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We show that braidings of the metaplectic anyons Xϵ in SO(3)2 = SU(2)4 with their
total charge equal to the metaplectic mode Y supplemented with projective measure-
ments of the total charge of two metaplectic anyons are universal for quantum compu-
tation. We conjecture that similar universal anyonic computing models can be con-
structed for all metaplectic anyon systems SO(p)2 for any odd prime p ≥ 5. In order to
prove universality, we find new conceptually appealing universal gate sets for qutrits
and qupits. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914941]

I. INTRODUCTION

Anyons are modeled mathematically by simple objects of unitary modular categories (UMCs).
An important invariant of an anyon type x is its quantum dimension dx—the ground state degen-
eracy Vn,x of n type x anyons in the disk D2 (with an appropriate total charge) is asymptotically dn

x .
When dx = 1, an anyon of type x is abelian. Otherwise, dx > 1 and such anyons are non-abelian. A
non-abelian anyon of type x naturally leads to a representation ρn,x of the n-stand braid group Bn:
Bn → U(Vn,x) for each n ≥ 1. The property F conjecture is that the images ρn,x(Bn) in U(Vn,x) are
all finite subgroups if and only if d2

x ∈ Z.19 When d2
x ∈ Z, then anyons of type x are called weakly

integral. Interesting weakly integral anyons include those in metaplectic UMCs,13 which are known
to have Property F.23

Anyons can be used for quantum information processing. Ideally, we would like to have a
non-abelian anyon such as the Fibonacci anyon whose braidings alone are universal for quantum
computation.10 But more realistic anyons seem to be weakly integral. If the Property F conjecture
holds, then weakly integral anyons cannot be universal for quantum computation by braidings
alone. Therefore, it is interesting to investigate what extra resources are required for universal
quantum computation. In Ref. 8, we analyze the simplest integral non-abelian UMC D(S3). In
this paper, we focus on anyons in the metaplectic UMCs. We separate weakly integral anyons
into two classes:2 P-anyons and #P-anyons. P-anyons are those whose associated link invariants
can be computed classically in polynomial time, while the associated link invariants of #P-anyons
are #P hard to compute. In particular, all abelian anyons are P-anyons. Abelian anyons are only
good for topological quantum memory because the resulting braid group representations only lead
to phases.1 While the Ising anyon leads to many topologically protected quantum gates, all can
be simulated classically efficiently because they are Clifford gates.20 Moreover, we believe the
projective measurements of the total charge of any number of Ising anyons can also be simulated
classically efficiently. The Ising anyon and the metaplectic anyon Xϵ of quantum dimension =

√
p

in SO(p)2 are all P-anyons. Surprisingly, the metaplectic modes Yi of quantum dimension = 2 in
the metaplectic UMCs are #P-anyons.13 This #P-hardness makes us believe that if the metaplectic
modes Yi’s are used in the computation, we might gain extra computational power. Indeed, we will
show that braidings of the metaplectic anyons Xϵ in SO(3)2 = SU(2)4 with their total charge equal
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to the metaplectic mode Y supplemented with projective measurements of the total charge of two
metaplectic anyons are universal for quantum computation. We conjecture that similar universal
computing models can be constructed for all metaplectic anyon systems SO(p)2 for any odd prime
p ≥ 5. In order to prove universality, we find new conceptually appealing universal gate sets for
qutrits and qupits.

Our interest for SU(2)4 comes from its potential physical relevance. There are many possible
routes to realize our universal quantum computational model: fractional quantum Hall liquids at ν =
8/3,22 bilayer fractional quantum Hall liquids at ν = 2/3,4 metaplectic anyons,12 and parafermion
zero modes.7 Evidence for the realization of SU(2)4 in fractional quantum Hall liquids at ν = 8/3 is
found numerically.21 The experimental challenge is to find a realization of the metaplectic mode Y
of dimension = 2.

The paper is organized as follows. In Sec. II, we give two new universal gate sets, one for qutrit
and one for qupit. In Sec. III, we present a universal anyonic model with SU(2)4 and use theorems
in Sec. II to prove its universality. We also propose a similar model with SO(5)2 and provide some
partial results. Appendices A and B contain the 6 j-symbols and R-symbols for SO(3)2 and SO(5)2,
which are the data we need to compute the braid group representations and construct braiding
quantum gates. Appendix C shows how to compute the braid matrices for 1-qudit models.

II. UNIVERSAL GATE SETS FOR QUTRITS AND QUPITS

Throughout this paper, d ≥ 2 is an integer and ωd = e
2πi
d is the dth root of unity. We will set

ω = ω3, and use p to denote an odd prime p ≥ 5.
Let Cd be the qudit with the standard basis {| j⟩| j = 0,1, . . . ,d − 1}. For p, an odd prime p ≥ 5,

we will refer to a qudit as a qupit. It is not hard to believe that qubits and qutrits behave differently
from qupits. Our universal gate sets below show some differences already.

A standard universal gate set for the qubit quantum circuit model consists of the Hadamard
gate H , the controlled-NOT gate CNOT, and the π

8 -gate T .5,20 There are natural generalizations of
the Hadamard and CNOT gates to qudits. The T gate is a 4th root of the Pauli σz matrix. If we
propose generalizations of the Pauli σz to qudits, how many roots do we need to take for obtaining a
universal gate set? For our generalizations of the Pauli matrix, the answer is simply 2 for qutrits and
none for qupits.

The generalized Hadamard gate for qudits is the generalized Hadamard gate Hd,

Hd | j⟩ = 1
√

d

d−1
i=0

ω
i j

d
|i⟩, j = 0,1, . . . ,d − 1.

A natural generalization of the CNOT gate is the following SUM gate:

SUMd |i, j⟩ = |i, i + j(mod d)⟩, i, j = 0,1, . . . ,d − 1.

The T-gate is the 4th root of the Pauli σz matrix. The σz gate can be generalized to the Q[i]
gates for qudits,

Q[i]d | j⟩ = ωδi j
d

| j⟩, i, j = 0,1, . . . ,d − 1.

Related to the Q[i] gates are the P[i] gates

P[i]d | j⟩ = (−ω2
d)δi j | j⟩, i, j = 0,1, . . . ,d − 1.

Some other gates that will be used throughout this paper are as follows.
The generalized X gate, Xd |i⟩ = |i + 1(mod d)⟩.
The generalized Z gate, Zd |i⟩ = ωi

d
|i⟩.

The generalized controlled-Z gate,
(Z)d |i, j⟩ = ωi j

d
|i, j⟩.

Sign-flip gate, Flip[i]d | j⟩ = (−1)δi j | j⟩, i = 0,1, . . . ,d − 1.

When d = 3, the P[i] gate is a square root of the Q[i] gate. In general, when p is an odd prime,
Q[i]p is always a power of P[i]p. When no confusion arises, we will drop the subscripts d or p from
the notation.
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We will prove below that for d = 3, the gate set consisting of the generalized Hadamard gate
H3, the SUM gate SUM3, and any one of the P[i]3, i = 0,1,2 gates is universal for the qutrit quantum
circuit model, while for qupits the generalized Hadamard gate Hp, the SUM gate SUMp, and the
Q[i]p, i = 1,2, . . . ,p − 1 gates suffice. Our universal qutrit gate set is new. The universal qupit gate
set is distilled from the universal gate sets in Ref. 3, though our universal gate set is not explicitly
given there and our proof of universality is new.

A. Universal qutrit gate sets

Theorem 1. The following gate set is universal for the qutrit quantum circuit model:
(1) The generalized Hadamard gate H3.
(2) The SUM gate SUM3.
(3) Any gate from the set {P[0]3, P[1]3, P[2]3}.

Remark 1. The universal set above has a strong analogy with the standard qubit universal
set {CNOT,H,T = π/8-gate} in that {SUM3,H3,P[2]23} generate the qutrit Clifford group while
{CNOT,H,T2} generate the qubit Clifford group. In this sense, our universal qutrit gate set above is
a natural generalization of the standard universal qubit set.

To prove the theorem, we need the following lemmas.

Lemma 1 (Ref. 16). Let U1,U2 be two non-commuting matrices in SU(2). If they are both of
infinite order, then the subgroup generated by U1,U2 is dense in SU(2).

Lemma 2 (Ref. 16). Let V be any finite dimensional Hilbert space. Let H ⊂ SU(V ) be the
stabilizer of some non-zero vector |ψ⟩ ∈ V and U ∈ SU(V ) be any operator which does not preserve
the space span{|ψ⟩}, then the set of operators {H


U−1HU} generate a dense subgroup of SU(V ).

Definition 1 (Ref. 6). (1) A vector |ψ⟩ ∈ Cd ⊗ Cd is called decomposable if |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩
for some |ψ1⟩, |ψ2⟩ ∈ Cd.

(2) A quantum gate U ∈ U(Cd ⊗ Cd) is primitive if it maps decomposable states to decompos-
able states. Otherwise, U is called imprimitive.

Lemma 3. The gate SUMd is imprimitive.

Proof. Consider the decomposable state 1√
d

d−1
i=0

|i⟩ ⊗ |0⟩. It is mapped, by SUMd, to
d−1
i=0

1√
d
|i⟩ ⊗

|i⟩, which is not a decomposable state. �

Set W [i] = H3P[i]3H−1
3 P[i]−1

3 , Z[i] = H3P[i]−1
3 H−1

3 P[i]3, i = 0,1,2.

Lemma 4. The generalized Hadamard H3 and any gate from {P[0]3, P[1]3, P[2]3} generate a
dense subgroup of SU(3).

Proof. Direct calculations show that W [i] and Z[i] both have eigenvalues { 2±i
√

5
3 ,1}. Moreover,

W [i] and Z[i] share an eigenvector with eigenvalue 1, which is the following vector Ei, respectively,
for i = 0,1,2,

E1 = −|1⟩ + |2⟩, E2 = −ω|0⟩ + |2⟩, E3 = −ω|0⟩ + |1⟩.
Clearly, 2±i

√
5

3 are the roots of the irreducible polynomial 3x2 − 4x + 3, which is not a cyclo-

tomic polynomial. Thus, 2±i
√

5
3 are not roots of unity. Restricted to E⊥i , the two dimensional orthog-

onal complement of Ei, W [i], and Z[i] is of infinite order. It is straightforward to check that W [i]
and Z[i] do not commute. By Lemma 1, W [i] and Z[i] generate a dense subgroup of SU(E⊥i ).

Since H3 does not preserve span{Ei}, it follows from Lemma 2 that SU(E⊥i )


H−1
3 SU(E⊥i )H3

generate a dense subgroup of SU(3). Therefore, {H3,P[i]3} generate a dense subgroup of SU(3). �
Proof of Theorem 1. By Theorem 1.3 in Ref. 6, the collection of 1-qudit gates with any imprim-

itive 2-qudit gate form a universal gate set for d ≥ 3. By Lemma 3, SUM3 is an imprimitive 2-qutrit
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gate. By Lemma 4, H3 and any gate from {P[0]3, P[1]3, P[2]3} generate a dense subgroup of the
group of all 1-qutrit gates. Thus, the gates from our theorem form a universal gate set. �

To state the next theorem, we introduce a qutrit coherent projective measurement.

Measurement 1. The projection of a state in the qutrit space C3 to span{|0⟩} and its orthogonal
complement span{|1⟩, |2⟩} so that the resulting state, if it is in span{|1⟩, |2⟩}, is coherent.

Theorem 2. The following gate set is universal for the qutrit quantum circuit model.
(1) The generalized Hadamard gate H3.
(2) The SUM gate SUM3.
(3) Any gate from {Q[i]3, i = 0,1,2}.
(4) Any non-trivial 1-qutrit classical gate not equal to H2

3 .
(5) Measurement 1.

Remark 2.
1. In Ref. 8, a stronger theorem is proved: the gate set in Theorem 2 with the gate from (3)

removed is already universal. We proved this stronger theorem by picking a qubit C2 inside a qutrit
C3 and showing that one can approximate arbitrary unitary U ∈ SU(2n). We can then deduce univer-
sality for the qutrit circuit by encoding a qutrit with two qubits C2 ⊗ C2 ⊂ C3 ⊗ C3. For instance,
we can use |00⟩, |01⟩, |10⟩ to encode |0⟩, |1⟩, |2⟩, respectively. And the basis element |11⟩ is left
unused. But it is not known if the reduced qutrit set can be used to approximate arbitrary qutrit gates
directly (i.e., not by encoding a qutrit with two qubits). Neither is it known if the gates from 3 can be
constructed out of the reduced gate set.

2. Comparing this theorem with Corollary 1 below, we see another difference between qutrit
and qupits: the analogous gates through (1) to (4) are already a universal gate set for the qupit
quantum circuit model, but not so for the qutrit model.

3. If we restrict the choice of gate from (3) on i = 1,2, then we can drop the gate in (4) while
still keep the universality of the rest. This is because H2

3 is the classical gate which swaps |1⟩ and
|2⟩, so with H3 and one of Q[1]3, Q[2]3, we can obtain the other one. Since Z3 = Q[1]3Q[2]23, and
X3 = H−1

3 Z3H3, we can construct the generalized X gate X3, which is a classical gate not equal to
H3.

Proof. We prove this theorem by showing that we can construct all the gates in Theorem 1.
Since H2

3 is a classical gate, the gate from (4) together with H2
3 generates all the 1-qutrit classical

gates. It is clear that we only need to construct P[i]3 for some i. Without loss of generality, we as-
sume the gate from (3) is Q[2]3, since we can permute the basis elements with the classical 1-qutrit
gates. From the identity P[2]3 = Q[2]3Flip[2]3, it suffices to construct Flip[2]3. The construction of
the sign-flip gate was given as an exercise in Ref. 15 and a detailed proof can be found in Section
2.5 of Ref. 8. For completeness, we also give the proof in Lemma 5. �

Lemma 5 (Refs. 15 and 8). The gate Flip[2] can be constructed probabilistically. Moreover,
the probability to construct Flip[2] approaches to 1 exponentially fast in the number of gates and
measurements given in Theorem 2.

Proof. It is not hard to see that with the gates and measurement from Theorem 2, the following
states and operations can be implemented.

(1)|i⟩ = 1√
3

2
j=0
ωi j | j⟩ = H |i⟩, i = 0, 1, 2.

(2) Projection of a 1-qutrit state to any computational basis vector, preserving the coher-
ence of the orthogonal complement. For example, projection to span{|2⟩} and its complement
span{|0⟩, |1⟩}.

(3) Measurement of a qutrit in the standard computational basis.
(4) Projection to span{|1⟩,|2⟩} and its complement span{|0⟩}.



032202-5 S. X. Cui and Z. Wang J. Math. Phys. 56, 032202 (2015)

To obtain Flip[2], we first construct the ancilla |ψ⟩ = 1√
3
(|0⟩ − |1⟩ + |2⟩) as follows.

Prepare the state |1⟩|2⟩, and project each qutrit to the space span{|0⟩, |1⟩} to obtain the state
|η⟩ = 1

2 (|0⟩ + ω|1⟩) ⊗ (|0⟩ + ω2|1⟩). Apply the SU M gate to |η⟩ and then project the first qutrit of the
resulting state to the space span{|0⟩}. It is easy to see on the second qutrit we get the state |ψ⟩.

Now for a state |φ⟩ = c0|0⟩ + c1|1⟩ + c2|2⟩, apply the SU M gate to |φ⟩|ψ⟩ and then measure the
second qutrit in the standard basis. If the outcome is |0⟩, then the first qutrit is c0|0⟩ + c1|1⟩ − c2|2⟩.
If the outcome is |1⟩, then the first qutrit is −c0|0⟩ + c1|1⟩ + c2|2⟩, and if the outcome is |2⟩, then
the first qutrit is c0|0⟩ − c1|1⟩ + c2|2⟩. Moreover, the probability for each case is 1

3 . Therefore, this
process changes the sign of some coefficient randomly. Repeat this process until we get the gate
Flip[2]. Note that we will also stop repeating the process if we obtain the gate Flip[0] ∗ Flip[1],
which is the same as Flip[2] up to a global sign.

Let pn be the probability that Flip[2] is obtained (up to a global sign) with no more than n times
of the process. It is not hard to derive a recursive formula for pn,

pn = pn−1 +
1
3
(1 − pn−1) = 1

3
+

2
3

pn−1, p1 =
1
3
. (2.1)

Therefore, we have pn = 1 − ( 2
3 )n, which approximates to 1 exponentially fast. �

B. A universal qupit gate set

Theorem 3. The following gate set is universal for the qupit quantum circuit model for p ≥ 5:
(1) The generalized Hadamard gate Hp.
(2) The SUM gate SUMp.
(3) The gates Q[i]p, i = 1, . . . ,p − 1.

Remark 3. Note that the gate Q[0]p can be constructed from Q[i]p, i = 1, . . . ,p − 1, since
p−1
i=0

Q[i]p = ωpId.

Proof. The proof is analogous to that of Theorem 1. By Lemma 8 below, the gates in (1) and
(3) generate a dense subgroup of SU(p). By Lemma 3, SUMp is an imprimitive gate. Again by
Theorem 1.3 in Ref. 6, this is a universal gate set. �

Corollary 1. Hp,SUMp and all the 1-qupit classical gates, together with some Q[i]p, form a
universal qupit gate set.

The rest of this section is devoted to a proof of Lemma 8.
Set X[i] = HpQ[i]pH−1

p Q[i]−1
p , Y [i] = HpQ[i]−1

p H−1
p Q[i]p, i = 0, . . . ,p − 1. And define

Si = span{|i⟩,

j,i

ω
i j
p | j⟩}.

Lemma 6 (Ref. 3). X[i],Y [i] act as the identity on S⊥i , and are of infinite order confined in Si.
Moreover, they do not commute.

Remark 4. It is worth noting that Lemma 6 does not hold for d = 3. In the case of d = 3, we
need to replace Q[i] by its square root P[i]. This is how we defined W [i], Z[i] in Subsection II A.

Given a subspace A ⊂ Cd, SU(A) is identified with the subgroup of SU(Cd) whose elements
are the identity on the orthogonal complement of A.

Lemma 7 (Ref. 3). If A,B are two non-orthogonal subspaces of Cp, then SU(A),SU(B) generate
a dense subgroup of SU(A + B).

Lemma 8. The generalized Hadamard gate Hp and the gate set {Q[i]p, i = 0, . . . ,p − 1} generate
a dense subgroup of SU(p).
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FIG. 1. 1-qutrit model.

Proof. By Lemma 6 and Lemma 1, X[i] and Y [i] generate a dense subgroup of SU(Si). It is

easy to see that Si is not orthogonal to
i−1
j=0

Sj, and
p−1
j=0

Sj = C
p. By induction on i and by Lemma 7,

we obtain a dense subgroup of SU(p). �

III. UNIVERSAL MODELS FROM METAPLECTIC ANYON SYSTEMS

We will follow the set-up of anyonic quantum computing models as in Refs. 25 and 8, in
particular, the notations in Section 2 of Ref. 8. We refer to a particular anyonic model by a pair
(V,b), where V is the fusion space that encodes one qudit and b a basis of V designated as the
computational basis. This notation is not complete because we also need to specify the encoding of
two qudits, which will be clear from the context.

A. The metaplectic anyon system SO(p)2
For a detailed discussion of SO(p)2, see Ref. 13. The UMC SO(p)2 for an odd prime p =

2r + 1 ≥ 5 has r + 4 isomorphism classes of simple objects (also called anyon types). We denote the
set of simple object representatives by {1, Z,Xϵ,X ′ϵ,Yj,1 ≤ j ≤ r}, and their types {1, z, ϵ , ϵ ′, y j,1 ≤
j ≤ r}. Their quantum dimensions are d1 = dZ = 1, dXϵ = dXϵ′ =

√
p, dYj

= 2. We will follow
Ref. 12 to refer to the anyons Xϵ,X ′ϵ as the metaplectic anyons, and the anyons {Yj,1 ≤ j ≤ r} as the
metaplectic modes.

The following is a list of some of the fusion rules which are sufficient for deducing all the other
fusion rules:

(1) Xϵ ⊗ Xϵ � 1 ⊕ ⊕rj=1Yj;
(2) Xϵ ⊗ X ′ϵ � Z ⊕ ⊕rj=1Yj;
(3) Xϵ ⊗ Yj � Xϵ ⊕ X ′ϵ, 1 ≤ j ≤ r;
(4) Xϵ ⊗ Z � X ′ϵ;
(5) Z ⊗ Z � 1;
(6) Z ⊗ Yj � Yj, 1 ≤ j ≤ r;
(7) Yj ⊗ Yj � 1 ⊕ Z ⊕ Ymin{2 j,m−2 j}, 1 ≤ j ≤ r;
(8) Yi ⊗ Yj � Y|i− j | ⊕ Ymin{i+ j,m−i− j}, 1 ≤ i, j ≤ r, i , j.

The UMC SO(3)2 is the same as SU(2)4. There are five anyon types in SO(3)2, namely,
1, z, ϵ , ϵ ′, y . Their quantum dimensions are 1, 1,

√
3,
√

3, 2.

Remark 5. The anyon types in SU(2)4 are usually denoted as {0, 1, 2, 3, 4}, which are twice
the spin of the corresponding irreps of SU(2). The correspondence between SO(3)2 and SU(2)4
labels is given as follows:

1↔ 0, z ↔ 4, ϵ ↔ 1, ϵ ′↔ 3, y ↔ 2.

We use the fusion tree shown in Figure 1 to encode a qutrit.
The associated Hilbert space V ϵϵϵϵ

y is 3-dimensional with the computational basis {−|YY ⟩, |1Y ⟩,
|Y1⟩}. We will often use the type labels in fusion spaces. The computational basis {−|YY ⟩, |1Y ⟩, |Y1⟩}
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is identified with the qutrit basis {|0⟩, |1⟩, |2⟩}, respectively. Note that this qutrit basis does not have a
Z3 symmetry. We will denote this SU(2)4 anyonic computational model as (V ϵϵϵϵ

y ,{−|YY ⟩, |1Y ⟩, |Y1⟩})
or simply V ϵϵϵϵ

y .

Remark 6. The minus sign in front of |YY ⟩ is introduced to make the braid representation
matrices into a nicer form. This is inessential since the gate Flip[0] that changes the sign of |0⟩ can
be constructed.

The data needed to analyze the computational power of our model are the F-matrices and
R-symbols. All the F-matrices and R-symbols for SU(2)4 are listed in Appendix A. Partial data
enough for our purpose for SO(5)2 are listed in Appendix B. See Appendix C on how braid matrices
for σ1,σ2,σ3 in Subsections III B–III D are derived.

B. The universal model V ϵϵϵϵ
y with SU (2)4

Under the basis {−|YY ⟩, |1Y ⟩, |Y1⟩}, the generators of the braid group B4 for the representation
V ϵϵϵϵ
y have the following matrices:

σ1 = γ
*...
,

1 0 0
0 ω 0
0 0 1

+///
-

σ3 = γ
*...
,

1 0 0
0 1 0
0 0 ω

+///
-

,

σ2 = γ

*........
,

1
2
+

√
3i
6

−1
2
+

√
3i
6

−1
2
+

√
3i
6

−1
2
+

√
3i
6

1
2
+

√
3i
6

−1
2
+

√
3i
6

−1
2
+

√
3i
6

−1
2
+

√
3i
6

1
2
+

√
3i
6

+////////
-

,

where γ = e
πi
12 .

Note that σ1, σ3 are just Q[1]3, Q[2]3 defined in Sec. II, up to a phase.
The group generated by these matrices is a subgroup of SU(3) of order 648 whose center is

isomorphic to Z3. It is isomorphic to the complex reflection group which is the 25th item in the clas-
sification table of finite complex reflection groups in Ref. 24. The elements in the center are scalar
matrices. And the group modulo the center is isomorphic to the famous Hessian group

(216) of
order 216, which is also the 1-qutrit Clifford group.9,14,18 In the following, we will choose many
braids whose representation matrices provide us desired gates. They are obtained by systematically
analyzing the representation V ϵϵϵϵ

y of B4.
Define p = σ1σ2σ1, q = σ3σ2σ3,H = q2pq2, then (ignoring the phase γ),

p2 = −
*...
,

0 1 0
1 0 0
0 0 1

+///
-

q2 = −
*...
,

0 0 1
0 1 0
1 0 0

+///
-

,

H =
1
√

3i

*...
,

1 1 1
1 ω ω2

1 ω2 ω

+///
-

.

Thus, by braiding alone, we obtained all the 1-qutrit classical gates, the generalized Hadamard
gate, and the gates Q[i]3, i = 0,1,2.

Next, we consider the encoding of the 2-qutrits using the 9 dimensional subspace V ϵϵϵϵ
y


V ϵϵϵϵ
y

⊂ V ϵϵϵϵϵϵϵϵ
y . See Figure 2.
Let s1 = σ2σ1σ3σ2, s2 = σ4σ3σ5σ4, s3 = σ6σ5σ7σ6. And let

(Z) = s−1
1 s2

2s1s−1
3 s2

2s3.
It can be verified that

(Z), restricted to the 9-dimensional subspace V ϵϵϵϵ
y


V ϵϵϵϵ
y ⊂ V ϵϵϵϵϵϵϵϵ

y ,
is exactly the Controlled-Z gate when {−|YY ⟩, |1Y ⟩, |Y1⟩} is the computational basis for each qutrit
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FIG. 2. 2-qutrit model.

V ϵϵϵϵ
y . By drawing the braids si, i = 1,2,3, it is not hard to be convinced that this Controlled-Z gate

has no leakage. Therefore, our anyonic model is leakage-free.
Recall the definitions from the beginning of Sec. II, we see that the SUM gate is related to the

Controlled-Z gate through the generalized Hadamard gate H . Explicitly, we have

SUM = (Id ⊗ H)


(Z)−1(Id ⊗ H−1).
Thus, we can obtain the SUM gate by braiding, since H is already a braiding circuit. We have

the following.

Proposition 1. By braiding alone, we can construct the classical 1-qutrit gates, the generalized
Hadamard gate, the generalized σz gates Q[i], and the SUM gate for our anyonic model V ϵϵϵϵ

y .

It follows from Theorem 1 that we need to find the square roots of Q[i] to make our model
universal. Our solution is to introduce a physically realistic measurement: to determine whether or
not the total charge of two anyons is trivial.

Measurement 2. Let M1 = {Π1,Π
′
1} be the projective measurement onto the total charge = 1

sector of two anyons and its complement. Then, M1 allows us to distinguish between the trivial
anyon 1 and other anyons, namely, check whether an anyon is trivial or not. Moreover, in a 1-qutrit
model, the state of the second pair after each outcome of the measurement of the first pair is still
coherent.

Applying Measurement 2 to the first two anyons in the 1-qutrit model to determine their
total charge is equivalent to projecting the state to the subspace span{|1Y ⟩} and its orthogonal
complement span{−|YY ⟩, |Y1⟩}. Since all the 1-qutrit classical gates can be constructed by braiding,
we can also project the state to span{−|YY ⟩} and span{|1Y ⟩, |Y1⟩}. Thus, Measurement 1 can be
obtained from Measurement 2 and braiding. It is important to notice that when the total charge of
the first two anyons of a qutrit is Y , then the total charge of the second pair of anyons is in a coherent
superposition of 1 and Y .

Another method to measure total charge of anyons is interferometric measurement. It is known
that any projective measurement of total charge of anyons can be simulated by interferometric
measurements.11

Therefore, by braiding anyons and Measurement 2, we can construct the generalized Hadamard
gate H , the SUM gate, all the Q[i] ′s, all the 1-qutrit classical gates, and Measurement 1. These are
exactly the universal gate set in Theorem 2.

Theorem 4. In the SU(2)4 theory, if we use the fusion space of four metaplectic anyons Xϵ

with total charge Y as a 1-qutrit (See 1), and choose {−|YY ⟩, |1Y ⟩, |Y1⟩} as the computational basis,
then braiding supplemented with Measurement 2 of two metaplectic anyons forms a universal gate
set for our anyonic quantum computation.

Proof. It follows from Proposition 1 and Theorem 2. �
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FIG. 3. 1-qupit model.

The most challenging part of our model is to maintain the total charge of many metaplectic
anyons to be the metaplectic mode Y . We cannot make the more natural choice of total charge trivial
model universal, and provide evidence below that this cannot be done.

C. A model from SO(5)2
The SO(5)2 theory consists of six anyon types: {1, z, y1, y2, ϵ , ϵ

′}. We set up a similar model as
that for SO(3)2.

For a 1-qupit p = 5, use the model as shown in Figure 3.
The Hilbert space V ϵϵϵϵ

y1
now is 5-dimensional with the computational basis {|Y2Y2⟩, |1Y1⟩, |Y2Y1⟩,

|Y1Y2⟩, |Y11⟩}. The representation matrices of the generators of B4 are

σ1 =
1
i

*.........
,

e
2iπ

5 0 0 0 0
0 1 0 0 0

0 0 e
2iπ

5 0 0

0 0 0 e−
2iπ

5 0

0 0 0 0 e−
2iπ

5

+/////////
-

,

σ2 =
1
√

5i

*.........
,

1 e−
2iπ

5 e
2iπ

5 e
2iπ

5 e−
2iπ

5

e−
2iπ

5 1 e−
2iπ

5 e
2iπ

5 e
2iπ

5

e
2iπ

5 e−
2iπ

5 1 e−
2iπ

5 e
2iπ

5

e
2iπ

5 e
2iπ

5 e−
2iπ

5 1 e−
2iπ

5

e−
2iπ

5 e
2iπ

5 e
2iπ

5 e−
2iπ

5 1

+/////////
-

,

σ3 =
1
i

*.........
,

e
2iπ

5 0 0 0 0

0 e−
2iπ

5 0 0 0

0 0 e−
2iπ

5 0 0

0 0 0 e
2iπ

5 0
0 0 0 0 1

+/////////
-

.

The representation V ϵϵϵϵ
y1

of the braid group B4 is irreducible and the image is the Clifford
group, which is isomorphic to (Z5 × Z5) o SL(2,Z5).

Direct calculations lead to the following important gates, up to a phase, from braiding.

The generalized Hadamard gate H5 : H5| j⟩ =
4

i=0
ω

i j
5 |i⟩, = σ−1

1 σ−1
3 σ2

2σ
−1
1 σ−1

3 .

The generalized Z-gate Z : Z |i⟩ = ωi
5|i⟩ = σ1σ

−1
3 .

The generalized X-gate X : X |i⟩ = |i + 1⟩ = σ1σ2σ
−2
1 σ2

3(σ1σ2)−1.
The multiplication gate M[k] : M[k]|i⟩ = |ki⟩, k = 2,3,4. These gates are realized byσ2

1σ
−2
2 σ−1

1
σ−1

3 σ2σ1,σ
2
1σ
−1
2 σ1σ3σ

2
2σ3, and σ1σ2σ1σ3σ2σ1.
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FIG. 4. 2-qupit model.

The gates X and M[k] are classical 1-qupit gates, i.e., permutation matrices. Identifying a
permutation matrix with the permutation that it represents in the permutation group S5, we see
that X,M[k] generate a maximal subgroup of S5 with order 20, which is isomorphic to Z5 o Z4.
Moreover, this maximal subgroup contains all the 1-qupit classical gates obtained from braiding.
Since this subgroup is maximal, any classical gate out of the subgroup is enough to produce all
the 1-qupit classical gates. We speculate that Measurement 2 would help produce an extra classical
gate.

The 2-qupit encoding is also analogous to the one we used in SO(3)2. See Figure 4.
We obtain the Controlled-Z gate

(Z) by the same braiding as we did in Subsection III B.
Here,

(Z)|i, j⟩ = ωi j
5 |i, j⟩. And again, the SUM gate is obtained by conjugating

(Z) by the
generalized Hadamard H .

Proposition 2. The gates that can be constructed from braiding include the generalized Hadamard
H , 20 1-qupit classical gates generated by the generalized X gate and multiplication gates M[k] ′s,
the generalized Z gate, and the SUM gate. In view of Corollary 1, we need an extra 1-qupit classical
gate and some gate Q[i] to make this model universal.

Suppose we have all the 1-qupit classical gates, then clearly by using σ1 and classical gates, we
can obtain the gates R[i, j, k] = (Q[i]Q[ j]−1)k, i , j, k = 1,2,3,4. For example,

R[1,2, k] =
*........
,

ωk 0 0 0 0
0 ω−k 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

+////////
-

.

Let X[i, j, k] = H R[i, j, k]H−1R[i, j, k]−1.
It can be shown that X[i, j, k] is of infinite order, and for fixed i, j, the four matrices {X[i, j, k],

k = 1,2,3,4} fix some 1-dimensional subspace and act irreducibly on the 4-dimensional orthog-
onal complement. For example, {X[1,2, k], k = 1,2,3,4} fix the vector ω−1|2⟩ +

√
5+1
2 ω2|3⟩ + |4⟩.

If one can show {X[i, j, k], k = 1,2,3,4} generate a dense subgroup of the unitary group of the
4-dimensional complement for some i , j, then it is straightforward to prove the gate set generate a
dense subgroup of SU(5) by Lemma 2. We did not succeed in showing this either.

D. Other models with SU (2)4
There are at least 4 obvious anyonic quantum computing models with SU(2)4 anyons. Besides

the universal model that we studied, three others are the qubit model V 1111
0 , the qutrit model V 2222

0 ,
and the qubit model V 1221

0 . The computational power of the corresponding models V 2222
0 and V 1221

0
in the Jones-Kauffman version of SU(2)4 is analyzed in Ref. 17. We conjecture that the model
V 1111

0 , shown in Figure 5, with measurements of total charges of metaplectic anyons is Ising like,
i.e., braidings and such measurements can be simulated classically efficiently.
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FIG. 5. 1-qubit model.

FIG. 6. 2-qubit model.

The Hilbert space V 1111
0 is 2-dimensional with basis {|00⟩, |22⟩}. Under this basis, the σi

′s have
the following matrices:

σ1 = σ3 = γ
(
ω 0
0 1

)
σ2 = γω̄

*.
,

− 1
2
+

√
3i
6

√
6i
3√

6i
3

− 1
2
−
√

3i
6

+/
-
, for some phase γ.

Up to normalization, this representation is the same as one component of VDDDD
B in D(S3),

where the two components of VDDDD
B are isomorphic. See Appendix B.2.2 in Ref. 8.

These matrices generate a group of size 24 which is isomorphic to SL(2,F3). Modulo the center,
we get the even permutationsA4.

Similarly, for the 2-qubit encoding as that in Figure 6, we use |0; a1b1⟩ ⊗ |0; a2b2⟩ to denote the
state in Figure 6.

Then, the same braiding as before gives the following transformation:
|0; 00⟩ ⊗ |0; 00⟩ → |0; 00⟩ ⊗ |0; 00⟩,
|0; 00⟩ ⊗ |0; 22⟩ → |0; 00⟩ ⊗ |0; 22⟩,
|0; 22⟩ ⊗ |0; 00⟩ → |0; 22⟩ ⊗ |0; 00⟩,
|0; 22⟩ ⊗ |0; 22⟩ → − 1

2 |0; 22⟩ ⊗ |0; 22⟩ +
√

3i
2 |4; 22⟩ ⊗ |4; 22⟩.

Thus, projecting out the charge 4, we obtain the Controlled-σz gate
(σz). But when the state

is actually projected onto the charge 4 part, the state is destroyed and the whole computational
process has to start over again.
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APPENDIX A: F -MATRICES AND R-SYMBOLS FOR SU (2)4
We order the labels {0,1,2,3,4} in increasing order when we arrange the entries of the

F-matrices. The conventions that we used for F-matrices and R-symbols are in Ref. 8. We drop all
trivial Fabc

d
= 1 when a,b,c,d is admissible, in particular, when one of a, b, or c is trivial.
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•
�
−1

�
for

F114
4 ,F123

4 ,F124
3 ,F132

4 ,F133
3 ,F134

2 ,F141
4 ,F142

3 ,F143
2 ,F144

1 ,F213
4 ,F214

3

F222
4 ,F224

2 ,F231
4 ,F234

1 ,F241
3 ,F242

2 ,F243
1 ,F312

4 ,F313
3 ,F314

2 ,F321
4 ,F324

1

F331
3 ,F333

1 ,F334
4 ,F341

2 ,F342
1 ,F343

4 ,F344
3 ,F411

4 ,F412
3 ,F413

2 ,F414
1 ,F421

3

F422
2 ,F423

1 ,F431
2 ,F432

1 ,F433
4 ,F434

3 ,F441
1 ,F443

3

•
*..
,

− 1
√

3


2
3

2
3

1
√

3

+//
-

for F111
1 ,F131

3 ,F313
1 ,F333

3

• *.
,

− 1
√

2

1
√

2
1
√

2

1
√

2

+/
-

for

F112
2 ,F122

1 ,F122
3 ,F132

2 ,F211
2 ,F213

2 ,F221
1 ,F221

3 ,F223
1 ,F231

2 ,F312
2 ,F322

1

•
*..
,

−


2
3

1
√

3
1
√

3


2
3

+//
-

for F113
3 ,F133

1 ,F311
3 ,F331

1

• *.
,

− 1
2

√
3

2√
3

2
1
2

+/
-

for F121
2 ,F212

1

• *.
,

−
√

3
2

1
2

1
2

√
3

2

+/
-

for F123
2 ,F212

3 ,F232
1 ,F321

2

• *.
,

1
√

2
− 1
√

2

− 1
√

2
− 1
√

2

+/
-

for F223
3 ,F233

2 ,F322
3 ,F332

2

• *.
,

1
2

−
√

3
2

−
√

3
2

− 1
2

+/
-

for F232
3 ,F323

2

•

*.....
,

1
2

− 1
√

2

1
2

− 1
√

2
0

1
√

2
1
2

1
√

2

1
2

+/////
-

for F222
2

1. R-symbols

• 1 for R00
0 ,R

01
1 ,R

02
2 ,R

03
3 ,R

04
4 ,R

10
1 ,R

20
2 ,R

30
3 ,R

40
4 ,R

44
0

• e
3iπ

4 for R11
0

• e
iπ
12 for R11

2

• e
2iπ

3 for R12
1 ,R

21
1 ,R

22
2 ,R

23
3 ,R

32
3

• e
iπ
6 for R12

3 ,R
21
3

• e
7iπ
12 for R13

2 ,R
31
2

• e
iπ
4 for R13

4 ,R
31
4

• i for R14
3 ,R

41
3

• e−
2iπ

3 for R22
0
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• e
iπ
3 for R22

4

• e−
5iπ

6 for R23
1 ,R

32
1

• −1 for R24
2 ,R

42
2

• e−
iπ
4 for R33

0

• e−
11iπ

12 for R33
2

• −i for R34
1 ,R

43
1

APPENDIX B: F -MATRICES AND R-SYMBOLS FOR SO(5)2
Here, we list all the 6 j symbols and some of the R-symbols that we need in this paper

for the theory SO(5)2. Again we omit the trivial Fabc
d

. We arrange the label set in the order
{1, z, y1, y2, ϵ , ϵ

′} in the following.

Let h =


10 − 2
√

5, k =


10 + 2
√

5.

•
�
−1

�
for

Fz y1y1
y2 ,Fz y1y2

y1 ,Fz y2y1
y1 ,Fz y2y1

y2 ,Fzϵz
ϵ ,Fzϵ y1

ϵ′ ,Fzϵ y2
ϵ′ ,Fzϵ′z

ϵ′ ,Fzϵ′y1
ϵ

Fzϵ′y2
ϵ ,F y1z y1

y2 ,F y1z y2
y1 ,F y1y1z

y2 ,F y1y1y2
z ,F y1y2z

y1 ,F y1y2z
y2 ,F y1y2y1

z ,F y1ϵz
ϵ′

F y1ϵ
′z

ϵ ,F y2z y1
y1 ,F y2z y2

y1 ,F y2y1z
y1 ,F y2y1y1

z ,F y2y1y2
z ,F y2ϵz

ϵ′ ,F y2ϵ
′z

ϵ ,Fϵzϵ
z

Fϵzϵ′
y1

,Fϵzϵ′
y2

,Fϵ y1ϵ
′

z ,Fϵ y2ϵ
′

z ,Fϵ′zϵ
y1

,Fϵ′zϵ
y2

,Fϵ′zϵ′
z ,Fϵ′y1ϵ

z ,Fϵ′y2ϵ
z

• *.
,

1
√

2
− 1
√

2
1
√

2

1
√

2

+/
-

for

F y1y1y2
y2 ,F y1y1ϵ

ϵ′ ,F y1y1ϵ
′

ϵ ,F y1ϵϵ
y2 ,F y2y2y1

y1 ,F y2ϵϵ
y1 ,Fϵ y1y2

ϵ ,Fϵ y2y1
ϵ ,Fϵϵ′y1

y1

Fϵ′ϵ y1
y1

• *.
,

1
√

2

1
√

2
1
√

2
− 1
√

2

+/
-

for

F y1y1ϵ
ϵ ,F y1y1ϵ

′

ϵ′ ,F y1ϵϵ
y1 ,F y1ϵ

′ϵ′
y1 ,F y2y2ϵ

ϵ ,F y2y2ϵ
ϵ′ ,F y2y2ϵ

′
ϵ ,F y2y2ϵ

′

ϵ′ ,F y2ϵϵ
y2

F y2ϵϵ
′

y2 ,F y2ϵ
′ϵ

y2 ,F y2ϵ
′ϵ′

y2 ,Fϵ y1y1
ϵ ,Fϵ y2y2

ϵ ,Fϵ y2y2
ϵ′ ,Fϵϵ y1

y1 ,Fϵϵ y2
y2 ,Fϵϵ′y2

y2

Fϵ′y1y1
ϵ′ ,Fϵ′y2y2

ϵ ,Fϵ′y2y2
ϵ′ ,Fϵ′ϵ y2

y2 ,Fϵ′ϵ′y1
y1 ,Fϵ′ϵ′y2

y2

•
(0 1

1 0

)
for F y1y2y1

y2 ,F y2y1y2
y1

• *.
,

1
√

2

1
√

2

− 1
√

2

1
√

2

+/
-

for

F y1y2y2
y1 ,F y1y2ϵ
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1. R-symbols

We only list the R-symbols that are enough for our computational purpose. These data are
from Ref. 13.

Ry1y1
1 = e

6πi
5 , Ry1y1

z = e
πi
5 , Ry1y1

y2 = e
4πi

5 ,

Rϵϵ
1 = −i, Rϵϵ

y1
= e

11πi
10 , Rϵϵ

y2
= e

−πi
10 .

APPENDIX C: MATRICES OF THE GENERATORS OFB4 IN A 1-QUPIT MODEL

In this appendix, we show how to compute the matrices of the three generators σ1,σ2,σ3 of B4
in a 1-qupit model V aaaa

b
with computational basis {|xi yi⟩ : 1 ≤ i ≤ p,p ≥ 2}, where a,b are two

anyon types in a unitary modular category C. The data we will use are some of the F-matrices and
R-matrices, which are defined in Figures 7 and 8, where Fabc

d;nm is the (n,m)-entry of the matrix Fabc
d

,
and Rba

c is a 1 × 1R-matrix. For more detailed explanations, see Section 2 of Ref. 8, or Ref. 25.
See Figure 9 for the 1-qupit model V aaaa

b
.

FIG. 7. Definition of the F-matrix Fabc
d;nm

.

FIG. 8. Definition of the R-matrix Rba
c .
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FIG. 9. General 1-qupit model.

FIG. 10. Braiding pictures for σ1,σ2,σ3.

Then, the braiding pictures of σ1,σ2,σ3 are given as shown in Figure 10. If we rewrite the
braiding pictures in the computational basis, we get the matrices of the corresponding generators.
Explicit illustrations are shown below.

By the definition of R-matrices in Figure 8, the braiding picture for σ1 can be written as that
shown in Figure 11. Thus, σ1 is always the diagonal matrix with (i, i)-entry Raa

xi
. Similarly, σ3 is

also a diagonal matrix with (i, i)-entry Raa
yi

. The calculation of σ2 is much more complicated as it
involves change of bases using F-matrices. See Figure 12 for the illustrations, where F−1aaa

c;dyi
is

the (d, yi)-entry of the inverse of the matrix Faaa
c , and in the last picture of the equations, the pair

| f e⟩ could only be one of the basis elements in {|x j y j⟩ : 1 ≤ j ≤ p}. Let | f e⟩ = |x j y j⟩, then the
( j, i)-entry of σ2 is given by the following:

(σ2) j, i =

c,d

Faayi
b;cxi

F−1aaa

c;dyi
Raa
d Faaa

c;y jd
F
−1aay

j

b;x jc
. (C1)

FIG. 11. Calculating σ1.
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FIG. 12. Calculating σ2.
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