

0125
C

2345
C

1245
C

1234
45

C

1345
C

0135
C

0123
35

C

0345
C

0135
C

1345
C

0145
C

0134
45

C

Figure 36. The diagram D11.
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0235
C

0125
C

2345
C

1245
C

1234
45

C

0145
C

0134
45

C

0345
C

0123
35

C

0235
C

0125
C

2345
C

1245
C

1234
45

C

0145
C

0134
45

C

0345
C 0123

C

45 34

D12 D13

Figure 37. The diagrams D12 and D13.
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6. Monoidal 2-categories with duals

By a 2-category we always mean a weak 2-category or a bicategory. In compari-

son, a strict 2-category is a 2-category where the composition of 1-morphisms and

the horizontal composition of 2-morphisms are strictly associative. A monoidal

2-category by definition is a tricategory with a single object. Monoidal 2-cat-

egories with certain extra structure/properties such as duals, sphericity, and

semisimplicity defined in a certain sense are supposed to be the input data for

a state sum construction of .3 C 1/-TQFTs. We call such categories spherical
fusion 2-categories. The main purpose of this section is to show that from a G-

BSFC we can construct a monoidal 2-category with duals and some additional

structures. However, this monoidal 2-category is not a spherical 2-category in the

sense of [43], while it does become a spherical 2-category if we adapt the defini-

tion of sphericity introduced in [10] for Gray categories to monoidal 2-categories.

6.1. Constructing a monoidal 2-category from a G -BSFC. For monoidal

2-categories, we follow closely the conventions in [52] (Section 2:3 and Appen-

dices A and C ), where a bicategory corresponds to a 2-category presented here.

See [32, 5] for some relatively older references. Let C�
G D

L

g2G Cg be a G-

BSFC. We construct a monoidal 2-category D D D.C�
G/ from C�

G .

The objects of D correspond to elements of G. That is, D0 D G. If a; b 2 D0

are two objects, the category D.a; b/ of 1-morphisms from a to b is given by C Nab ,

where Na means the inverse of a as a group element. Thus, 1-morphisms from a to

b are objects, denoted by A;B; C , etc., in C Nab , and 2-morphisms from A to B are

morphisms, denoted by ˛; ˇ, etc., in C Nab fromA toB . The horizontal composition

functors are defined by the tensor products in C�
G , namely,

cabc WD.b; c/ �D.a; b/ �!D.a; c/;

.B; A/ 7�! A˝ B;

.ˇ; ˛/ 7�! ˛ ˝ ˇ:

The identity 1-morphism Ia 2 D.a; a/ is the unit object 1 of Ce � C�
G . Clearly,

the associator and left/right unitors of the horizontal composition functors in D

correspond precisely to those of the tensor products in C�
G . This makes D into

a 2-category. Note that so far we have only used the fact that C�
G is a G-graded

monoidal category where the tensor product respects to the group multiplication.

To make a distinction between the tensor product ‘˝’ in C�
G which corresponds

to the horizontal composition inD and the tensor product inD, we denote the latter
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by the symbol ‘�’. The distinguished object (or the unit object) 1D is identity

element e of G. The tensor product � is a homomorphism of 2-categories,

� D .�; �.A;A0/;.B;B0/; �.a;a0//WD �D �! D;

which is unpacked as follows. For a; b 2 D0, we have a� b WD ab. The functor

�WD.a; b/�D.a0; b0/ �! D.aa0; bb0/;

is defined by

A� A0 WD Aa
0
˝ A0; ˛ � ˛0 WD ˛a

0
˝ ˛0:

For

a
A
�! b

B
�! c; a0 A0

�! b0 B0

�! c0;

the natural isomorphisms

�.A;A0/;.B;B0/W . Aa
0
˝ A0/˝ . Bb

0
˝ B 0/ �! .A˝ B/a0

˝ .A0 ˝ B 0/;

�.a;a0/W 1a
0
˝ 1 �! 1;

are given, respectively, by the diagrams

. Aa
0
˝ A0/˝ . Bb

0
˝ B 0/

id ˝c˝id
������! . Aa

0
˝ Ba

0
/˝ .A0 ˝ B 0/

�! .A˝ B/a0
˝ .A0 ˝ B 0/;

1a
0
˝ 1 �! 1˝ 1 �! 1;

where c is the G-crossed braiding and the arrows without labels denote natu-

ral isomorphisms arising from the action of a0. Note that in the first diagram

above, some associators need to inserted in order for the maps to make sense.

Clearly, �.A;A0/;.B;B0/ is natural with respect to its arguments. The properties of

the G-crossed braiding and the G-action ensure that �.A;A0/;.B;B0/ and �.a;a0/ sat-

isfy the required equations. The three transformations relating the associators and

unitors of �,

.˛abc ; ˛ABC / D ˛ W .a� b/� c �! a � .b � c/;

.la; lA/ D l W e � a �! a;

.ra; rA/ D r W a �! a � e;

are defined as follows. The 1-morphisms ˛abc , la, and ra are all equal to 1 and the

2-morphisms ˛ABC , lA, and rA are given by the the natural isomorphisms,

˛ABC W 1˝ . Abc ˝ . BNc ˝ C// �! . . A
Nb ˝ B/

Nc
˝ C/˝ 1;

lAW 1˝ A �! . 1Na ˝ A/˝ 1;

rAW 1˝ . Ae ˝ 1/ �! A˝ 1:
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Lastly, we consider the invertible modification � , the pentagonator, as shown

below.

.a� b/� .c � d/

..a� b/� c/� d a � .b � .c � d//

.a� .b � c//� d a � ..b � c/� d/

 

!
˛

 

!˛

 ! ˛�I

 

!
˛

 !I�˛ 
!

�

It is direct to see that the source and target of �.a; b; c; d/ are both naturally

isomorphic to 1, hence �.a; b; c; d/ is a nonzero scalar. The equality of the two

Stasheff polytopes in Figures C:1 and C:2 of [52] is equivalent to the cocycle

condition,

�.b; c; d; e/�.a; bc; d; e/�.a; b; c; de/

D �.ab; c; d; e/�.a; b; cd; e/�.a; b; c; d/:

Note that here e denotes a general object, but not the unit. This means � is a

4-cocycle representing a class in H 4.G;C/.

Remark 6.1. There are also three other invertible modifications �, �, and �

resulting from weakening the Triangle Identity. We define all of them to be

identically 1. To satisfy the conditions relating these modifications and � , we need

to choose the 4-cocycle � to be normalized, namely, �.a; b; c; d/ D 1whenever a,

b, c, or d is the identity element. But this choice is only for notational convenience.

In general, one can always properly define �, �, and � by certain values of � so

that the relevant equations are satisfied.

To summarize, by taking � 2 H 4.G;C/ trivial, a monoidal 2-category D.C�
G/

is constructed from a G-BSFC C�
G with a trivial pentagonator. One can also

introduce a nontrivial � to D.C�
G/ so that it becomes a monoidal 2-category

with � being the pentagonator. From the construction, it is direct to see that

D is semistrict if and only if C�
G is strict as a G-crossed braided category (see

Section 2.2) and � is identically 1. An equivalence of C�
G as a G-crossed braided

category implies an equivalence of D.C�
G/ as a monoidal 2-category. However,

the converse does not seem to be true.

Remark 6.2. 1. It can be shown that monoidal functors between G-BSFCs and

natural transformations between monoidal functors can be lifted to monoidal
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2-functors and 2-transformations, respectively. However, for monoidal 2-cate-

gories, the more general notions of pseudofunctors, tritransformations, and tri-

modifications also exist. See, for instance, [28, 52].

2. In Section 4.4, the definition of the 4-manifold invariant is generalized to

include a 4-cocycle in H 4.G;C/ with the restriction that the G-BSFC is concen-

trated on the sector indexed by the identity element. However, we just showed that

a 4-cocycle can be combined with anyG-BSFC to produce a monoidal 2-category

in which the 4-cocycle corresponds to the pentagonator. This leads us to speculate

that the restriction on the G-BSFC in the definition of the invariant is not neces-

sary. However, it is not clear that equation (4.6) still gives a well-defined invariant

without the restriction.

6.2. Constructing a ‘spherical’ 2-category from a G -BSFC. We continue to

show that D.C�
G/ has duals and certain other structures which makes it a spherical

2-category in the sense of [10], but not in the sense of [43]. Both of the two

references define duals assuming the category is semistrict. This does not lose

any generality since every monoidal 2-category is equivalent to a semistrict one.

That means, if one can define duals on a semistrict monoidal 2-category, then the

same definition also works for nonsemistrict ones by inserting appropriate natural

isomorphisms whenever needed. Thus here we assume that C�
G is strict and hence

D is semistrict. For a direct comparison, we follow the conventions in [43] to

define duals. See [5] for the original definition.

Some notations are in order. Let D be any semistrict monoidal 2-category.

The distinguished object 1D is always denoted by e, while 1 is reserved to mean

the unit object in a G-BSFC. The identity in the group G is also denoted by e.

If AW a ! b, B W b ! c are 1-morphisms, their horizontal composition is written

as A ıh B WD cabc.B; A/. Similarly, write ˛ ıh ˇ as the horizontal composition

of two 2-morphisms. If A is a 1-morphism and ˛ is a 2-morphism, then A ıh ˛

means IA ıh ˛. Also, if c is any object, then c � A, c � ˛, and A� ˛ represent

Ic � A, IIc � ˛, and IA � ˛, respectively. For instance, if D D D.C�
G/, then

A ıh B D A ˝ B , ˛ ıh ˇ D ˛ ˝ ˇ, A ıh ˛ D IA ˝ ˛. Also, if A;A0W a ! b,

˛WA H) A0 then c�A D A, A� c D ANc , c� ˛ D ˛, ˛� c D ˛Nc . If B W c ! d ,

then B � ˛ D ˛, ˛ � B D ˛Nc .

The duals in a monoidal 2-category consist of the following structures.

(1) For every 2-morphism ˛WA H) B , there is a 2-morphism ˛�WB H) A.

(2) For every 1-morphism AW a ! b, there is a 1-morphism A�W b ! a, a

2-morphism iAW Ia H) A ıh A
�, and a 2-morphism eAWA

� ıh A H) Ib
called the dual, the unit, and the counit of A, respectively.
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(3) For every object a, there is an object a�, a 1-morphism iaW e ! a � a�, and

a 1-morphism eaW a
�

� a ! e called the dual, the unit, and the counit of a,

respectively. Also there is a 2-morphism TaW .ia � Ia/ ıh .Ia � ea/ H) Ia

called the triangulator of a.

A 2-morphism˛ is called unitary if it is invertible and ˛� D ˛�1. For˛WA H) B ,

we define a 2-morphism ˛�WB� H) A� by

˛�WB�
B�ıhiA
HHHH) B� ıh A ıh A

�
B�ıh˛ıhA

�

HHHHHHH) B� ıh B ıh A
�
eB ıhA

�

HHHHH) A�:

Note that the roles of ˛� and ˛� are swapped in [43]. These structures defined

above need to satisfy some consistency conditions [43].

To define duals in D.C�
G/, we will assume C�

G has a unitary structure, namely,

for every morphism ˛WA! B , there is a morphism ˛�WB ! A. The map .�/� is

involutory and compatible other structures of the category. See Section 4:3 of [61]

or Chapter 2 of [56] for the precise definition.

For D D D.C�
G/, the structures in the first two items above are defined by

the relevant structures in C�
G in the obvious way. Namely, as a 2-morphism, ˛�

corresponds to the unitary structure from C�
G . The dual A� of A as a 1-morphism

is the dual of A as an object in C�
G . For an object a 2 D, a� is defined to be

Na, ia and ea are equal to Ie D 1, and Ta is the identity 2-morphism on Ia D 1.

It is direct to see that ˛� defined above is the same as the dual of ˛ viewed as a

morphism in C�
G . This is the reason why we swapped the notations .�/� and .�/�.

It is straightforward to check that this defines duals in D.

We now proceed to define a pivotal structure on D D D.C�
G/. Given a

1-morphism AW a! b, define the 1-morphisms A# ; A# W Nb ! Na as follows.

A# W Nb
i Na� Nb
���! Na� a � Nb

Na�A� Nb
�����! Na � b � Nb

Na�e Nb
����! Na;

A#W Nb
Nb�ia
���! Nb � a� Na

Nb�A� Na
�����! Nb � b � Na

eb� Na
����! Na:

Hence, we have A# D Ab and A# D Aa . Note that the above definitions

naturally extend to 2-morphisms. Explicitly, for a 2-morphism ˛WA H) B ,

where A;B W a ! b are 1-morphisms, define the 2-morphisms ˛# W A# H) B#

and ˛#WA# H) B# by the formulas

˛# WD .i Na � Nb/ ıh . Na� ˛ � Nb/ ıh . Na� e Nb/ D ˛b ;

˛# WD . Nb � ia/ ıh . Nb � ˛ � Na/ ıh .eb � Na/ D ˛a :

Note that the twist in C�
G provides a natural isomorphism,

��1
A# D . �A

a /�1W A# �! A#:
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We denote this isomorphism by �A. It is direct to verify that �A satisfies Condi-

tions 1–4 below, which makes D pivotal according [43].

(1) For any 2-morphism ˛WA H) B , the following diagram commutes,

A# A#

B# B#

(

)
�A

() ˛# ()

˛#

(

)
�B

(2) ��
A D �A� .

(3) For AW a! b; B W b ! c, the following diagram commutes:

.A ıh B/
# .A ıh B/

#

B# ıh A# B# ıh A
#

(

)
�.AıhB/

() ()

(

)
�B ıh�A

where the vertical maps are given by the G-crossed braiding (or its inverse)

up to natural isomorphisms arising from the group action.

(4) For any 2-morphism ˛, we have

.˛�/
#

D .˛#/� and . A# /� D .A�/#:

The conditions above can be derived from properties of the twist. See Proposi-

tion 2.5. In particular, the third condition is equivalent to the relation between the

twist and G-crossed braiding,

.A˝ B/c .A˝ B/a

Bc ˝ Ab Bb ˝ Aa

 

!
��1

 ! c�1

. Bc ; Ab /

 ! c. Aa ; Ba /

 

!
��1˝��1

We introduce the left/right trace functors TrL;TrRWD.a; a/ ! D.e; e/. For a

1-morphism AW a! a, TrL.A/ and TrR.A/ are defined respectively by

TrL.A/W e
i Na
�! Na� a

Na�A
���! Na� a

ea
�! e;

TrR.A/W e
ia
�! a � Na

A� Na
���! a� Na

e Na
�! e:
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Similarly, for a 2-morphism ˛WA H) B , A;B W a! b, define

TrL.˛/ WD i Na ıh . Na� ˛/ ıh ea;

TrR.˛/ WD ia ıh .˛ � Na/ ıh e Na:

It turns out that TrLWCe ! Ce is the identity functor and TrR is the functor given

by the action of a on Ce.

According to Definition 2:8 of [43], D is called spherical if there is a natural

isomorphism between TrL and TrR. This means the identity functor and the .�/a

functor on Ce are isomorphic for any group element a. In particular, it implies

the action of G fixes all objects of Ce. This clearly does not hold in general. For

instance, take any finite group G acting nontrivially on an Abelian group H and

let �WH ! G be the trivial morphism, then .H;G; �/ forms a crossed module by

Section 4.2, and the correspondingG-BSFC from the crossed module has only one

nontrivial sector, the sector indexed by the identity element which is equivalent

to VectH . Moreover, the G-action on VectH is given by the nontrivial G-action

on H .

In [43], a monoidal 2-category is defined to be finitely semisimple if there is a

finite nonempty set of objects S , such that for any pair of objects .a; b/,

M

c2S

D.a; c/� D.c; b/
'
�! D.a; b/: (55)

We show D in general does not satisfy this property. Take G D ¹eº, then C�
G D C

is just a ribbon fusion category, D has a single object e, and D.e; e/ D C. If D

were semisimple, then S D ¹eº, and C � C ' C, which fails to hold in general.

To summarize, starting from a unitary G-BSFC, a monoidal 2-category with

duals can be constructed, which in general does not satisfy the axioms of a

semisimple spherical 2-category. The requirement that the left trace functor be

isomorphic to the right trace functor seems too strong. Also, note that D.a; b/ is

a D.a; a/-D.b; b/ bi-module category. For the semisimplicity condition, it seems

more reasonable to require the tensor product in equation (55) to be taken over

D.c; c/ rather than over Vect .

On the other hand, spherical Gray categories are defined in [10] where a Gray

category is a semistrict tricategory. A semistrict monoidal 2-category can be

viewed as a Gray category with one object. We translate the definition of spher-

ical Gray categories (Definitions 7:1 and 7:2 of [10]) to a semistrict monoidal

2-category D. For any 2-morphism ˛WA H) A, AW a ! b, the (new) left trace
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trL.˛/W Ib H) Ib and the (new) right trace trR.˛/W Ia H) Ia are defined by the

diagrams

trL.˛/W Ib
e

�
A

H) A� ıh A
A�ıh˛
HHHH) A� ıh A

eA
H) Ib;

trR.˛/W Ia
iA
H) A ıh A

�
˛ıhA

�

HHHH) A ıh A
�

i
�
A

H) Ia:

Note that the 2-morphism ˛# W A# H) A# defined in this subsection is the same as

the 2-morphism #˛W #A H) #A defined in [10] (Section 4:2). By Definition 7:2

of [10], D is called spherical if the following identities hold:

.trL.˛/� b�/ ıh eb� D .b � trR. ˛
# // ıh eb�; (56a)

.trR.˛/� a�/ ıh ea� D .a� trL. ˛
# // ıh ea� : (56b)

For D D D.C�
G/ for a unitary C�

G , it is direct to see that trL.˛/ D trR.˛/ D

Tr.˛/, where the last term means the trace of ˛ in C�
G , and equation (56) reduces

to the condition that Tr.˛/ D Tr. ˛b / which always holds in a G-BSFC. Hence

D.C�
G/ is spherical monoidal 2-category in the sense of [10].

Therefore, one may propose a spherical 2-category as a spherical Gray cate-

gory with one object. Or more precisely, a spherical 2-category is a semistrict

monoidal 2-category with duals that satisfy equation (56).

Remark 6.3. In [10] (Definition 7:5), semisimple Gray categories is defined. It

can be checked that D D D.C�
G/ is a semisimple Gray category. It should be noted

that the notion of semisimple Gray categories is not sufficient for defining fusion
2-categories. This is because, according to that definition (adapted to monoidal

2-categories), only semisimplicity at the level of 2-morphisms is required. That is,

for any object a; b, there is a set J of simple 1-morphisms from a to b, such that for

any two 1-morphism A;B W a! b, the composition gives a natural isomorphism:

M

C2J

Hom.A; C /˝Hom.C; B/ ' Hom.A; B/:

We speculate that in defining fusion 2-categories, ‘finite simplicity’ at the level of

1-morphisms is also needed and this is a nontrivial issue.

To this end, we add a comment on Gray diagrams which are used in [10]

to represent morphisms in a Gray category. Gray diagrams are generalizations

of ribbon graphs for ribbon categories. Roughly, a Gray diagram is a three

dimensional complex contained in a unit cube where the i-cells are labeled with
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.3� i/-morphisms with certain restrictions. Each Gray diagram can be evaluated

to a 3-morphism. We have shown that from a strict G-BSFC we can construct a

Gray category with one object. On the other hand, morphisms in a G-BSFC can

be represented by two dimensional graph diagrams (see Section 2.2). In fact, it

can be shown that the graph diagrams for a G-BSFC correspond to the evaluation

of the Gray diagrams for the Gray category constructed from that G-BSFC. In the

language of [10] (Definition 2:25), evaluation of Gray diagrams means projecting

the Gray diagrams in the cube with .w; x; y/-axis to the .x; y/-plane.

7. Open questions and future directions

In this paper, we constructed an invariant of 4-manifolds out of a G-crossed

braided spherical fusion category. The construction is a 4D analog of the Turaev–

Viro invariants of 3-manifolds. Here we point out a few directions=questions for

future study.

(1) What is the power of the invariant in terms of distinguishing 4-manifolds?

The Crane–Yetter invariant from a modular category is a classical invari-

ant, which can be expressed in terms of the signature and the Euler charac-

teristic [13]. It would be interesting to also give the invariant from aG-BSFC

an interpretation in terms of the intrinsic properties of the manifolds. We

speculate that our invariant is related to the homotopy 3-types with the exact

relation to be studied in the future.

In [35] it was shown that if an invariant of 4-manifolds is multiplicative

(up to a constant nonzero scalar) under connected sum and is invertible on

CP
2 and CP

2
, then the invariant cannot distinguish smooth structures. On

the other hand, for the invariant ZC�
G
.�/, assuming it can be extended to a

TQFT,9 it is well known that,

ZC�
G
.M1#M2/ZC�

G
.S4/ D ZC�

G
.M1/ZC�

G
.M2/;

for any two closed 4-manifolds M1 and M2 if the vector space associated

with S3 is 1-dimensional. Note that in Proposition 5.11 we computed the

invariant for S4 which equals D2=jGj ¤ 0. It will be interesting to see if the

invariants of CP2 and CP
2

are always nonzero. We have not found a simple

9 From the procedure of the construction, it is plausible to extend the invariant to a TQFT.

See [62] for a Hamiltonian realization of the invariant.
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triangulation for either of these two manifolds to make the calculation of their

invariants feasible. Also, it needs to be checked if the vector space of S3 is

1-dimensional.

(2) The definition of the current invariant is based on a triangulation of 4-man-

ifolds. In terms of calculations, this is not very efficient since the triangula-

tions of most interesting 4-manifolds contain a fairly large number of sim-

plices, which makes it impractical to compute the invariant. It would be

useful if the invariant can be defined in terms of other presentations of the

manifolds such as Kirby diagrams. Note that the Crane–Yetter invariant in-

deed has such a formulation [49, 8].

(3) It is appealing to generalize the invariant in the following three directions.

In [65] and [50], a refined version of the Crane–Yetter invariant was

introduced, namely, the invariant was associated with a pair .M; !/, where

M is a closed oriented 4-manifold and ! 2 H2.M;Z2/, and the original

Crane–Yetter invariant is a normalized sum of the refined invariant over all

! 2 H2.M;Z2/. Moreover, the refined invariant gives a state sum formula

of the second Stiefel-Whitney class and the Pontrjagin squares of second

cohomology classes. It is interesting to see if our invariant also has a similar

refinement.

Secondly, the extension of a braided spherical fusion category C to a

G-BSFC C�
G with Ce D C depends on the vanishing condition of two

obstructions, one in O3 2 H
3.G; Inv.C// and other in O4 2 H

4.G; U.1//,

see [23]. We conjecture that even if the O4 obstruction does not vanish, one

can still get a 4-manifold invariant from some structures beyond G-BSFCs.

Lastly, we are interested in defining a G-BSFC where G is allowed to be

an infinite compact Lie group, such as U.1/, and in modifying the state sum

model so that the partition function converges. It is expected that the resulting

invariant would be stronger than the current one.

(4) We already know that the invariant defined from a G-BSFC reduces to the

Crane–Yetter invariant when G is trivial. For any finite group G, by [20,

39, 38], equivalence classes of G-BSFCs with a faithful G-grading are in

one-to-one correspondence, by equivariantization and de-equivariantization,

with equivalence classes of ribbon fusion categories containingRep.G/ as a

full subcategory. Thus we wonder in the general case whether there are any

relations between the invariant from a G-BSFC with a faithful grading and
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the Crane–Yetter invariant from the corresponding ribbon fusion category.

On the other hand, in [47, 8] an invariant of 4-manifolds was defined for any

pivotal functor F WC! D where C is a spherical fusion category and D is a

ribbon fusion category. It will be interesting to see if our invariant is related

to theirs.

(5) In dimension .2 C 1/, a nonsemisimple generalization of the Turaev–Viro

invariant is the Kuperberg invariant [41]. One may wonder if there is a

four dimensional analog of the Kuperberg invariant, which generalizes the

invariant in the current paper. The Kuperberg invariant is defined on a

Heegaard diagram of a three manifold, and the relevant algebraic data is a

finite dimensional Hopf algebra. A four dimensional version of a Heegaard

diagram is a trisection [26], which consists of three families of circles on a

closed surface such that any two families of them form a Heegaard diagram

for some #nS1 � S2. The question is what algebraic data can be used in this

case. A Hopf algebra roughly consists of a product operation and a coproduct

operation, or less rigorously two product operations. Hence a naive guess

in dimension four would be some ‘algebra’ with three product/coproduct

operations satisfying certain coherent conditions.

Acknowledgments. The author acknowledges the support from the Simons
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Note added 11/25/2018. while the paper is under review, we noticed that the

second open question raised in Section 7 regarding a redefinition of theG-crossed

invariant in terms of Kirby diagrams is claimed to be solved in [7]. In fact, Kirby

diagrams together with some information on 3-handles are required for such a

redefinition.
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