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dimensional Hopf algebras, namely, the Kuperberg invariant 
and the Hennings-Kauffman-Radford invariant. The two 
invariants can be viewed as a non-semisimple generalization 
of the Turaev-Viro-Barrett-Westbury (TVBW) invariant and 
the Witten-Reshetikhin-Turaev (WRT) invariant, respectively. 
By a classical result relating TVBW and WRT, it follows 
that the Kuperberg invariant for a semisimple Hopf algebra 
is equal to the Hennings-Kauffman-Radford invariant for the 
Drinfeld double of the Hopf algebra. However, whether the 
relation holds for non-semisimple Hopf algebras has remained 
open, partly because the introduction of framings in this case 
makes the Kuperberg invariant significantly more complicated 
to handle. We give an affirmative answer to this question. An 
important ingredient in the proof involves using a special 
Heegaard diagram in which one family of circles gives the 
surgery link of the three manifold represented by the Heegaard 
diagram.
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1. Introduction

Since the discovery of the Jones polynomial [18] and the formulation of a topological 
quantum field theory (TQFT) [43] [1] in the 1980s, there have been fascinating interac-
tions between low dimensional topology and quantum physics. Many quantum invariants 
of 3-manifolds have been constructed, which deeply connect together different areas of 
research such as knot theory, tensor categories, quantum groups, Chern-Simons theory, 
conformal field theory, etc. Quantum invariant generally refers to the partition function 
of a TQFT, or less rigorously, to any invariant that is defined as a state-sum model. In 
dimension three, tensor categories and Hopf algebras are the main sources for quantum 
invariants. For instance, the Turaev-Viro-Barrett-Westbury invariant ZTVBW [41] [4] and 
the Witten-Reshetikhin-Turaev invariant ZWRT [34] are based on spherical fusion cate-
gories and modular categories, respectively. Both invariants can be extended to a TQFT
and the latter is believed to be a mathematical realization of Witten-Chern-Simons the-
ory. These invariants are particularly important in topology as they distinguish certain 
homotopy equivalent 3-manifolds [38].

Two fundamental invariants that are constructed from finite dimensional Hopf 
algebras in the early 1990s are the Kuperberg invariant ZKup [26] [27] and the 
Hennings-Kauffman-Radford invariant ZHKR [17] [22]. On one hand, ZKup is defined 
for any finite dimensional Hopf algebra and is an invariant of framed oriented closed 
3-manifolds. If the Hopf algebra is semisimple, then ZKup does not depend on framings 
and hence becomes an invariant of closed oriented 3-manifolds. On the other hand, the 
ZHKR invariant, initially defined by Hennings and later reformulated by Kauffman and 
Radford, is an invariant of closed oriented 3-manifolds, but can be naturally refined to 
also include a 2-framing (similar to ZWRT). Moreover, ZHKR requires the Hopf algebra 
to be ribbon in addition to some non-degeneracy conditions (see Section 3.2).

The ZHKR invariant has been extensively studied in the literature. In [29] [28], 
Lyubashenko produced an invariant from certain monoidal categories (not necessarily 
semisimple) which generalized both ZHKR and ZWRT. The relation between ZHKR and 
ZWRT for semisimple Hopf algebras and certain quantum groups were explored in [23]
[10] [11] [15] [25]. TQFT properties of ZHKR were given in [24] [9] [14]. Murakami com-
bined ideas from ZHKR and ZWRT to define a generalized Kashaev invariant of links in 
3-manifolds and proposed a version of volume conjecture for this invariant [30].

It has been a long-standing conjecture that ZKup from a Hopf algebra H is equal to 
ZHKR from the Drinfeld double D(H) of H, namely, for any closed oriented 3-manifold X,

ZKup(X;H) = ZHKR(X;D(H)). (1)

The relation was speculated in [27] and stated explicitly (and more generally for 
Lyubashenko invariant) in [23].1 Since then, there have been many partial results along

1 The issue of framings was not mentioned in both of these references, but we will address it below.
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this direction. Barrett and Westbury proved [3] that for semisimple H,

ZKup(X;H) = ZTVBW(X; Rep(H)). (2)

Similarly Kerler [23] proved that for semisimple and modular H,

ZHKR(X;H) = ZWRT(X; Rep(H)). (3)

In this sense, ZKup and ZHKR can be considered as non-semisimple generalizations of 
ZTVBW and ZWRT, respectively. If C is a spherical fusion category, then the Drinfeld
double D(C) of C is a modular category. Turaev and Virelizier [40] proved

ZTVBW(X; C) = ZWRT(X;D(C)), (4)

which generalizes the well-known result for the case of C modular [42] [39] [35]

ZTVBW(X; C) = ZWRT(X#X; C). (5)

Equations (2) (3) (4) together imply the conjecture in Equation (1) for semisimple Hopf 
algebras. A direct proof of the conjecture in this case was also given by Sequin in his 
thesis [37]. However, whether Equation (1) holds for non-semisimple Hopf algebras has 
remained to be a somewhat 20-year-old open problem. Another consequence implied 
from the categorical counterpart and also conjectured in [23] is that when H itself is 
ribbon and semisimple, we have

ZKup(X;H) = ZHKR(X#X;H), (6)

and again this has been verified directly in [7]. In the current paper, we aim to give a 
proof of (a suitable variation) of both Equation (1) and (6) for non-semisimple Hopf 
algebras. Explicitly, we prove the following two theorems.

Theorem 1.1. Let H be a finite dimensional double balanced Hopf algebra and X be a 
closed oriented 3-manifold, then there exist a framing b and a 2-framing φ of X such 
that,

ZKup(X, b;H) = ZHKR(X,φ;D(H)). (7)

Theorem 1.2. Let H be a finite dimensional factorizable ribbon Hopf algebra and X be a 
closed oriented 3-manifold, then there exists a framing b of X such that

ZKup(X, b;H) = ZHKR(X#X;H). (8)
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One feature of the paper is an extensive use of tensor diagrams in computing both 
ZKup and ZHKR. In fact, both invariants can be defined by tensor diagrams alone. This 
implies that the results in the current paper not only hold for Hopf algebras in the 
category of vector spaces, but also hold for Hopf super-algebras or Hopf objects in a 
monoidal category which sufficiently resembles the category of finite dimensional vector 
spaces. For the sake of simplicity, we restrict the discussions on ordinary Hopf algebras.

These two theorems reveal a connection between Hopf algebras and 3-manifolds, which 
is expected to be extended as some type of duality in the category level. In one direc-
tion, Hopf algebras yield topological invariants of 3-manifolds; in the other direction, we 
can study Hopf algebras using topology. When the 3-manifold is fixed, ZKup and ZHKR
may provide algebraic invariants for Hopf algebras. Two Hopf algebras are said to be 
gauge equivalent if their representation categories are equivalent as tensor categories or 
equivalently, they are connected by the twisting of some 2-cocycle. One family of gauge 
invariants are the Frobenius-Schur indicators [19] [20], which have important applications 
to the representation theory and coincide with ZKup for lens space [8]. It is speculated 
that ZKup provides more general gauge invariants for any finite dimensional Hopf alge-
bras. By a recent result on gauge dependence of ZHKR ([9]), Theorem 1.2 implies that 
ZKup is a gauge invariant for ribbon Hopf algebras. More detailed discussions will appear 
in a subsequent paper.

One issue that is not solved here is whether the 2-framing on the RHS of Equation (7)
is the same as the one induced by the framing on the LHS. Since a change of 2-framing 
by one unit changes the ZHKR by a root of unity, this issue is not relevant up to roots 
of unity. Another question is whether Equation (7) still holds for all framings b and the 
corresponding φ induced from b. We leave it as a future direction.

The rest of the paper is organized as follows. In Section 2 we give a review and set up 
the conventions on Hopf algebra. Some Lemmas on Hopf algebras will be proved for use 
later. Section 3 recalls the definition of the invariants ZKup and ZHKR. In particular, we 
refine the latter to include 2-framings. Section 4 and 5 are devoted to the proof of our 
main results, Theorem 1.1 and Theorem 1.2, respectively.

2. Hopf algebras

In this section we give a minimal review on Hopf algebras and prove a few lemmas. 
For a detailed treatment of Hopf algebras, see, for instance, [27] [32] [33], etc. Formulas 
in Hopf algebras are illustrated either by tensor diagrams or algebraic expressions. It is 
straightforward to convert one notation into the other. A novelty in this section is to 
represent the structure maps in the Drinfeld double by tensor diagrams from the original 
Hopf algebra, which turns out convenient to manipulate relations in the double and useful 
later in comparing different invariants of 3-manifolds. Throughout the context, let H =
H(M, i, Δ, ε, S) be a finite dimensional Hopf algebra over C, where the symbols inside 
the parenthesis denote the multiplication, unit, comultiplication, counit, and antipode, 
respectively.
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Fig. 1. Examples of tensor diagrams.

2.1. Tensor networks

Tensor networks have wide applications in physics and quantum information. For a 
review of tensor networks, see [31] [13], etc. In [26] [27], tensor networks are used as 
a convenient tool to represent and manipulate operations in Hopf algebras. Let V be 
a finite dimensional vector space and V ∗ be its dual. A tensor diagram in V is a pair 
(G, T = {Tv}) where,

• G is a directed graph such that at each vertex v, there is a local ordering on the set of 
incoming legs (i.e., edges) by {1, · · · , iv} and a local ordering on the set of outgoing 
legs by {1, · · · , ov};

• for each vertex v, Tv ∈ V 1 ⊗ · · · ⊗ V iv ⊗ V1 ⊗ · · · ⊗ Vov , where each V i is a copy of 
V ∗ associated with the i-th incoming leg and each Vj is a copy of V associated with 
the j-th outgoing leg. In this case, Tv is called an (iv, ov) tensor.

Choose a basis {v1, · · · , vk} of V and a dual basis {v1, · · · , vk} of V ∗, then an (m, n)
tensor T can be written as

T =
∑

T j1,··· ,jn
i1,··· ,im vi1 ⊗ · · · ⊗ vim ⊗ vj1 ⊗ · · · ⊗ vjn . (9)

See Fig. 1 for examples of tensor diagrams on the plane. In these diagrams, vertices are 
replaced by the labels of the corresponding tensors. Around a vertex, a number is placed 
beside each leg to represent the local ordering. An (m, n) tensor can be equivalently 
viewed as a linear map from V ⊗m to V ⊗n. From this perspective, a (0, 1) tensor is a 
vector, a (1, 0) tensor is a co-vector, a (1, 1) tensor is a linear map from V to V , etc. Let 
(G, T ) be a tensor diagram. Assume there are iG +oG dangling legs, iG of them incoming 
and oG outgoing (with a local ordering of each set), then a contraction of the tensors 
along all internal legs results in an (iG , oG) tensor, which we call the evaluation of (G, T ). 
By abuse of language, we do not distinguish a tensor diagram with its evaluation.

Now we make an important convention to simplify drawing tensor diagrams. At each 
vertex of a tensor diagram, we always group the incoming legs and the outgoing legs. 
Unless noted otherwise, incoming legs are enumerated counter clockwise and outgo-
ing legs clockwise. This uniquely determines a local ordering if both types of legs are 
present:
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If there is only one type of legs and the tensor is neither a (1, 0) tensor nor a (0, 1) tensor, 
we mark the leg labeled by 1 explicitly to avoid ambiguities:

If V = H is a Hopf algebra, the tensor diagrams of the structure maps are represented 
by those with the corresponding labels in Fig. 1. Relations of between these maps can also 
be illustrated in tensor diagrams. For instance, the equations (Δ ⊗ id) ◦Δ = (id ⊗Δ) ◦Δ
and Δ ◦M = (M ⊗M) ◦ (id ⊗ P ⊗ id) ◦ (Δ ⊗ Δ) are represented by:

where P : H ⊗H −→ H ⊗H is the swap map. For n ≥ 1, denote the tensor diagrams 
for the maps (Δ ⊗ id⊗(n−2)) ◦ · · · ◦ (Δ ⊗ id) ◦Δ and M ◦ (M ⊗ id) ◦ · · · ◦ (M ⊗ id⊗(n−2))
by:

(10)

An (m, n) tensor T in V can also be viewed as an (n, m) tensor T ∗ in V ∗ by

T ∗i1,··· ,im
j1,··· ,jn := T j1,··· ,jn

i1,··· ,im . (11)

If T is interpreted as a map from V ⊗m to V ⊗n, then T ∗ is the dual map of T . For 
instance, if V = H is a Hopf algebra, then Δ∗ is a (2, 1) tensor representing the multi-
plication in V ∗ and for f, f ′ ∈ V ∗, Δ∗(f ⊗ f ′) is given by:

(12)

Note that there is a swap of the two outgoing legs in the above diagram because of 
our convention for the implicit ordering of the incoming/outgoing legs. The dual notion 
of tensors will be used in Section 2.4 when dealing with the quantum double of Hopf 
algebras.
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2.2. Integrals in Hopf algebras

A left (resp. right) integral of H is an element eL ∈ H (resp. eR ∈ H) such that 
xeL = ε(x)eL (resp. eRx = ε(x)eR) for any x ∈ H. Left and right integrals of H∗ are 
denoted by μL and μR, respectively. The defining equations of eL, eR, μL, and μR

2 in 
terms of tensor diagrams are given by:

(13)

The space of left integrals and the space of right integrals are both one dimensional. 
Choose right integrals eR ∈ H, μR ∈ H∗ such that μR(eR) = 1. Define the distinguished 
group-like elements a ∈ H, α ∈ H∗ by,

(14)

and for n ∈ Z define μn− 1
2
∈ H∗, en− 1

2
∈ H by

(15)

Then μR = μ− 1
2
, eR = e− 1

2
are right integrals and μL := μ 1

2
∈ H∗, eL := e 1

2
∈ H are 

left integrals. Set q := α(a). It follows that q is a root of unity and we have μR(eR) =
μR(eL) = μL(eR) = 1 and μL(eL) = q−1. Moreover, μL ◦ S = μR, μR ◦ S = qμL, 
S(eL) = eR, S(eR) = qeL. Thus S2 has eigenvalue q on all integrals of H and H∗. 
The relations between integrals and the distinguished group-like elements are given as 
follows:

(16)

2 In [27] they are called left cointegral, right cointegral, left integral and right integral, respectively, of H.
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Note that here a and α correspond to g and α−1, respectively, in [32] [33]. The 
well-known Radford formula for S4 can be expressed as

(17)

Also define

(18)

Then T is an automorphism of H as a Hopf algebra, i.e., T commutes with all structure 
maps of H.

Lemma 2.1. For any n ∈ Z,

• S2 has eigenvalue q on en− 1
2

and μn− 1
2
, namely, S2(en− 1

2
) = qen− 1

2
, μn− 1

2
◦ S2 =

qμn− 1
2
.

• T fixes a, α, en− 1
2
, μn− 1

2
, namely, T (a) = a, α◦T = α, T (en− 1

2
) = en− 1

2
, μn− 1

2
◦T =

μn− 1
2
.

Proof. The first part follows directly from the calculation:

For the second part, μR ◦ (S2T ) is computed as follows:

where the first equality is by definition of μR and the second equality is by Equation 
(16). Hence μR ◦ (S2T ) = qμR. By the first part, we have μR ◦ T = μR.

By using the Radford formula in Equation (17), S2T−1 can be expressed as

A similar calculation as above shows that S2T−1(eR) = qeR, and thus T (eR) = eR. That 
T also fixes en− 1 and μn− 1 follows immediately. �
2 2
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The Hopf algebra H is called balanced if T = id, and unimodular if left integrals of 
H are also right integrals. The latter is equivalent to the condition that α = ε. If H is 
unimodular, then q = 1, eL = eR ∈ Z(H), and for any x, y ∈ H, we have

μR ◦ S2(x) = μR(x), μR(xy) = μR

(
S2(y)x

)
= μR

(
yS−2(x)

)
. (19)

2.3. Ribbon Hopf algebras

A quasitriangular Hopf algebra is a pair (H, R), where H is a finite dimensional Hopf 
algebra, R ∈ H ⊗H, called the R-matrix, is an invertible element, and for any x ∈ H,

RΔ(x) = Δop(x)R, (Δ ⊗ id)(R) = R13R23, (id⊗ Δ)(R) = R13R12. (20)

If (H, R) is quasitriangular, then

R−1 =(S⊗ id)(R) = (id⊗S−1)(R), R= (S⊗S)(R), (ε⊗ id)(R) = (id⊗ ε)(R) = 1.
(21)

Let u := M ◦(S⊗id)(R21) ∈ H be the Drinfeld element. Then u is invertible and S2(x) =
uxu−1 for any x ∈ H. Moreover, S(u)u = uS(u) ∈ Z(H), and if H is unimodular, then 
uS(u)−1 = a is the distinguished group-like element. Set Q = R21R and define the 
Drinfeld map fQ by

fQ : H∗ −→ H, p �−→ (p⊗ id)Q.

Then fQ(α−1) = 1 = fQ(ε).
The pair (H, R) is called factorizable if (H, R) is quasitriangular and fQ is a linear 

isomorphism. Thus factorizable Hopf algebras are unimodular, with the distinguished 
group element given by uS(u)−1. Let (H, R) be factorizable and μR be a right integral, 
then fQ(μR) is a (two-sided) integral of H and one can choose μR such that μR◦fQ(μR) =
1.

A ribbon Hopf algebra is a triple (H, R, v) where (H, R) is a quasitriangular Hopf 
algebra and v ∈ Z(H), called the ribbon element, satisfies the following equation:

v2 = uS(u), S(v) = v, ε(v) = 1, Δ(v) = (v ⊗ v)Q−1. (22)

Since u is invertible, so is v. Let G := uv−1. Then G is a group-like element and G2 =
u2v−2 = uS(u)−1.

2.4. The quantum double of Hopf algebras

Introduced in [16], the quantum double (or Drinfeld double) D(H) = H∗cop ⊗ H of 
a Hopf algebra H is a factorizable quasitriangular (and thus unimodular) Hopf algebra. 



630 L. Chang, S.X. Cui / Advances in Mathematics 351 (2019) 621–652
Fig. 2. Definition of Hopf algebra structures in D(H).

Fig. 3. The R-matrix in D(H), where RD means (RD)−1.

Instead of writing down algebraically the Hopf algebra structures in D(H), we describe 
them with tensor diagrams consisting of tensors in H, which will be used later in Sec-
tion 4 to describe the ZHKR invariant from a quantum double. Labels for operations in 
the double will be endowed with a superscript ‘D’. For instance, ΔD means the comulti-
plication in D(H). The vector f⊗v ∈ D(H) and covector v⊗f ∈ D(H)∗ are represented 
respectively by

(23)

That is, we use a pair of oppositely directed arrows to represent a copy of D(H) with the 
arrow on the top corresponding to H∗cop and the one on the bottom to H. The definition 
of the Hopf algebra structures in D(H) using tensor diagrams are given in Fig. 2. Keep 
in mind that for a tensor with both incoming and outgoing legs, the incoming legs are 
listed in counter-clockwise order while the outgoing legs clockwise. The R-matrix is given 
in Fig. 3.

One advantage of using tensor diagrams is that it provides a direct visualization on 
how structures in the double are constructed from those in the original Hopf algebra. It 
is also convenient for deriving equations. Of course, one can always obtain the algebraic 
expressions from the diagrams. For instance, for f ⊗ v, f ′ ⊗ v′ ∈ D(H), from Fig. 2 we 
see the multiplication is given by:

MD ((f ⊗ v) ⊗ (f ′ ⊗ v′)) = f(v(1) ⇀ f ′ ↼ S−1(v(3))) ⊗ v(2)v
′ (24)
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Fig. 4. Computing μD
R

(
(f ⊗ x)(aD)−n

)
.

With notations from Section 2.2, let μD
R = eL⊗μR, μD

L = q−1eR⊗μL, eD = qμL⊗qR, 
or in tensor diagrams,

(25)

Then μD
R and μD

L are a right integral and left integral of D(H)∗, respectively, and eD

is a two-sided integral of D(H). Moreover, μD
R(eD) = μD

L (eD) = 1. The distinguished 
group-like element is given by aD = α−1 ⊗ a which can be checked as follows:

(26)

where the first equality above is by definition and the third equality is from Equation 
(16).

Lemma 2.2. Let f ⊗ x ∈ D(H) and n ∈ Z, then

μD
R

(
(f ⊗ x)(aD)−n

)
= qn μ−n− 1

2
(x)f(en+ 1

2
). (27)

Proof. This proof is illustrated in Fig. 4. The first equality is due to the fact that α is 
an algebra morphism. The second equality uses the definition of T and eL. The third 
equality follows from Lemma 2.1. �

In general, D(H) may not have ribbon elements. By [21], D(H) is ribbon if and only 
if there exist group-like elements b ∈ H, β ∈ H∗ such that b2 = a, β2 = α, and,

(28)
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In [9], this condition is called double balanced, but this is not to be confused with the 
balanced condition defined in Section 2.2. It is direct to see that τ := β(b) is a fourth 
root of q. The corresponding ribbon element of D(H) is given by:

(29)

where S̄ in the above diagram means S−1.
By direct calculations, GD = β−1 ⊗ b, μD

R (vD) = τ−5, μD
R

(
(vD)−1) = τ .

3. Invariants from Hopf algebras

In this section we review and make some clarifications on the definitions of the Ku-
perberg invariant and the Hennings-Kauffman-Radford invariant.

3.1. Kuperberg invariant ZKup

The Kuperberg invariant is defined for closed framed oriented 3-manifolds from a 
finite dimensional Hopf algebra [27]. If the Hopf algebra is semi-simple, then the invariant 
becomes independent of the framings, and is reduced to the invariant of closed oriented 
3-manifolds in [26].

We first recall the definitions of combings, framings, and their representations on 
Heegaard diagrams. Let X be a closed oriented 3-manifold endowed with a Riemannian 
metric. A combing of X is a unit-norm vector field considered up to homotopy, and a 
framing of X consists of three orthonormal vector fields consistent with the orientation, 
again considered up to homotopy. Since the tangent bundle of X is trivial, the set of 
combings (resp. framings) correspond to homotopy classes of maps from X to S2 (resp. 
SO(3)), although the correspondence is in general not canonical. Let R = (Σg, α, β) be a 
Heegaard diagram of X where Σg is a closed oriented surface of genus g, and α and β are 
the collection of lower circles and upper circles, respectively. We only consider minimal 
Heegaard diagrams. That is, α and β each contains exactly g circles. In the following, 
R and Σg will be used interchangeably when no confusion arises. Different diagrams 
of X are related by circle slide, stabilization, and isotopy. Let 	n be the unit normal 
vector field of Σg in X pointing from the lower handlebody to the upper handlebody. 
By convention, the orientation on Σg and 	n form the orientation on X. Any vector field 
on X can be orthogonally projected along 	n to a tangent vector field on Σg, which could 
have singularities. The converse problem of extending a vector field on Σg with certain 
properties to one on X is studied in [27].

According to [27], any combing of X can be represented by a combing of Σg, which, 
by definition, is a vector field on Σg with 2g singularities of index −1, one on each circle, 
and one more singularity of index 2 disjoint from all circles. Moreover, each singularity 
of index −1 is distinct from all crossings of the circles, and the two out-pointing vectors 
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Fig. 5. (Left) Singularity of index −1; (Middle) Singularity of index 2; (Right) Local picture of a circle (solid 
curve) near the singularity.

Fig. 6. An illustration of twist fronts.

should be tangent to the circle. See Fig. 5 for the local geometry of singularities and the 
circle near the singularity on it. Any combing b of Σg can be extended to a combing b̃
of X whose projection to Σg is the same as b, and moreover, one can choose b̃ in such a 
way that it coincides with b on Σg away from a small neighborhood of singularities, and 
at the singularity on a lower (resp. upper) circle b̃ is opposite (resp. parallel) to 	n.

A framing of X is determined by two orthonormal combings (b̃1, ̃b2) since the third one 
can be inferred from the first two and the orientation. By the previous argument, we can 
represent the framing as two orthogonal combings (b1, b2) on Σg. For reasons that will 
become clear below, we represent b2 in a different but equivalent form to a combing. Let 
Σ∗

g be the punctured surface of Σg with all singularities of b1 removed. Then (b1, 	n, b1×	n)
forms an orthogonal frame on Σg where b1 ×	n is the vector orthogonal to both b1 and 	n
such that the triple (b1, 	n, b1×	n) matches the orientation of X. Since b2 is orthogonal to 
b1, b2 lies in the plane spanned by 	n and b1 × 	n. Then we can define a map f : Σ∗

g → S1

by sending x to f(x) = (f1(x), f2(x)) such that,

b2(x) = f1(x)	n + f2(x)b1 × 	n.

By perturbing b2 in general position, one can assume (1, 0) is a regular value of f and 
hence f−1(1, 0) is a 1-manifold. Namely, the set of points at which b2 is parallel to 	n is a 
1-manifold, where each connected component is either a simple closed curve or an open 
curve approaching to some singularities in both directions. We also attach small triangles 
(see Fig. 6) on one side of the curves to indicate the direction in which b2 is rotating 
about b1 by the right-hand rule. More specifically, f takes values in the first quadrant 
at points which are close to the curve and are located on the side of the curve with 
triangles. The curves with small triangles attached are called twist fronts. Twist fronts 
determine b2 on Σg. Given a collection of twist fronts indicating b2, some condition needs 
to be satisfied in order to extend b2 to a combing on X orthogonal to b̃1.
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Fig. 7. Perturbation of a circle c off its singularity.

Arbitrarily orient all circles and consider the frame (	n, b1, 	n × b1) on Σ∗
g. For each 

lower or upper circle c, the tangent vector field c′ lies in the plane spanned by b1 and 
	n × b1. Define θc to be the total counter-clockwise rotation, in unit of 1 = 360◦, of c′
relative to b1 in the direction of c.3 Note that near the singularity c′ is parallel to b1 in 
the forward direction and anti-parallel to b1 in the backward direction, thus θc is always 
a proper half integer. A crossing of a circle with a twist front is called positive if the 
circle travels from the non-triangle side to the triangle side, and is negative otherwise. 
Define φc to be the number of signed crossings of c with twists fronts, with the crossings 
at the singularity counted half as much. By [27], b2 can be extended to a combing on X
orthogonal to b̃1 if and only if

θc =
{
φc , c is a lower circle
−φc , c is an upper circle

(30)

Remark 3.1. A more intrinsic way to define φc is to use total rotations similar to the 
definition of θc. There are two ways to perturb the circle c off its singularity. See Fig. 7. 
Let c1 and c2 denote the circles resulting from the two perturbations, hence they are 
contained in Σ∗

g. Consider the orthogonal frame (b1, 	n, b1 ×	n) on Σ∗
g. Note that b2 lies in 

the plane spanned by 	n and b1 ×	n. Define φci to be the total counter-clockwise rotation 
of b2 relative to 	n along the curve ci. Then one can check that φci equals the number of 
signed crossings of ci with twist fronts, and the previously defined φc is φc1+φc2

2 .

Let p be a point on a c. Define θc(p) to be the counter-clockwise rotation of c′ rel-
ative to b1 going along the circle from the singularity to p, and define φc(p) to be the 
number of signed crossings of c with twist fronts from a point near the singularity in the 
forward direction to p. Arrange the diagram so that lower circles intersect upper circles 
orthogonally. If p is the point of crossing of the lower circle l with the upper circle u, let

3 Strictly speaking, the rotation of c′ around b1 at the singularity does not make sense since b1 vanishes. 
Then θc is actually defined as the limit limx→∗,y→∗ θc[x,y], where ‘∗’ is the singularity on c, x (resp. y) is a 
point of c near the singularity in the forward (resp. backward) direction, and c[x, y] is the subarc of c from 
x to y. Similar situation applies to the definition of θc(p) for a point p on c to be introduced below.
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Fig. 8. (Left) the Δ tensor assigned to αi; (Middle) the M tensor assigned to βj ; (Right) the ST tensor 
assigned to a crossing p.

θ(p) := 2(θl(p) − θu(p)) + 1
2 , φ(p) := φl(p) − φu(p). (31)

It can be shown that θ(p) is always an integer. Actually, θ(p) is even if and only if l and u
form a positive basis of the tangent space at p. We note that in the original definition of 
θ(p) in [27], the last term is −1

2 instead of 1
2 , but we will stick to the current convention 

as only with this convention, the invariant to be defined will reduce to the one introduced 
in [26] when the Hopf algebra is semi-simple.

We are ready to define the Kuperberg invariant. Let H be a finite dimensional Hopf 
algebra. We will use notations from Section 2. Choose a right integral μR and a right 
co-integral eR so that μR(eR) = 1, and recall the definitions of μn, en for n a half 
integer. Let X be a closed orientated 3-manifold with a framing b = (b1, b2) given on 
a Heegaard diagram R = (Σg, α, β), where α = {α1, · · · , αg} and β = {β1, · · · , βg} are 
lower and upper circles, respectively. Orient all circle arbitrarily, and call the singularity 
on each circle the basepoint. The definition of the Kuperberg invariant is best illustrated 
using tensors and tensor contractions. We also given an alternative way to interpreted 
it afterwards.

For each lower circle αi, let φi = φαi
(= θαi

) and assign the tensor in Fig. 8(Left) to αi, 
one leg for each crossing on αi counted from the basepoint along its orientation. Similarly 
for each upper circle βj, let φj = φβj

(= −θβj
) and assign the tensor in Fig. 8(Middle) to 

βj . For each crossing p, insert the tensor shown in Fig. 8(Right) to connect the two legs, 
one from the tensor of the lower circle and one from the tensor of the upper circle. Then 
one obtains a tensor network consisting of the three families of tensors from Fig. 8 without 
free legs. The Kuperberg invariant ZKup(X, b; H) is then defined to be the contraction 
of this tensor network.

A more ‘algebraic’ but also more lengthy way to define the invariant is as follows. 
Enumerate the crossings by p1, p2, · · · , pm. Let

Hα =
g⊗

i=1
H(αi), Hβ =

g⊗
i=1

H(βi), Hc =
m⊗
i=1

H(pi), (32)

where each H(·) is a copy of H. For each lower circle αi, let pi1 , · · · , pik be the crossings 

on αi listed from the base point along its orientation, and let Hc(αi) =
k⊗

n=1
H(pin). 

Define Hc(βj) in a similar way. It follows that

Hc =
g⊗

Hc(αi) =
g⊗

Hc(βj), (33)

i=1 j=1
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up to a permutation of tensor components. Define

Δi : H(αi) −→ Hc(αi), x �−→ x(1) ⊗ · · · ⊗ x(k) (34)

Mj : Hc(βj) −→ H(βj), x1 ⊗ · · · ⊗ xk �−→ x1 · · ·xk (35)

Cn : H(pn) −→ H(pn), x �−→ Sθ(pn)Tφ(pn)(x) (36)

Then ZKup(X, b; H) is defined by

ZKup(X, b;H) = (
g⊗

j=1
μφj ◦Mj)(

m⊗
n=1

Cn)(
g⊗

i=1
Δi(eφi

)). (37)

3.2. Hennings-Kauffman-Radford invariant ZHKR

For a finite dimensional unimodular ribbon Hopf algebra (H, R, v) with certain non-
degeneracy condition, a topological invariant of closed oriented 3-manifolds was con-
structed by Hennings [17] and later reformulated by Kauffman and Radford [22].

Given a non-zero right integral μR ∈ H∗, one can associate a regular isotopy invariant 
〈L〉H,μR

to a framed unoriented link L as follows. Choose a link diagram of L (still 
denoted by L) with respect to a height function such that the crossings are not critical 
points. On each component Li of L, pick a base point which is neither a crossing nor an 
extremum, and arbitrarily orient Li. Define δi to be 0 if the orientation of Li near the 
base point is downwards and 1 otherwise. For a point p on Li which is not an extremum, 
let wp be the algebraic sum of extrema between the base point and p, where an extremum 
is counted as +1 (resp. −1) if the orientation near it is counterclockwise (resp. clockwise). 
Equivalently, wp is 2 times the total counterclockwise rotation, in unit of 1 = 360◦, of 
the tangent of Li from the base point to p. Define wi to be wp

2 for p very close to the 
base point in the backward direction of Li. Clearly, wi is equal to the winding number 
of Li. Decorate each crossing with the tensor factors of the R-matrix R =

∑
i

si ⊗ ti as 

below.4

Then we replace each decorating element x on Li by S−wp(x)+δi(x), where p(x) denotes 
the point on Li where x is located. See below for the contribution of each extremum to 
the powers of S.

4 After a crossing is decorated by the R-matrix elements, the over/under crossing information becomes 
irrelevant and we sometimes simply replace it by a solid crossing. But this is only a notation preference. In 
the tensor network formulation below, we will still keep the crossing as it is.
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Then 〈L〉H,μR
is the evaluation of the right integral μR on the products along each Li:

〈L〉H,μR
:=

∑
(R)

μR(q1G1−w1) · · ·μR(qc(L)G
1−wc(L)), (38)

where c(L) is the number of components of L, qi ∈ H is the product of the decorating 
elements (after applying S-powers) on Li multiplied in the order following its orientation 
starting from the base point.

It can be checked that 〈L〉H,μR
is independent of the choice of base points, orientation, 

and the height function. It is also preserved under framed Reidemeister moves. Thus 
〈 · 〉H,μR

defines an invariant of framed links.

Remark 3.2.

1. The notation here is different from but essentially the same as the Kauffman and 
Radford’s version where the decorating elements are pushed to a vertical portion and 
multiplied together from bottom to top.

2. Since (S ⊗ S)(R) = R and μR ◦ S2 = μ, one can also replace δi with 1 − δi in 
the definition of 〈L〉H,μR

. However, this replacement has to be performed on all 
components of L simultaneously.

3. If we restrict to the class of even framed links, namely, framed links where each 
component has an even framing, it can be shown that in any diagram of such links 
the winding number of each component is odd. Noting that G2 = uS(u−1), 〈L〉H,μR

can be rewritten as

〈L〉H,μR
:=

∑
(R)

μR

(
q1(uS(u−1))

1−w1
2

)
· · ·μR

(
qc(L)(uS(u−1))

1−wc(L)
2

)
.

Hence, 〈L〉H,μR
does not depend on the ribbon structure of H and can be defined 

for any unimodular quasitriangular Hopf algebras. See [36].

Equivalently, it is convenient to describe 〈L〉H,μR
in the language of tensor networks. 

Again choose a base point and an orientation for each component. To each crossing assign 
an R-tensor according to the rule in Fig. 9 (I). The first leg of the R- or R−1-matrix 
always corresponds to the over-crossing strand. The legs terminate at links with a dot 
(see Fig. 9 (I)). To each component Li assign an M̃ -tensor as shown in Fig. 9 (II), one 
leg for each dot on Li listed from the base point along its orientation. At each dot of Li, 
insert an S-tensor as shown in Fig. 9 (III) connecting the leg from the R-tensor to the 
leg from the M̃ -tensor. Then 〈L〉H,μR

is equal to the contraction of these tensors.
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Fig. 9. Tensors associated with a link diagram, where R̄ means R−1.

It is a direct calculation that the invariant of the unknot with framing ±1 is μR(v±1). 
From now on assume μR(v)μR(v−1) 
= 0, which is the non-degeneracy condition we 
impose on H and which is always true when H is factorizable [12]. Let ω(v) be a square 
root of μR(v)/μR(v−1), then μR(v)/ω(v) is a square root of μR(v)μR(v−1). The ZHKR
invariant for a closed oriented 3-manifold X is defined to be:

ZHKR(X;H,ω(v)) = (μR(v)/ω(v))−c(L) ω(v)−sign(L) 〈L〉H,μR
, (39)

where L is a surgery link of X and sign(L) denotes the signature of the framing matrix 
of L.

Remark 3.3. By its very definition, ω(v) does not depend on μR. For any non-zero scalar 
s ∈ C, clearly we have 〈L〉H,sμR

= sc(L)〈L〉H,μR
. It follows that ZHKR(X; H, ω(v)) does 

not depend on μR either. If one chooses the other square root −ω(v), then

ZHKR(X;H,ω(v)) = (−1)c(L)+sign(L)ZHKR(X;H,−ω(v)).

Hence, up to a negative sign ZHKR(X; H, ω(v)) does not depend on the choice of a square 
root of μR(v)/μR(v−1), in which case the invariant is more commonly written as:

ZHKR(X;H) = [μR(v)μR(v−1)]−
c(L)

2 [μR(v)/μR(v−1)]−
sign(L)

2 〈L〉H,μR
.

Just as the Witten-Reshetikhin-Turaev invariant, ZHKR can also be refined to an 
invariant of 3-manifolds endowed with a 2-framing. We recall the definition of a 2-framing 
introduced in [2]. Let N be a Riemannian manifold of dimension n ≥ 3. Consider the 
diagonal embedding of SO(n) into SO(2n):

Spin(2n)

SO(n) SO(n) × SO(n) SO(2n)

π

The embedding induces a lift from SO(n) to Spin(2n), indicated by the dashed ar-
row, so that the diagram above commutes. The diagram determines a spin structure 
of 2TN := TN ⊕ TN , double of the tangent bundle of N . A 2-framing of N is de-
fined to be a trivialization of 2TN viewed as a Spin(2n) bundle. For three manifolds, 
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2-framings are equivalent to p1 structures [6]. Let X be a closed oriented 3-manifold. 
Since π1(Spin(6)) = π2(Spin(6)) = 0, π3(Spin(6)) = Z, the set of 2-framings of X form 
a torsor over H3(X; π3(Spin(6))) � Z. Choose any 4-manifold W whose boundary is X. 
For any 2-framing φ on X, define

σ(φ) := 3sign(W ) − 1
2p1(2TW , φ), (40)

where sign(W ) is the Hirzebruch signature of W and p1(2TW , φ) is the relative Pon-
trjagin number.5 By the Hirzebruch signature formula for closed 4-manifolds, σ(φ) is 
independent of the bounding manifold W . Since 2TX is spin, it implies p1(2TW , φ) is an 
even integer. Moreover, σ is an affine linear isomorphism from the set of the 2-framings 
to Z. The canonical 2-framing is the unique φ0 satisfying σ(φ0) = 0.

Let H, μR, v be as above, ω6(v) be a sixth root of μR(v)/μR(v−1) and ω(v) = ω6(v)3. 
The ZHKR invariant for the pair (X, φ) is defined to be:

ZHKR(X,φ;H,ω6(v)) := (μR(v)/ω(v))−c(L) ω6(v)−
1
2p1(2TWL

,φ) 〈L〉H,μR
, (41)

where WL is the 4-manifold obtained from the surgery link L. It follows immediately 
from the definitions that

ZHKR(X,φ;H,ω6(v)) = ω6(v)σ(φ)ZHKR(X;H,ω(v)). (42)

Thus the original invariant is equal to the refined invariant evaluating at the canonical 
2-framing. The chosen roots ω6(v) and ω(v) are often dropped from the formula when 
they are clear from the context. In the following we use ZHKR(·) to denote both the 
refined invariant and the original one.

4. Main results I

In this section, H denotes a finite dimensional double balanced Hopf algebra. Hence 
its Drinfeld double D(H) = H∗cop ⊗ H is ribbon. Note that D(H) is also factorizable 
and unimodular. See Section 2 for our notations on Hopf algebras.

Theorem 4.1 (= Theorem 1.1). Let H be a finite dimensional double balanced Hopf alge-
bra and X be a closed oriented 3-manifold, then there exist a framing b and a 2-framing 
φ of X such that,

ZKup(X, b;H) = ZHKR(X,φ;D(H)). (43)

5 Note that the σ map defined here is equal to three times the σ invariant in [2].
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Proof. The proof is given in the next three subsections. Section 4.1 gives a special 
Heegaard diagram of X in which one family of circles form a surgery link for X. In Sec-
tion 4.2, we construct a framing b of X presented on the Heegaard diagram and compute 
ZKup(X, b; H). In Section 4.3 we define a 2-framing φ and compute ZHKR(X, φ; D(H)). 
The equality in the theorem then follows. �
4.1. Special Heegaard diagrams

A Heegaard diagram is a triple R = (Σg, α, β) where Σg is a closed oriented surface 
of genus g, and α = {α1, · · · , αg} (resp. β = {β1, · · · , βg}) is a collection of g disjoint 
simple closed curves such that the complement of the αi

′s (resp. the βj
′s) in Σg is a 

2g-punctured sphere. A closed oriented 3-manifold is obtained from a Heegaard diagram 
by attaching 2-handles to the closed curves and filling sphere boundaries with 3-handles. 
Every closed oriented 3-manifold can be represented by a Heegaard diagram, and different 
diagrams of the same manifold are related by isotopy, handle slides and stabilization. 
A diagram R = (Σg, α, β) of the 3-sphere S3 is standard if the geometric intersection 
of αi with βj is 1 for i = j and 0 otherwise. Every standard diagram of genus g for 
S3 is isotopic to the one obtained by taking stabilization g times from the two sphere. 
Heegaard diagrams with certain special properties are studied in [5].

Theorem 4.2. [5] Every closed oriented 3-manifold X has a Heegaard diagram R =
(Σg, α, β) for some genus g satisfying the following properties:

1. There exists a collection of g curves γ = {γ1, · · · , γg} on Σg such that both R1 =
(Σg, α, γ) and R2 = (Σg, β, γ) are standard diagrams for S3.

2. View β as a framed link in S3 determined by R1, where the framing is taken to be a 
parallel copy of β in the Heegaard surface. Then β is a surgery link for X. Moreover, 
the framings are all even integers.

Proof. (Sketch) See [5] for a more detailed proof. It is a standard result that X has a 
surgery link L which is the plat closure of a certain 2g-strand braid σ ∈ B2g. Actually 
one can always choose σ to be a pure braid and the framing of each component to be 
an even integer. In this case, L has g components {L1, · · · , Lg}. Assume σ is aligned 
vertically in the stripe {0} ×R × [0, 1] with end points (0, i, 0), (0, i, 1), i = 1, 2, · · · , 2g. 
The i-th plat on the bottom (resp. on the top) connects (0, 2i − 1, 0) and (0, 2i, 0) (resp. 
(0, 2i − 1, 1) and (0, 2i, 1)). See Fig. 10 (Left). According to Theorem 5.2 in [5], one can 
isotope L, by untwisting the braid at the cost of twisting the plats on the top, so that 
each Li is decomposed as L1

i ∪L2
i (see Fig. 10 (Right)), where L1

i is the arc consisting of 
the segments {0} ×{2i − 1, 2i} × [0, 1] and the i-th plat on the bottom, and L2

i is an arc 
in R2 × {1} connecting (0, 2i − 1, 1) and (0, 2i, 1). Moreover, the L2

i
′s are disjoint from 

each other. Arbitrarily choose g − 1 mutually disjoint arcs C1, · · · , Cg−1 in the plane 
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Fig. 10. (Left) L is the plat closure of σ = σ2σ
−2
3 σ2; (Right) The part of L in the plane R2 × {1} where L1

i

(not drawn) is an arc lying inside the page connecting the (2i − 1)-th dot and the (2i)-th dot, i = 1, 2.

R2 × {1} so that Cj connects a point in L2
j to a point in L2

j+1 and is otherwise disjoint 
from all the L2

i
′s. Let

B :=
(

g−1⋃
i=1

Ci

)⋃(
g⋃

i=1
L2
i

)
, H := B

⋃(
g⋃

i=1
L1
i

)
,

and N(B) and N(H) be a regular neighborhood of B and H, respectively. Then N(B) is 
a 3-ball and N(H) is a handlebody obtained from N(B) by attaching g 1-handles, each of 
which corresponds to a regular neighborhood N(L1

i ) of L1
i . Clearly S3 = N(H) ∪N(H)c

is a Heegaard decomposition of S3. On ∂N(H) choose a complete set of meridian curves 
γ = {γ1, · · · , γg} for N(H) and a complete set of meridian curves α = {α1, · · · , αg} for 
N(H)c so that (∂N(H), α, γ) is a standard Heegaard diagram of S3.

Let β = {β1, · · · , βg} be a set of curves with βi representing the framing of Li. One 
can assume βi is contained in ∂N(H) ∩ ∂N(Li), where N(Li) is a regular neighborhood 
of Li. It follows that the complement of β in ∂N(H) is a 2g-punctured sphere. It can be 
shown that (∂N(H), β, γ) is a standard Heegaard diagram of S3 and that (∂N(H), α, β)
is a Heegaard diagram of X. Clearly L and β are isotopic framed links. �

Theorem 4.2 provides a bridge between Heegaard diagrams and surgery links which 
is exactly the ingredient that will be used to compare ZKup and ZHKR. For the sake of 
clarity, we give an explicit description of the Heegaard diagram/surgery link model.

Endow R3 with the {x, y, z} coordinates. Let S3 = R3∪{∞}, B+ = (R2×R≥0) ∪{∞}, 
B− = (R2 × R≤0) ∪ {∞}, and S2 = B+ ∩ B− = (R2 × {0}) ∪ {∞}. Also identify R2

with R2 × {0} ⊂ S2. Fix an integer g ≥ 0. For 1 ≤ i ≤ g, let D1
i and D2

i be the 
disks in S2 centered at (0, i) and (1, i), respectively, of radius ε � 1/8, and let Ni be a 
three dimensional 1-handle in B− connecting D1

i and D2
i . The Ni

′s are unknotted and 
unlinked. For instance, one can push the segment [0, 1] × {i} slightly into B− keeping 
the end points fixed and set Ni to be a regular neighborhood of the push-off. Set Bg,+ =
B+ ∪g

i=1 Ni and Bg,− = B− \ (∪g
i=1Ni), then S3 = Bg,+ ∪ Bg,− is a standard genus-g
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Fig. 11. (Left) The x-y plane. α and β are represented by arcs in blue and red, respectively. The 1-handles 
Ni

′s are outside of the plane. (Right) The diagram β̃ in x-y plane of β viewed as a link. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Heegaard decomposition. Define Σg := ∂Bg,+ = ∂Bg,−, ∂Ni := Σg ∩ Ni, and S2;2g :=
Σg ∩ S2. Clearly S2;2g is a 2g-punctured sphere. We call ∂D1

i and ∂D2
i the left foot 

and right foot, respectively, of ∂Ni. The readers may find Fig. 11 helpful in the following 
discussions. Take αi to be a meridian of Bg,− which consists of the segment [ε, 1 −ε] ×{i}
and the arc traveling through ∂Ni once (without twisting around Ni) connecting (ε, i)
and (1 −ε, i). Also take γi to be a meridian of Bg,+ circling a section of Ni once. Let βi be 
any simple closed curve in Σg which travels through ∂Ni once (without twisting around 
Ni) and spends the rest of time in S2;2g. Moreover, βi is parallel to αi when traveling 
in ∂Ni and all the βi

′s are disjoint from each other. Furthermore, each βi crosses the 
segment [ε, 1 − ε] ×{i} an even number of times. Define α = {α1, · · · , αg} and define β, γ
analogously. Since β is contained in Σg, it can be naturally viewed as a framed link in 
S3 by taking a parallel copy in Σg as the framing curve. Furthermore, it has a diagram 
in S2 obtained by projecting the part of each βi in ∂Ni to [0, 1] × {i} while keeping the 
part in S2;2g fixed. See Fig. 11 (Right). Denote the projection by β̃. With notations from 
above and by Theorem 4.2, we have

1. (Σg, α, γ) is a standard Heegaard diagram of S3.
2. β̃ is a link diagram for β, and the self-linking number of each component of β̃ is an 

even integer.
3. (Σg, α, β) is a Heegaard diagram for the 3-manifold whose surgery link β. Denote 

such a 3-manifold by X(Σg, β) with α and γ known implicitly. Then every closed 
oriented 3-manifold is homeomorphic to some X(Σg, β).

4.2. A framing on X(Σg, β) and the Kuperberg invariant

Given the 3-manifold X = X(Σg, β), we construct a framing of X presented in the 
Heegaard diagram (Σg, α, β). Recall from Section 3.1 that a framing consists of two 
orthogonal combings b1 and b2 satisfying certain conditions, where b1 is represented as 
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Fig. 12. Flow lines of b1 in the closed rectangle Ri = [−1, 2] × [i − 1/2, i + 1/2] ⊂ R2.

a vector field with 2g + 1 singularities and b2 is represented as a set of twist fronts. For 
1 ≤ i ≤ g, let wi be the winding number of β̃i. Since the framing of β̃i is even, then wi

is odd. Set wi = 2ni + 1.

First combing b1: the construction of b1 is generalized from that given in [8]. We describe 
the flow lines and singularities of b1. The singularities are located at ali := (1/4, i), aui =
(3/4, i), and ∞, i = 1, · · · , g. All the singularities have index −1 except the one at 
∞ which has index 2. Let Ri be the open rectangle (−1, 2) × (i − 1/2, i + 1/2) and 
R = �g

i=1Ri. In R2 \R, b1 takes the value ∂
∂x , i.e., b1 points toward the positive direction 

of the x-axis.6 Note that on the boundary of each Ri, the value of b1 is ∂
∂x . Now it 

suffices to describe b1 inside Ri and ∂Ni. This is illustrated in Fig. 12, where dashed 
lines represent the flow lines and Ci is the circle centered at (0, i) with radius 2ε. The 
behavior of b1 inside the annulus bounded by Ci and ∂D1

i is as follows. The field b1
points toward the center on Ci and ∂D1

i . Along each radial segment connecting Ci and 
∂D1

i , b1 rotates counterclockwise, in unit 1 = 360◦, by the degree ni.7 If we set the 
center of Ci to be (0, 0) for simplicity, then a formula of b1 inside the annulus is given 
by:

b1(x, y) = − cos
(
θ + 2πni

2ε− r

ε

)
∂

∂x
− sin

(
θ + 2πni

2ε− r

ε

)
∂

∂y
, (44)

where (r, θ) is the polar coordinate of (x, y). Note that the radial segments are not flow 
lines. Fig. 13 shows a model of flow lines for ni = 1. The rotation of any degree can be 
obtained by stacking this model or the orientation reversal model in the radial direction. 
Inside the tube ∂Ni the flow lines of b1 travel from one end to the other without any 
twisting and emerges out of ∂D2

i .

6 It is direct to check this implies ∞ is a singular point of index 2.
7 If ni < 0, then the rotation is clockwise of degree −ni.
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Fig. 13. A model of b1 rotation in the annulus between Ci and ∂D1
i for ni = 1. The two circles are closed 

flow lines, but not Ci and ∂D1
i .

Fig. 14. Twist fronts of b2 connecting al
i and au

i in the case wi > 0.

Second combing b2: for 1 ≤ i ≤ g, there are |wi| twist fronts, each of which travels 
through ∂Ni in parallel and connects the two singularities ali and aui . See Fig. 14. The 
(small triangles on) twist fronts point upward as shown in the figure if wi > 0 and 
downward otherwise.

Lower and upper circles: we designate α and β as the set of lower and upper circles, 
respectively. But note that we need each circle to pass exactly one singular point of 
index −1 in a specific manner (see Section 3.1). We achieve this by perform a slight 
perturbation on the circles. See Fig. 15. For each i, set the base point of αi to be ali and 
orient αi so that it points to the positive x-direction (horizontally to the right in the 
figure) at ali. Then perturb αi off aui and perturb βi so that it passes aui . Set aui as the 
base point of βi. The orientation is chosen so that it points upward at aui .

By isotopy, we may assume that each βi is away from the feet of all ∂Nj
′s and from 

all base points except the part as shown in Fig. 15. In particular, all the intersections of 
the lower circles with upper circles are constrained in the horizontal segments connecting 
a lower base point to the corresponding upper base point. At the intersections, the upper 
circles are vertical. Recall from Section 3.1 the definitions of θc, θc(p), φc, φc(p). Let p, q
be two points on a lower or upper circle c and define θc(p, q) = θc(q) − θc(p), namely, 
θc(p, q) is the degree of rotation of c′ relative to b1 from p to q along c.
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Fig. 15. Perturbations, base points, and orientations of lower and upper circles.

Lemma 4.3.

• Let p1
i , p

2
i , p

3
i be points on βi as shown in Fig. 15, then

θβi
(aui , p1

i ) = θβi
(p1

i ) = −1
4 , θβi

(p2
i , p

3
i ) = −1

4 − ni, θβi
(p3

i , a
u
i ) = −1

2 . (45)

• Let qi be a point on αi as shown Fig. 15, then θαi
(qi) = 1

2 .
• Let p be a point on βi between p1

i and p2
i and assume the tangent of βi at p is vertical, 

then θβi
(p1

i , p) =
wp

2 , where wp (also see Section 3.2) is the algebraic sum of extrema 
along βi between p1

i to p, where an extremum is counted as +1 if the orientation near 
it is counterclockwise, and as −1 otherwise.

Proof. The first two parts follow directly from observations of Fig. 12 and 15. In partic-
ular, θβi

(p2
i , p

3
i ) would be −1

4 if the flow lines inside the annulus between Ci and ∂D1
i

did not rotate. The rotations in the annulus by the degree ni contributes an extra −ni

to θβi
(p2

i , p
3
i ). The third part is obtained by noting that when traveling along βi away 

from all base points, each pass of an extremum contributes ±1
2 to θβi

(p1
i , p) depending 

on the orientation near the extremum. Also see Lemma 1 in [7]. �
Lemma 4.4. For the combings b1, b2 constructed above, we have

θαi
= φαi

= ni + 1
2 , θβi

= −φβi
= ni + 1

2 , 1 ≤ i ≤ g. (46)

Proof. By the third part of Lemma 4.3, we have θβi
(p1

i , p
2
i ) = wi + 1

2 , where wi is the 
winding number of β̃i. Hence,

θβi
= θβi

(aui , p1
i ) + θβi

(p1, p2
i ) + θβi

(p2, p3
i ) + θβi

(p3, aui )

= (−1
4) + (wi + 1

2) + (−1
4 − ni) + (−1

2) = ni + 1
2 .

For θαi
, note that when traveling along αi from qi to ali, we will cross the annulus 

between ∂D1
i and Ci, and the direction of the crossing is from ∂D1

i to Ci. During this 
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Fig. 16. A perturbation of the diagram β̃.

crossing, the vector field b1 rotates by a degree of −ni, and hence θαi
increases by ni. 

Then the equality θαi
= ni + 1

2 follows from the second part of Lemma 4.3.
The equalities concerning the φ ′s are derived by counting the number of crossings of 

the circles with twist fronts. �
By Lemma 4.4, the combings b1, b2 extend to a framing on X. Denote this framing 

by b = (b1, b2).

Lemma 4.5. Let p be a crossing of βi with αj, then θαj
(p) = φαj

(p) = φβi
(p) = 0, and 

θβi
(p) = −1

4 + wp

2 , where wp is defined as in the third part of Lemma 4.3. In particular, 
in the tensor network computing ZKup(X, b; H), the tensor assigned to p is Sθ(p)Tφ(p)

where θ(p) = 1 − wp and φ(p) = 0.

The Kuperberg invariant ZKup(X, b; H) can be described as follows. Assign the tensors 
in Fig. 8 to each αi, each βj , and each crossing p, with φi = ni+ 1

2 , φj = −ni− 1
2 , φ(p) = 0, 

and θ(p) = 1 − wp.

4.3. Computing ZHKR

We compute ZHKR for the 3-manifold X = X(Σg, β) from D(H). See Section 2 and 
3.2 for some notations to be used below. Recall from Section 4.1 that a surgery link 
diagram for X is β̃. We perturb β̃ slightly so that the y-coordinate function serves as a 
height function for β̃. The perturbed diagram, still denoted by β̃, is shown in Fig. 16. 
That is, instead of connecting the two feet ∂D1

i , ∂D
2
i horizontally, β̃i travels from slightly 

over the top of D1
i to slightly below the bottom of D2

i in a right-downwards direction. 
We also assume all the crossings are right-handed and are constrained in the segments 
�g
i=1(1/4, 3/4) × {i}. Pick a point ai on β̃i near the left feet ∂D1

i (past the maximum) 
as the base point of β̃i and orient β̃i so that it points to the right feet ∂D2

i at ai. Under 
this orientation, we have δi = 0.

We use tensor network formulation to compute 〈β̃〉D(H),μD
R

. Recall that in D(H), each 
leg in a tensor consists of two lines, one corresponding to H∗cop and the other to H. The 
(RD)−1 tensor is assigned to all crossings since they are all right-handed. See Fig. 17. A 
dot at the end of a leg indicates a position where tensors will be contracted later. Note 
that here two neighboring dots are treated as one dot since we are working with tensors 
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Fig. 17. An assignment of R tensor to each crossing.

Fig. 18. Combining the R tensor and S-tensor.

in D(H). Call a dot covariant if the leg attached to it is incoming and contravariant
otherwise. We examine the S-tensor assigned to each dot. Each dot on a horizontal 
segment has an SD power of 0 since there are no extrema between the base point to 
where the dot is located. For a dot on a vertical segment corresponding to a crossing p, 
assume it belongs to some β̃i, then its SD power is −wp where wp is the algebraic sum 
of extrema between ai and the dot. Note that S−wp

D (ε ⊗ x) = ε ⊗ S−wp(x). Combining 
the R-tensor and S-tensor, the configuration now is as in Fig. 18. Finally we apply the 
M̃ tensor in Fig. 9 to each β̃i. This is broken down to several stages. Start from the base 
point ai and travel along β̃i following its direction. One first comes across dots on the 
horizontal segment, and then dots on vertical segments. Firstly, multiplying the elements 
on the horizontal segments is equivalent to attaching a Δ-type tensor in Equation (10)
(Left) with each outgoing leg corresponding to a contravariant dot from left to right. 
Secondly, multiplying elements on the vertical segments is equivalent to attaching an 
M -type tensor in Equation (10) (Right) with each incoming leg corresponding to a 
covariant dot, which again corresponds to the crossings on β̃i. See Fig. 19. Recall that 
wi = 2ni + 1 is the winding number of β̃i. Finally, the whole M̃ -tensor is obtained by 
multiplying the two dots on the top (Fig. 19), the two dots on the bottom (Fig. 19), and 
the element (aD)−ni = αni ⊗ a−ni , followed by the application of μD

R = eL ⊗ μR. Note 
that for f ∈ H∗, x ∈ H,

μD
R

(
(f ⊗ i)(ε⊗ x)(αni ⊗ a−ni)

)
= μD

R

(
(f ⊗ x)(αni ⊗ a−ni)

)
= f(eni+ 1

2
)μ−ni− 1

2
(x)qni

where the second equality is by Lemma 2.2. Therefore, the link evaluation 〈β̃〉D(H),μD
R

equals q
∑g

i=1 ni times the tensor contraction as shown in Fig. 20 with the latter one being 
exactly ZKup(X, b; H) described in Section 4.2.
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Fig. 19. Assignment of M̃ tensor.

Fig. 20. Contraction of the R, S, and M̃ tensors.

Finally, note that μD
R (vD) = τ−5 and μD

R

(
(vD)−1) = τ . Choose τ−3 as the square root 

of μD
R (vD)/μD

R

(
(vD)−1). Hence, the Hennings-Kauffman-Radford invariant (the non-

refined version) is given by:

ZHKR(X;D(H), τ−3) = τ
3sign(β̃)+2

g∑
i=1

wi

ZKup(X, b;H). (47)

Now choose τ−1 as the sixth root of μD
R(vD)/μD

R

(
(vD)−1). Let φ be the 2-framing of X

such that σ(φ) = 3sign(β̃) + 2 
g∑

i=1
wi. Then we get

ZHKR(X,φ;D(H), τ−1) = ZKup(X, b;H). (48)

5. Main results II

In this section, the Hopf algebra H is assumed to be factorizable and ribbon. It follows 
that H is unimodular. We turn to another relation between ZKup and ZHKR. It can be 
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Fig. 21. The chain-mail link corresponding to the Heegaard diagram in Fig. 11.

viewed as the dual of the relation in Theorem 4.1. That is, instead of taking the double 
of H, we take the double D(X) = X#X of the 3-manifold X in ZHKR, where X is the 
manifold X with opposite orientation.

Theorem 5.1 (= Theorem 1.2). Let H be a finite dimensional factorizable ribbon Hopf 
algebra and X be a closed oriented 3-manifold, then there exists a framing b of X such that

ZKup(X, b;H) = ZHKR(X#X;H). (49)

The main tool in topology to establish Theorem 5.1 is the chain-mail link. A surgery 
diagram of X#X is obtained from a Heegaard diagram of X by pushing the upper circles 
into the lower handle body slightly. Then the upper circles and the lower circles form a 
link LD(X), called a chain-mail link [35]. All these curves are framed by thickening them 
into thin bands parallel to the Heegaard surface. The framed link LD(X) is a surgery 
link for D(X). For instance, Fig. 21 shows the diagram of the chain-mail link for the 
Heegaard diagram in Fig. 11.

Note that the signature σ(LD(X)) of the chain-mail link is always zero [35] and it is 
possible to choose μR such that μR(v)μR(v−1) = 1 in a factorizable ribbon Hopf algebra 
[12]. Hence with such a choice of μR and a suitable choice ω(v) of a square root of 
μR(v)/μR(v−1), the normalization factor in defining ZHKR is

[μR(v)μR(v−1)]−
c(LD(X))

2 [μR(v)/μR(v−1)]−
σ(LD(X))

2 = 1.

Thus ZHKR(X#X; H) = 〈LD(X)〉H,μR
.

Take X to be X(Σg, β) and choose the framing b to be the one defined in Section 4.2. 
We prove ZKup(X, b; H) = 〈LD(X)〉H,μR

. Similar to the proof of Theorem 4.1 in Sec-
tion 4.3, we perturb the diagram of LD(X), and choose orientation and base point for 
each component as shown in Fig. 22. The following lemma is proved in [8]. Note that we 
have an extra S factor (RHS of Fig. 23) compared to the statement in [8]. This is due to 
the use of a slightly different but equivalent convention in current paper. It is also not 
hard to verify the lemma directly.
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Fig. 22. Diagram of a chain-main link.

Fig. 23. Tensor replacement in computing ZHKR. Please be warned that the outgoing legs of the Δ tensor 
here is enumerated counterclockwise, in contrast to the default clockwise ordering.

Lemma 5.2. The equality in Fig. 23 holds, where the equality means when the diagram 
on the LHS is assigned tensors according to the rules defining ZHKR, then contracting 
the tensors results in the one on the RHS.

Since H is unimodular, we have en−1/2 = eL for any integer n. Lemma 5.2 shows 
that the linking between the lower and upper circles results in the Δ tensor (Fig. 8) 
with an additional S action on each outgoing leg. This effect is the same as assigning 
the Δ tensor to the lower circle (with an additional S-action). Now for the dot (Fig. 23) 
corresponding to a crossing p, the S powers assigned to it is S−wp . Combining the extra 
S factor from the previous step, we get S1−wp , which is the correct tensor assigned to the 
crossing p in the Kuperberg invariant (see the end of Section 4.2). Finally, the M̃ -tensor 
in the ZHKR is equal to the M -tensor in the ZKup:

We get 〈LD(X)〉H,μR
= ZKup(X, b; H).
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