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Abstract

Using M-theory in physics, Cho, Gang, and Kim (JHEP 2020, 115
(2020) ) recently outlined a program that connects two parallel subjects
of three dimensional manifolds, namely, geometric topology and quan-
tum topology. They suggest that classical topological invariants such as
Chern-Simons invariants of SL(2,C)-flat connections and SL(2,C)-adjoint
Reidemeister torsions of a three manifold can be packaged together to
produce a (2 + 1)-topological quantum field theory, which is essentially
equivalent to a modular tensor category. It is further conjectured that
every modular tensor category can be obtained from a three manifold and
a semi-simple Lie group. In this paper, we study this program mathemat-
ically, and provide strong support for the feasibility of such a program.
The program produces an algorithm to generate the potential modular
T -matrix and the quantum dimensions of a candidate modular data. The
modular S-matrix follows from essentially a trial-and-error procedure. We
find premodular tensor categories that realize candidate modular data
constructed from Seifert fibered spaces and torus bundles over the circle
that reveal many subtleties in the program. We make a number of im-
provements to the program based on our examples. Our main result is a
mathematical construction of the modular data of a premodular category
from each Seifert fibered space with three singular fibers and a family of
torus bundles over the circle with Thurston SOL geometry. The modular
data of premodular categories from Seifert fibered spaces can be realized
using Temperley-Lieb-Jones categories and the ones from torus bundles
over the circle are related to metaplectic categories. We conjecture that
a resulting premodular category is modular if and only if the three mani-
fold is a Z2-homology sphere, and condensation of bosons in the resulting
properly premodular categories leads to either modular or super-modular
tensor categories.
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1 Introduction

There are two parallel universes in three dimensional topology for the last sev-
eral decades that do not intersect much: the classical Thurston world and the
quantum Jones world. One famous conjecture that hints a deep connection of
the two worlds is the volume conjecture. Recently M-theory in physics suggests
another surprising different connection: classical topological invariants such as
Chern-Simons invariants of SL(2,C)-flat connections and SL(2,C)-adjoint Rei-
demeister torsions of a three manifold X can be packaged together to produce a
(2+1)-topological quantum field theory (TQFT) [4], which is essentially equiv-
alent to a modular tensor category [19]. It is further conjectured in [4] that
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every modular tensor category can be obtained from a three manifold and a
semi-simple Lie group. In this paper, we study this program mathematically,
and provide strong support for such a program. The program as outlined in
[4] produces an algorithm to generate the potential modular T -matrix and the
quantum dimensions of a candidate modular data. The modular S-matrix fol-
lows from essentially a trial-and-error procedure. We find premodular tensor
categories that realize candidate modular data from Seifert fibered spaces and
torus bundles over the circle that reveal many subtleties in the program. Our
main result is a mathematical construction of the modular data of a premodu-
lar category from each Seifert fibered space with three singular fibers and some
torus bundles over the circle with Thurston SOL geometry. The modular data
of the premodular categories from Seifert fibered spaces can be realized using
Temperley-Lieb-Jones categories and the ones from torus bundles over the circle
are related to metaplectic categories [20, 9]. A more general study of the torus
bundle case is in [6]. A resulting premodular category is modular if and only
if the three manifold is a Z2-homology sphere, and condensation of bosons in
the resulting properly premodular categories leads to either modular or super-
modular tensor categories.

The program from three manifolds to modular tensor categories is a far-
reaching progeny of the mysterious six-dimensional super-symmetric conformal
field theories (SCFTs) spawned by M-theory. Our strong support for the pro-
gram indirectly provides evidence for these 6d SCFTs. The dimension reduction
or compactification of these 6d SCFTs to 3d depends on a three manifoldX , and
in general the resulting theory T (X) is a super-conformal field theory. When X
is non-hyperbolic, it is argued in [4] that T (X) flows to a TQFT in the infrared
limit and super-symmetry is decoupled, thus we obtain a (2+1)-TQFT labeled
by X , hence a MTC BX . The program outlined in [4] centers on an algorithm
to produce the quantum dimensions and topological twists of a MTC, and a
trial-and-error algorithm for the modular S-matrix. The assumption on the
three manifolds X in [4] includes that X is non-hyperbolic and the SL(2,C)
representation variety of the fundamental group π1(X) consists of finitely many
conjugacy classes that all could be conjugated into either SU(2) or SL(2,R)
subgroups of SL(2,C). Our examples show that all but the non-hyperbolic as-
sumption can be dropped. One subtlety is that we need to use indecomposable
reducible representations in our torus bundle over the circle examples. We do
not know whether or not MTCs could be constructed from hyperbolic three
manifolds as the program as we formulated in this paper is more flexible. The
main difficulty for more examples lies in the explicit calculation of Chern-Simons
(CS) invariant and adjoint Reidemeister torsion of flat connections.

An SL(2,C)-representation of π1(X) is the same as a flat connection of the
trivial SL(2,C)-bundle. There are two well-known invariants for a flat con-
nection: the Chern-Simons (CS) invariant and the adjoint Reidemeister torsion.
Each flat connection that satisfies certain conditions would give rise to an anyon
type and the Reidemeister torsion is essentially the quantum dimension and the
CS invariant is the conformal weight of the anyon.

For each Seifert fibered space with three singular fibers, we define a poten-
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tial modular data inspired by the many examples in [4]. All those modular data
can be realized by premodular categories obtained as a Z2-graded product of
Temperley-Lieb-Jones categories. We expect that our results can be easily gen-
eralized to any number of the singular fibers if the adjoint Reidemeister torsions
of the SL(2,C) flat connections can be calculated because the CS invariants in
this case are known. It is not clear if there are new MTCs among our examples.
Going beyond Seifert fibered spaces, we analyze some torus bundles over the
circle and identify the resulting premodular categories as the integral subcat-
egories of SO(N)2 for odd N . An important observation for the connection
to Temperley-Lieb-Jones categories for Seifert fibered spaces is a relation be-
tween the slope of a singular fiber and the order of the Kauffman variable A in
Temperley-Lieb-Jones theories [20]. Essentially the slope of a singular fiber de-
termines a root of unity A, which allows us to realize all the candidate modular
data from Seifert fibered spaces with three singular fibers.

The content of the paper is as follows. In Sec. 2, we outline our version of
the program taking into account the many subtleties that we encountered in our
examples. We also recall the definition of CS invariant and adjoint Reidemeister
torsion, and collect some known results of CS invariants of Seifert fibered spaces.
In Sec. 3, we study the Seifert fibered spaces and carry out the necessary
calculations of CS and torsion invariants for our examples, and do the same for
torus bundles over the circle in Sec. 4. Finally, in Sec. 5, we discuss some future
directions and open questions.

2 A program from 3-manifolds to modular cat-

egories

The proposed program in [4] from three manifolds to MTCs came from physics,
and the paper provides an algorithm to produce the potential modular T -matrix
and all quantum dimensions of a candidate modular data from irreducible repre-
sentations of the fundamental groups of three manifolds to SL(2,C). Our results
in Sec. 3 and Sec. 4 that realize candidate modular data from Seifert fibered
spaces and torus bundles over the circle reveal many subtleties in the program
as outlined in [4]. In this section, we follow the overall program of [4] and make
a number of improvements to reformulate mathematically the construction of
candidate modular data from three manifolds taking into account these new
subtleties.

2.1 Representation and character variety

Suppose X is an orientable connected closed 3-manifold and G is a semi-simple
Lie group. The set of representations of the fundamental group π1(X)1 toG con-
sists of all group homomorphisms from π1(X) to G, denoted by Hom(π1(X), G),

1We omit the irrelevant base point.
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up to conjugation. The representation variety R(X,G) of π1(X) to G is simply
Hom(π1(X), G)//G—equivalence classes of representations up to conjugation.

In this paper, we will mainly consider the case G = SL(2,C) and its higher
dimensional irreducible representations Symj of dimension j + 1. Given such
a representation ρ : π1(X) → SL(n,C), its character is the function on π1(X)
given by χρ(x) = Tr(ρ(x)) for x ∈ π1(X). The character variety χ(X, SL(n,C))
of X consists of all such character functions. We will also denote the repre-
sentation variety R(X, SL(2,C)) and character variety χ(X, SL(2,C)) simply as
R(X) and χ(X). In this paper, the topology of the spaces of the representation
and character varieties is not important.

There are three obvious nontrivial automorphisms of SL(2,C) by sending
an element g ∈ SL(2,C) to its complex conjuagte g∗, its transpose followed
by inverse (gt)−1, and the composition (g†)−1 of the previous two operations.
For each representation of π1(X) to SL(2,C), post-composing with one of the
three automorphisms of SL(2,C) gives rise to another representation, hence
representations in R(X) come in group of four in general. Another obvious way
to change a representation ρ in R(X,G) is to tensor ρ with a representation of
π1(X) to the center Z(G) of G. Representations of π1(X) to the center Z(G)
are in one-one correspondence with cohomology classes in the cohomology group
H1(X,Z(G)).

2.2 Non-hyperbolic three manifolds

The proposed program in [4] and in this section is to produce modular tensor
categories (MTCs) from closed three manifolds and show that each MTC can
be obtained from at least one three manifold. It is known that different three
manifolds can lead to the same MTC. As suggested in [4], we will focus on non-
hyperbolic three manifolds. There are seven non-hyperbolic geometries and six
can be realized by Seifert fibered three manifolds with the exception SOL [17].
The geometry S2 × R is not useful for our purpose as we need representations
from the fundamental group to SL(2,C) with non-Abelian images. We will
mainly consider Seifert fibered spaces in this paper, but in Sec. 4, we will also
study torus bundles over the circle with SOL geometry and more subtleties arise.

Seifert fibered three manifolds X are those that can be foliated into disjoint
union of circles and are completely enumerated [16]. In this paper, all our three
manifolds are orientable, and we will denote the Seifert fibered spaces (SFSs)
by the notation X = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)} as explained below.
The quotient space of a SFSX , called the base orbifoldB, by sending each circle,
called a fiber, to a point is a topological surface. The symbol (o, g) means that
the base topological surface B is an orientable closed surface of genus g.

Each fiber has a product neighbourhood D2 × S1 in the SFS X except n
singular fibers labeled by (pi, qi), i = 1, · · · , n. The neighborhood of the i-th
singular fiber is obtained from D2× [0, 1] by identifying the point (x, 0), x ∈ D2

with the point (rai,pi
(x), 1), where rai,pi

is the rotation of the disk D2 by the
angle 2πai/pi, where ai ∈ Z satisfies aiqi = 1 mod pi. The pair of coprime inte-
gers (pi, qi) are the corresponding surgery coefficient. The fundamental group of
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Figure 1: Surgery link of Seifert fibered space with base S2

X fits into a short exact sequence 1 → π1(F ) → π1(X) → πorb
1 (B) → 1, where

π1(F ) ∼= Z for a regular fiber F ∼= S1 and πorb
1 (B) is the orbifold fundamental

group of B (not the same as the fundamental group π1(B) of the topological
surface B in general). The integer b in the notation is the obstruction class,
which is also the order of the generator of π1(F ) in πorb

1 (B). Since we consider
SFSs as three manifolds up to homeomorphism rather than as fibered spaces,
we may always set b to 0.

The fundamental group of X = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)} has
a presentation

π1(X) = 〈aj , bj , xi, h, j = 1, · · · , g, i = 1, · · · , n |
[aj , h] = [bj, h] = [xi, h] = xpi

i hqi = 1, x1 · · · xn[a1, b1] · · · [ag, bg] = hb〉. (1)

In particular, the fundamental group of X = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}
with base S2 and three singular fibers, denoted simply as {b; (p1, q1), (p2, q2), (p3, q3)}
sometimes, is

π1(X) = 〈x1, x2, x3, h|xpi

i hqi = 1, xih = hxi, x1x2x3 = hb〉.

The orientable SFS {0; (o, 0); (p1, q1), (p2, q2), · · · , (pn, qn)} with base S2 and n
singular fibers has a surgery diagram shown in Fig. 1.

2.3 Chern-Simons invariant

Given an orientable connected closed three manifold X , a morphism ρ of its
fundamental group π1(X) to a semi-simple Lie group G can be identified as
the holonomy representation of a flat connection Aρ on the trivial principal G-
bundle overX . Therefore, in the following we will use the terms a representation
ρ and a flat connection A interchangeably via such an identification.

Let X be a closed 3-manifold and ρ : π1(X) −→ SL(2,C) be a holonomy
representation. Denote by Aρ the corresponding Lie algebra sl(2,C)-valued 1-
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form on X . The Chern-Simons (CS) invariant of ρ is defined as

CS(ρ) =
1

8π2

∫

X

Tr(dAρ ∧ Aρ +
2

3
Aρ ∧ Aρ ∧ Aρ) mod 1, (2)

where the integral with its coefficient in the front is well-defined up to integers.
The CS invariant CS(ρ) depends only on the character χ(ρ) of ρ [12], hence

it descends from the representation variety R(X) to the character variety χ(X).
Auckly computed the CS invariant of SFSs for SU(2) representations in [1].

The CS invariant of SFSs for SL(2,C) representations may be known to experts.
However, to make the paper self-contained, we provide a proof to compute that
using method from [12].

Proposition 2.1. Let X = {0; (o, g); (p1, q1), (p2, q2), · · · , (pk, qk)} be an SFS
with the presentation of π1(X) given in Equation 1 with b = 0. Choose integers
sj and rj such that pjsj − qjrj = 1. Suppose ρ : π1(X) → SL(2,C) is non-

Abelian such that Tr(ρ(xj)) = 2 cos
2πnj

pj
, then

CS(ρ) =





k∑

j=1

rjn
2
j

pj
mod 1, ρ(h) = I

k∑

j=1

(
rjn

2
j

pj
− qjsj

4
) mod 1, ρ(h) = −I

Remark 2.2. The formula for the CS invariant in Proposition 2.1 differs from
that in [1] with a negative sign. We believe this discrepancy is due to conven-
tions.

Before proving the proposition, we recall some facts in [12]
Let T be a torus and consider χ(T ), the character variety of T to SL(2,C).

It is direct to see that χ(T ) can be identified with Hom(π1(T ),C
∗)/ ∼ where

f ∼ g if f(·) = g(·)−1. We now describe a ‘coordinate-version’ of χ(T ).
Let H be a group with the presentation,

H = 〈x, y, b | [x, y] = bxbx = byby = b2 = 1〉,

and define an action of H on C2 by

x(α, β) = (α + 1, β), y(α, β) = (α, β + 1), b(α, β) = (−α,−β).

Denote the image of (α, β) ∈ C
2 in the quotient space C

2/H by [α, β]. Let
~v = (v1, v2) be any Z-basis of H1(T ), and define the map,

f~v : C
2/H → χ(T ),

such that f~v[α, β] ∈ χ(T ) sends

v1 7→ e2πiα, v2 7→ e2πiβ .
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It can be checked that f~v is a homeomorphism. A representation of π1(T ) that
induces the character f~v[α, β] is given by,

v1 7→
(
e2πiα 0
0 e−2πiα

)
, v2 7→

(
e2πiβ 0
0 e−2πiβ

)
.

Furthermore, the homeomorphism f~v is natural in the following sense. Let ~w be
another basis such that ~w = ~vA for some A ∈ GL(2,Z) (viewing ~w and ~v as row
vectors), and define the map Φ~v, ~w : C2 → C2 by right multiplying (row) vectors
of C2 by A on the right. Then Φ~v, ~w induces a homeomorphism, still denoted by
Φ~v, ~w, from C2/H to C2/H , and the following diagram commutes,

C2/H C2/H

χ(T )

Φ~v,~w

f~v
f~w

Hence, we think of each C2/H with a choice of basis ~v as a coordinate realization
of χ(T ). In fact, χ(T ) is isomorphic to the direct limit2 of {(C2/H)~v, Φ~v, ~w},

χ(T ) ≃ lim
−→

(C2/H)~v,

where (C2/H)~v is a copy of C2/H indexed by ~v.
Next, we introduce a C

∗ bundle over χ(T ). Define an action of H on C
2×C

∗

lifting that on C2 by

x(α, β; z) = (α+ 1, β; ze2πiβ),

y(α, β; z) = (α, β + 1; ze−2πiα),

b(α, β; z) = (−α,−β; z).

The canonical projection C2 × C∗ → C2 induces a projection

p : C2 × C
∗/H → C

2/H,

which makes C2 × C∗/H a C∗ bundle over C2/H . Given two bases ~v, ~w of
H1(T ) with ~w = ~vA, Φ~v, ~w can be covered by a bundle isomorphism. Explicitly,

define Φ̃~v, ~w : C2×C∗/H → C2×C∗/H which maps [α, β; z] to [(α, β)A; zdet(A)].
Then the following diagram commutes,

(C2 × C∗/H)~v (C2 × C∗/H)~w

(C2/H)~v (C2/H)~w

p

Φ̃~v,~w

p

Φ~v,~w

(3)

2Here all maps involved are isomorphisms, so the notion of direct limit and inverse limit
do not make a difference.
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Let Ẽ(T ) be the direct limit of {(C2×C∗/H)~v, Φ̃~v, ~w}. Then Equation 3 induces

a map p : Ẽ(T ) → χ(T ) which makes Ẽ(T ) a C∗ bundle over χ(T ), and the
diagram below commutes,

Ẽ(T ) (C2 × C∗/H)~v

χ(T ) (C2/H)~v

p p

f~v

We often represent an element of Ẽ(T ) by a ‘coordinate’ [α, β; z]~v with respect
to a basis ~v. Changing the basis to ~w = ~vA induces the equality

[α, β; z]~v = [(α, β)A; zdet(A)]~w,

and when the bases involved are clear from the context, we will omit them.
We also need an ‘orientation-version’ of Ẽ(T ). Now assume T is oriented,

and define E(T ) to be the direct limit of {(C2×C∗/H)~v, Φ̃~v, ~w} where the limit
is taken only over positive bases ~v of H1(T ), namely, those ~v such that v1 ∧ v2
matches the orientation of T . Apparently, E(T ) and E(−T ) are both bundles
over χ(T ), and are both isomorphic to Ẽ(T ). However, it will be of conceptual
convenience for latter calculations to distinguish E(T ) from E(−T ).

There is a fiber-wise pairing 〈 , 〉 defined on E(T )×E(−T ) as follows. Given
e ∈ E(T ), e′ ∈ E(−T ) such that p(e) = p(e′), choose an arbitrary positive basis
~v = (v1, v2) ofH1(T ) and hence ~v′ := (−v1, v2) is a positive basis ofH1(−T ), and
write e = [α, β; z]~v, e

′ = [−α, β; z′]~v′ (or e′ = [α,−β; z′]−~v′). Then 〈e, e′〉 := zz′.
It can be checked that the pairing is well defined.

Lastly, the above notions can be generalized to multiple tori in a natural
way. Let S = ⊔k

i=1Ti be a disjoint union of k oriented tori. Then χ(S) =
χ(T1) × · · · × χ(Tk). The group Hk acts on (C2)k component-wise and the
quotient is a ‘coordinate-version’ of χ(S). The action of Hk can also be lifted
to (C2)k × C∗ where the i-th component Hi in Hk acts on the i-th copy of C2

in (C2)k times C∗, and E(T ) is the quotient of (C2)k × C∗ by this action. For
n ≤ k, similar to the pairing above, there is a generalized ‘pairing’:

E(T1 ⊔ · · · ⊔ Tk)× E(−T1 ⊔ · · · ⊔ −Tm) → E(Tm+1 ⊔ · · · ⊔ Tk).

With the above notations, we recall several theorems in [12]. LetX be an ori-
ented compact 3-manifold with toral boundaries ∂X = ⊔k

i=1Ti and ρ : π1(X) →
SL(2,C) be a holonomy representation. It is well-known that CS(ρ) in Equation
2 is not well defined since X has boundary. Let

cX(ρ) = e2πiCS(ρ).

Theorem 2.3 (Theorem 3.2 of [12]). The Chern-Simons invariant defines a
lifting cX : χ(X) −→ E(∂X) of the restriction map r from the character variety
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of X to the character variety of ∂X ,

E(∂X)

χ(X) χ(∂X)

p
cX

r

Moreover, if Y = X1 ∪X2 is a closed oriented 3-manifold such that X1 and X2

are glued along toral boundaries ∂X1 = −∂X2, then for χ ∈ χ(Y ), we have

e2πiCS(χ) = 〈cX1(χ1), cX2 (χ2)〉,

where χi denotes the restriction of χ on Xi.

The following theorem is also due to [12] which the authors proved for the
case of SU(2) representations (Theorem 2.7), but an almost identical proof also
works for SL(2,C) representations.

Theorem 2.4. Let X be an oriented 3-manifold with toral boundaries ∂X =
⊔k
i=1Ti and ρ(t) : π1(X) → SL(2,C) be a path of representations. Let (αi(t), βi(t))

be a lift of χ ◦ ρ(t)|Ti
to C2 with respect to some basis of H1(Ti). Suppose

cX(ρ(t)) = [α1(t), β1(t), · · · , αk(t), βk(t); z(t)]

Then

z(1)z(0)−1 = exp


2πi

k∑

j=1

∫ 1

0

(αj

dβj

dt
− βj

dαj

dt
)




In particular, if ρ(1) is the trivial representation, then

cX(ρ(0)) =

[
α1(0), β1(0), · · · , αk(0), βk(0); exp

(
−2πi

k∑

j=1

∫ 1

0

(αj

dβj

dt
−βj

dαj

dt
)
)]

The following two facts are proved for SU(2) representations in [12] (Theo-
rems 4.1 and 4.2, respectively). Similar methods combined with Theorems 2.3
and 2.4 above show that they also hold for SL(2,C) representations.

Fact 1 Let X be an oriented 3-manifold with toral boundaries ∂X = ⊔n
i=1Ti.

Assume H1(X) is torsion free. Choose a positive basis (µi, λi) for H1(Ti). Let
{xj | j = 1, · · · ,m} be a basis of H1(X) and µi =

∑
aijxj , λi =

∑
bijxj . Sup-

pose that ρ : π1(X) → SL(2,C) is an Abelian representation and Tr(ρ(xj)) =
e2πiγj + e−2πiγj for some γj ∈ C. Then

cX(ρ) =
[ ∑

a1jγj ,
∑

b1jγj , · · · ,
∑

anjγj ,
∑

bnjγj ; 1
]

Fact 2 Let F be a genus g oriented surface with k punctures. The fundamental
group of F has the presentation,

π1(F ) = 〈a1, b1, · · · , ag, bg, x1, · · · , xk | [a1, b1] · · · [ag, bg]x1 · · ·xk = 1〉,
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where xj corresponds to the oriented boundary (induced from F ) of the j-th
puncture. Let Y = F × S1 be endowed with the product orientation and let
h̃ = ∗ × S1 be the central element of π1(Y ) corresponding to the oriented S1

component. Then ∂Y = ⊔k
j=1Tj with Tj the torus corresponding to the j-th

puncture and (xj , h̃) is a positive basis for H1(Tj). Suppose ρ : π1(Y ) −→
SL(2,C) is a non-Abelian representation, which implies Tr(ρ(h̃)) = 2 cos 2πβ
for some β ∈ {0, 12}. Suppose Tr(ρ(xj)) = e2πiαj + e−2πiαj for some αj ∈ C.
Then

cY (ρ) =

[
α1, β, · · · , αn, β; exp

(
−2πiβ

k∑

j=1

αj

)]
.

Note that cY (ρ) does not change under the replacement of some αj by −αj .
The rest of the subsection is devoted to the proof of Proposition 2.1.

Proof. Let Y = F × S1 be as in Fact 2 above with the chosen generators xj

and h̃. Set h = h̃−1. Then X is obtained from Y by gluing k solid tori where
the j-th solid torus Aj is glued along Tj by sending the meridian to x

pj

j hqj .
The generators xj and h match those as presented in Equation 1. Choose a
meridian-longitude pair (µj , λj) for Aj such that (µj , λj) is a positive basis of
H1(∂Aj). The gluing of Aj to Y provides the transition of basis,

(µj , λj) = (xj , h)

(
pj rj
qj sj

)
.

Since ρ is non-Abelian, ρ(h) is ±I. By assumption,

Tr(ρ(xj)) = exp(
2πinj

pj
) + exp(−2πinj

pj
), Tr(ρ(h)) = 2 cos(2πm), m = 0,

1

2
.

Therefore,

cY (ρ) =
[n1

p1
,−m, · · · , nk

pk
,−m; exp(2πim

k∑

j=1

nj

pj
)
]
(x1,−h;··· ;xk,−h)

cAj
(ρ) = [0,

rjnj

pj
+ sjm; 1](µj ,λj)

= [−qj(
rjnj

pj
+ sjm), rjnj + sjpjm; 1](xj,h)

= [
nj

pj
− sjαj ,m+ rjαj ; 1], (setting αj = nj + qjm)

=

[
nj

pj
− sjαj ,m; exp

(
2πi(rjαj)(

nj

pj
− sjαj)

)]

=

[
nj

pj
,m; exp

(
2πi(rjαj)(

nj

pj
− sjαj) + 2πi(sjαj)m

)]

11



Note that the relation x
pj

j hqj = 1 implies that αj must be an integer. Applying
the pairing on cY (ρ) and each cAj

(ρ) one by one, we obtain,

CS(ρ) =

k∑

j=1

(rjαj

nj

pj
+ sjαjm+m

nj

pj
)

=
k∑

j=1

(rjn2
j

pj
+ sjm(nj + αj)

)

=

k∑

j=1

(
rjn

2
j

pj
− sjqjm

2).

2.4 Adjoint Reidemeister torsion

The Reidemeister torsion (R-torsion) τ(X) of a cellulation KX of a manifold

X uses the action of the fundamental group π1(X) on the universal cover K̃X

to measure the complexity of the cellulation of X . It is a topological invariant
of X from determinants of matrices obtained from the incidences of the cells
of K̃X . The R-torsion makes essential use of the bases in the chain complex of
the universal cover, while the homology and homotopy groups do not see the
geometric information encoded in the based chain complex. For our purpose,
we need the non-Abelian generalization of R-torsion twisted by a representation
ρ : π1(X) → G for some semi-simple Lie group G, in particular the adjoint
Reidemeister torsion for the adjoint representation of SL(2,C). We recall some
basics here, for more details, please refer to [14] and [18].

Let

C∗ = (0 −→ Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0 −→ 0)

be a chain complex of finite dimensional vector spaces over the field C. Choose
a basis ci of Ci and a basis hi of the i-th homology group Hi(C∗). The torsion
of C∗ with respect to these choices of bases is defined as follows. For each i, let
bi be a set of vectors in Ci such that ∂i(bi) is a basis of Im(∂i) and let h̃i denote
a lift of hi in Ker(∂i). Then the set of vectors b̃i := ∂i+1(bi+1)⊔ h̃i⊔ bi is a basis
of Ci. Let Di be the transition matrix from ci to b̃i. To be specific, each column
of Di corresponds to a vector in b̃i being expressed as a linear combination of
vectors in ci. Define the torsion

τ(C∗, c∗, h∗) :=

∣∣∣∣∣

n∏

i=0

det(Di)
(−1)i+1

∣∣∣∣∣

Remark 2.5. A few remarks are in order.

• The torsion, as it is denoted, does not depend on the choice of bi and the
lifting of hi.
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• Here we define the torsion as the norm of the usual torsion, thus we do
not need to deal with sign ambiguities.

Let X be a finite CW-complex and (V, ρ) be a homomorphism ρ : π1(X) −→
SL(V ). The vector space V turns into a left Z[π1(X)]-module. The universal
cover X̃ has a natural CW structure from X , and its chain complex C∗(X̃) is a
free left Z[π1(X)]-module via the action of π1(X) as covering transformations.
View C∗(X̃) as a right Z[π1(X)]-module by σ.g := g−1.σ for σ ∈ C∗(X̃) and
g ∈ π1(X). We define the twisted chain complex C∗(X ; ρ) := C∗(X̃)⊗Z[π1(X)]V .
Let {eiα}α be the set of i-cells of X ordered in an arbitrary way. Choose a lifting
ẽiα of eiα in X̃ . It follows that Ci(X̃) is generated by {ẽiα}α as a free Z[π1(X)]-
module (left or right). Choose a basis of {vγ}γ of V . Then ci(ρ) := {ẽiα ⊗ vγ}
is a C-basis of Ci(X ; ρ).

Definition 2.6. Let ρ : π1(X) −→ SL(V ) be a representation.

1. We call ρ acyclic if C∗(X ; ρ) is acyclic. Assume ρ is acyclic. The torsion
of X twisted by ρ is defined to be,

τ(X ; ρ) := τ

(
C∗(X ; ρ), c∗(ρ)

)
.

2. Let Adj : SL(V ) → SL(sl(V )) be the adjoint representation of SL(V ) on
its Lie algebra sl(V ). We call ρ adjoint acyclic if Adj◦ρ is acyclic. Assume
ρ is adjoint acyclic. Define the adjoint Reidemeister torsion of ρ to be,

Tor(X ; ρ) := τ(X ; Adj ◦ ρ).

Remark 2.7. In this paper, we will only deal with the adjoint Reidemeister
torsion ρ. For that matter, we simply call it the torsion of ρ. When no confusion
arises, we abbreviate Tor(X ; ρ) as Tor(ρ).

The following tool will be useful in computing torsions.
Multiplicativity Lemma Let 0 −→ C′

∗ −→ C∗ −→ C′′
∗ −→ 0 be an exact

sequence of chain complexes. Assume that C∗, C
′
∗, C

′′
∗ are based by c∗, c

′
∗, c

′′
∗ ,

respectively, and their homology groups based by h∗, h
′
∗, h

′′
∗ , respectively. Asso-

ciated to the short exact sequence is the long exact sequence H∗ in homology

· · · −→ Hj(C
′
∗) −→ Hj(C∗) −→ Hj(C

′′
∗ ) −→−→ Hj−1(C

′
∗) −→ · · ·

with the reference bases. For each i, identify c′i with its image in Ci and arbi-
trarily choose a preimage c̃′′i of c′′i in Ci. If the transition matrix between the
bases ci and c′i ⊔ c̃′′i has determinant ±1, we call c∗, c

′
∗, c

′′
∗ compatible. In this

case, we have

τ(C∗, c∗, h∗) = τ(C′
∗, c

′
∗, h

′
∗) τ(C

′′
∗ , c

′′
∗ , h

′′
∗) τ(H∗, {h∗ ⊔ h′

∗ ⊔ h′′
∗}).
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2.5 Modular data from three manifolds

The modular data of an MTC or a pre-modular category consist of the modular
S- and T - matrices. Given a three manifold X with certain conditions, [4]
contains an algorithm for choosing the T -matrix and the first row of the S-
matrix, i.e. all quantum dimensions. The next step for the full S-matrix is
a trial-and-error algorithm based on finding the right loop operators for each
simple object. When all the loop operators are given, then the modular data
can be computed. There are no general algorithms to define loop operators, but
in the cases of SFSs and SOL manifolds, we find the relevant loop operators
completely.

2.5.1 From adjoint-acyclic non-Abelian characters to simple object

types

Each premodular category has a label set—the isomorphism classes of the simple
objects, and a label is an isomorphism class of simple objects, so we will refer
to a label also as a simple object type. In physics, an anyon model is a unitary
MTC and a label is called an anyon type or a topological charge.

A candidate label from a three manifold X and SL(2,C) is morally an ir-
reducible representation of the fundamental group π1(X) to SL(2,C). But the
precise definition is more subtle and based on our examples later, we make
the following definition. In particular, we discover that reducible but indecom-
posable representations cannot be discarded and play important roles in the
construction of premodular categories from torus bundles over the circle. Our
definition is specific for representations to SL(2,C) and we expect an appropriate
generalization is needed for other Lie groups such as SL(n,C), n ≥ 3.

Definition 2.8. Let χ ∈ χ(X) be an SL(2,C)-character of a three manifold X .

• χ is non-Abelian if at least one representation ρ : π1(X) → SL(2,C) with
character χ is non-Abelian, i.e. ρ has non-Abelian image in SL(2,C). The
set of all non-Abelian characters of X is denoted by χnab(X).

• A non-Abelian character χ is adjoint-acyclic if each non-Abelian represen-
tation ρ : π1(X) → SL(2,C) with character χ is adjoint-acyclic, namely,
the chain complex associated with the universal cover X̃ twisted by Adj◦ρ
is acyclic (see Definition 2.6), and furthermore, the adjoint Reidemeister
torsion of all such non-Abelian representations with character χ are the
same.

• A candidate label is an adjoint-acyclic non-Abelian character.

• A candidate label set L(X) from a three manifolds X is a finite set of
adjoint-acyclic non-Abelian characters in χ(X) with a pre-chosen charac-
ter such that the difference of the CS invariant of each character L(X)
with that of the pre-chosen character is a rational number.

The pre-chosen character is the candidate tensor unit.
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Note that by definition, the adjoint Reidemeister torsion is well-defined for
adjoint-acyclic non-Abelian characters. The CS invariant only depends on char-
acters, and is hence also well-defined for such characters.

In this paper, our candidate label set is in general maximal in the sense
it consists of all the adjoint-acyclic non-Abelian characters of the given three
manifold. It is also true that the CS invariants of all the candidate labels
including the candidate tensor unit are all rational in our examples. We are not
aware of any example of a candidate label set for which not all CS invariants
are rational numbers.

2.5.2 Vacuum choices, loop operators, and modular data

Each simple object x of a premodular category B has a quantum dimension dx
and a topological twist θx. The set Td(B) := ∪i∈L(B){dxi

, θxi
} will be called

the twist-dimension set of B, where L(B) is the label set of B and {xi, i ∈ L(B)}
form a complete representative set of simple objects of B. A candidate label
set of a three manifold X will lead to a candidate twist-dimension set in the
following.

The choice of a tensor unit or vacuum from a collection of adjoint-acyclic
non-Abelian characters is not unique in general and it is known that different
choices could produce different premodular categories. Once a vacuum is chosen,
then the adjoint Reidemeister torsion of each character is scaled to the absolute
value of normalized quantum dimension and the difference of the CS invariant
of the character with that of the vacuum is the conformal weight of the simple
object up to a sign3.

Given a three manifold X and a Lie group G, a central representation of
π1(X) is a homomorphism from π1(X) to the center Z(G) of G. For G =
SL(2,C), a central representation of π1(X) is simply a homomorphism from
π1(X) to Z2. The group of central representations can be identified with
H1(X,Z2). A central representation σ ∈ H1(X,Z2) of π1(X) naturally acts
on R(X) by tensoring ρ ∈ R(X), i.e. by sending ρ to ρ⊗ σ. Moreover, this ac-
tion induces an action of central representations on the character variety χ(X).

Definition 2.9. 1. Given a candidate label set L(X) from a three manifold
X , a central representation σ is bosonic with respect to L(X) if the action
of σ keeps L(X) invariant and preserves the CS invariant of every candi-
date label. If the action of σ changes the CS invariants of all candidate
labels in L(X) by either 0 or 1

2 , then χ is called fermionic if it is not
bosonic.

2. Two candidate labels are centrally related if they are in the same orbit
under the action of H1(X,Z2) and they have the same CS and torsion
invariant.

3The sign and hence the negative sign in front of CS invariant below is not important and
the choice is made to be the same as in [4].
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Given a candidate label set L(X) of X that is invariant under the action
of H1(X,Z2), the candidate symmetric center s(X) consists of all characters in
L(X) that are centrally related to the candidate tensor unit. Let G0(X) be the
maximal subgroup of H1(X,Z2) such that G0(X) maps the candidate tensor
unit onto s(X). The action of G0(X) separates L(X) into orbits {O0, · · · , Om},
where each subset Oi of L(X) consists of candidate labels that are centrally
related to each other, and O0 is the subset for the candidate vacuum.

We often represent a candidate label (a character) by arbitrarily choosing a
representative (a representation of π1(M)) for it.

Definition 2.10. A candidate label set L(X) = {ρα} of a three manifold X
with ρ0 the candidate vacuum is admissible if the following two equations hold
with the notations as above:

∑

ρα∈L(X)

1

2Tor(ρα)
= 1, (4)

∣∣∣∣∣
∑

α

exp(−2πiCS(ρα))

2Tor(ρα)

∣∣∣∣∣ =
1

sL

√
|s(X)|√

2Tor(ρ0)
, (5)

where sL = 1 if all central representations in Go(X) are bosonic and sL =
√
2

if there is a fermionic one.

The conditions above are derived from the conjecture that the Mueger center
of the potential premodular category is a collection of Abelian anyons param-
eterized by the subset O0. In the condensed category, each subset Oi will be
identified into a single composite object which has the same quantum dimen-
sion as that of any simple object in Oi and which splits into a number of simple
objects of the same quantum dimension. The resulting condensed category is
either modular or super-modular depending on if there is a fermion in the can-
didate Mueger center. In a particular case when X is a Z2 homology sphere,
that is, H1(X,Z2) = 0, Equation 5 reduces to,

∣∣∣∣∣
∑

α

exp(−2πiCS(ρα))

2Tor(ρα)

∣∣∣∣∣ =
1√

2Tor(ρ0)
. (6)

Given an admissible candidate label set L(X) with the chosen candidate
tensor unit ρ0, then the candidate twist-dimension set is constructed as follows:

θα = e−2πi(CS(ρα)−CS(ρ0)), (7)

D2 = 2Tor(ρ0) (8)

d2α =
D2

2Tor(ρα)
, (9)

where D2 is the total dimension squared of the candidate premodular category.
Next, we discuss the construction of the S-matrix.
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Definition 2.11. Given a three manifold X , a primitive loop operator of X is
a pair (a,R), where a is a conjugacy class of the fundamental group π1(X) of
X and R a finite dimensional irreducible representation of SL(2,C).

Given an SL(2,C)-representation ρ of π1(X) and a primitive loop opera-
tor (a,R), then the weight of the loop operator (a,R) with respect to ρ is
Wρ(a,R) := TrR(ρ(a)). Denote by Symj the unique (j + 1)-dimensional irre-
ducible representation of SL(2,C). Then Wρ(a, Sym

j) can be computed from
the Chebyshev polynomial ∆j(t) defined recursively by,

∆j+2(t) = t∆j+1(t)−∆j(t), ∆0(t) = 1,∆1(t) = t. (10)

Explicitly,

Wρ(a, Sym
j) = ∆j(t), t = Wρ(a, Sym

1) = Tr(ρ(a)). (11)

From the above two equations, it follows that Wρ(a, Sym
j) only depends on the

character χ induced by ρ. It is direct to check that,

∆j(2 cos θ) = sin((j + 1)θ)/ sin θ, ∆j(−t) = (−1)j∆n(t). (12)

A fundamental assumption in constructing the S-matrix is that each candi-
date label ρα should correspond to a finite collection of primitive loop operators:

ρα 7→ {(aκα, Rκ
α)}κ. (13)

Obtaining the above correspondence involves a guess-and-trial process as fol-
lows. With a guess in hand and a choice ǫ = ±1, we define the W -symbols

Wβ(α) :=
∏

κ

Wǫ ρβ
(aκα, R

κ
α) =

∏

κ

TrRκ
α
(ǫ ρβ(a

κ
α)), ρα, ρβ ∈ L(X). (14)

The W -symbols and the un-normalized S-matrix S̃ = DS are related by,

Wβ(α) =
S̃αβ

S̃0β

or S̃αβ = Wβ(α)W0(β), (15)

where 0 denotes the tensor unit ρ0. In particular, the quantum dimension

dα = W0(α) (16)

Hence, we can try to guess a correspondence between candidate labels and
loop operators so that the quantum dimension computed by Equation 16 matches
(in absolute value) with that computed by Equation 9.

We expect that the resulting modular data corresponds to a MTC if and only
if H1(X,Z2) = 0. Note that, this is purely a topological condition, independent
of the choice of loop operators. Hence, if H1(X,Z2) = 0, we can also validate a
choice of the loop operators by checking whether the resulting S and T matrices
define a representation to SL(2,Z).
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3 Modular tensor categories from Seifert fibered

spaces

In this section, we consider SFSs with three singular fibers and construct mod-
ular data associated with premodular categories. Throughout the section, set
M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}, where each pair (pk, qk) are co-prime.
So the underlying 2-manifold of the orbit surface Σ has genus 0 and both M
and Σ are orientable.

3.1 Character varieties of Seifert fibered spaces

For M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}, its fundamental group has the fol-
lowing presentation,

π1(M) = 〈x1, x2, x3, h |xpk

k hqk = 1, xkh = hxk, x1x2x3 = 1, k = 1, 2, 3 〉

We look for all non-Abelian characters of π1(M) to G = SL(2,C).
Let ρ : π1(M) → G be a non-Abelian representation. Since h is in the center

of π1(M) and ρ is non-Abelian, ρ(h) must be ±I. It follows that each ρ(xk)
has finite order, and is diagonalizable in particular. Moreover, any ρ(xk) does
not commute with another ρ(xj). This implies neither ρ(xk) can be ±I. Up to
conjugation, we assume ρ(xk) take the following form (writing ρ(xk) simply as
xk),

x1 =

(
eiα1 0
0 e−iα1

)
, x2 =

(
a b
c d

)
∼
(
eiα2 0
0 e−iα2

)
, x3 ∼

(
eiα3 0
0 e−iα3

)
(17)

where 0 < αk < π, ad − bc = 1, and b and c are not simultaneously zero. We
have the following linear equations for a and d.

Tr(x2) = eiα2 + e−iα2 = a+ d (18)

Tr(x3) = eiα3 + e−iα3 = aeiα1 + de−iα1 (19)

Hence, given the α′
ks, or equivalently Tr(xk), a and d are uniquely determined,

and a = d̄. Moreover, when |a| 6= 1 implying bc 6= 0, this also determines ρ up
to conjugacy. When |a| = 1 implying bc = 0, there are precisely two conjugacy
classes with

x2 =

(
a 1
0 ā

)
or x2 =

(
a 0
1 ā

)
(20)

It can be checked that these two representations are complex conjugate to each
other up to conjugacy, and that their characters take real values. They give
rise to the same character. There are two types of non-Abelian representations.
One type is irreducible satisfying b, c 6= 0. Characters of representations of
this type one-to-one correspond to conjugacy classes of representations [7]. The
other type is reducible with exactly one of b, c zero. Each character of this type
corresponds to two conjugacy classes.
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To summarize, the triple (α1, α2, α3) and Tr(h) uniquely determine the char-
acter. Next, we find all possible such triples.

If h = I, each eiαk is a pk-th root of 1. If h = −I, then eiαk is a pk-
th root of 1 if qk is even, and a pk-th root of −1 if qk is odd. We claim all
triples satisfying the above conditions can be realized by some representations.
Indeed, given such a triple (α1, α2, α3), we define ρ(x1) and ρ(x2) as in Equation
17 and let ρ(x3) := (ρ(x1)ρ(x2))

−1. Equations 18, 19 determine a and d, and
we arbitrarily choose b and c such that ad − bc = 1. Again, Equations 18, 19
guarantee that ρ(xk) so defined has eigenvalues e±iαk , and therefore they satisfy
all the relations in the presentation of π1(M).

Set αk = 2πnk

pk
and ρ(h) = e2πiλI, λ = 0, 1

2 . If λ = 0 or if λ = 1
2 and qk

is even, then nk is an integer strictly between 0 and pk

2 . If λ = 1
2 and qk is

odd, then nk is a proper half integer strictly between 0 and pk

2 . The quadruple
(n1, n2, n3, λ) completely characterizes a character.

For an integer p > 0, denote by [0 · · · p] the set of integers {0, 1, · · · , p}, and
by [0 · · · p]e (resp. [0 · · · p]o) the subset of even (resp. odd) integers in [0 · · · p].
The non-Abelian character variety of M is given as follows,

χnab(M) =

{(
j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
1

2

)
| jk ∈ [0 · · · pk − 2]ǫk

}

⊔
{(

j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
, 0

)
| jk ∈ [0 · · · pk − 2]o

}
,

(21)

where ǫk = ‘e’ if qk is odd, and ǫk = ‘o’ otherwise. For (n1, n2, n3, λ) ∈ χnab(M),

a corresponding representation ρ has e
± 2πink

pk as the eigenvalue of ρ(xk) and
ρ(h) = e2πiλI.

The size of χnab(M) is

|χnab(M)| = ⌊p1
2
⌋⌊p2

2
⌋⌊p3

2
⌋+ ⌊p1 − 1

2
⌋⌊p2 − 1

2
⌋⌊p3 − 1

2
⌋,

where ⌊x⌋ is the greatest integer less than or equal to x.
For instance, if all the q′ks are odd, then χnab(M) can also be written as,

χnab =

{(j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
(j1 + 1) mod 2

2

)

| jk ∈ [0 · · · pk − 2], j1 = j2 = j3 mod 2

}

3.2 Torsion of Seifert fibered spaces

Freed computed torsions of Brieskorn homology spheres for the adjoint represen-
tations of irreducible SU(2) representations in [8]. Kitano computed torsions of
SFSs for irreducible SL(2,C) representations in [13]. However, we need to com-
pute torsions of SFSs for the adjoint representations of nonAbelian SL(2,C)
representations containing both irreducible and reducible ones. This may be
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known to experts, but we did not find a reference for explicitly doing so. To
make the paper self-contained, we provide a detailed derivation of these torsions,
generalizing the work of [8] and [13].

Let X be the SFS {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}. Decompose X as
∪3
i=0 Ai ∪B along ∪3

i=0 Ti where B = (S2 − 4pts)× S1, and B0, Bi(i = 1, 2, 3)
are solid tori attached to B by index 1, pi

qi
along T0, Ti, respectively. Let

ρ : π1(X) −→ SL(2,C) be a non-Abelian representation, V = sl(2,C) be the
adjoint representation of ρ with the basis

e1 =

(
0 1
0 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 0
1 0

)

From Section 3.1, ρ is parametrized by (n1, n2, n3, h) where 0 < ni <
pi

2 , ni ∈
1
2Z, h = 0, 1

2 . Assume that ri, si ∈ Z, such that pisi − riqi = 1.

Proposition 3.1. When ρ is nonAbelian, C∗(X)⊗Z[π1(X)] V is acyclic and

Tor(X ; ρ) =
p1p2p3∏3

i=1 4 sin
2 2πrini

pi

Proof. Denote C∗ ⊗Z[π1] V by C∗,ρ, twisted homology by H∗, and the matrix of
element in π1 under ρ by the same letter.

Given CW structure on X , we have the following exact chain sequence

0 −→
3⊕

i=0

C∗,ρ(Ti) −→
3⊕

i=0

C∗,ρ(Ai)⊕ C∗,ρ(B) −→ C∗,ρ(X) −→ 0

and long exact sequence

0 −→ H3(Ti) −→ H3(Ai, B) −→ H3(X) −→ · · ·
−→ H0(Ti) −→ H0(Ai, B) −→ H0(X) −→ 0

Construct cell structure as follows.

C0(B) =< vB >,C0(Ti) =< vTi
>,C0(Ai) =< vAi

>

C1(B) =< x1, x2, x3, h >,C1(Ti) =< mi, li >,C1(Ai) =< bi >

C2(B) =< u1,B, u2,B, u3,B >,C2(Ti) =< uTi
>

where v∗ are base points of connected spaces, xi generate π1(S
3 − 4pts), h =

∗×S1 ∈ π1(S
3−4pts×S1), mi, li are meridians and longitudes of Ti respectively,

bi are longitudes of boundary of Ai, ui,B are squares with boundary xihx
−1
i h−1,

uTi
are squares with boundary milim

−1
i l−1

i . Ti(i = 1, 2, 3) are attached to

xi × h by identity map and boundary of Ai by

(
si −qi
−ri pi

)
. T0 is attached to

x1x2x3 × h and boundary of A0 by identity map. x1, x2, x3, h generate π1(X)
as follows.

π1(X) =< x1, x2, x3, h|xpihqi = 1, xih = hxi, x1x2x3 = 1 >
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For matrix under ρ, we have

xi ∼



ζi 0 0
0 1 0
0 0 ζ−1

i


 , h = I

where ζi is a pi-th root of unity. mi = xi, bi = xri
i , li = h. Here we use 1-cell

with ends points attached as element in π1.
The work of [8] can be generalized to irreducible representations of SL(2,C).

Thus we focus on reducible and nonAbelian representations. According to 20,
taking upper triangular ones for example, they have the following form.

x1 =

(
a1 0
0 a−1

1

)
, x2 =

(
a2 1
0 a−1

2

)
, x3 =

(
a−1
1 a−1

2 −a1
0 a1a2

)

where a1, a2, a3 = a−1
1 a−1

2 are roots of 1 or −1.
For joint representation, we have

x1 =



a−2
1 0 0
0 1 0
0 0 a21


 , x2 =



a−2
2 2a−1

2 −1
0 1 −a2
0 0 a22




x3 =



a21a

2
2 −2a2 −a−2

1

0 1 a−2
1 a−1

2

0 0 a−2
1 a−2

2


 (22)

Let w±
i be the eigenvectors of xi for eigenvalue ζi = a−2

i = e
4πini

pi , ζ−1
i =

e
− 4πini

pi respectively and w0
i be the eigenvector of xi for eigenvalue 1. Then w±

i

are the eigenvectors of xr
i for ζrii and w0

i be the eigenvector of xri
i for 1. By

scaling, assume that |[w±
i w

0
i ]| = 1 in V . According to 22 , w±

1 , w
−
2 is a basis of

V . Similarly, for lower triangular ones in 20, w±
1 , w

+
2 is a basis of V .

For Ti(i = 1, 2, 3), we have

0 −→ C2,ρ(Ti)
∂2−→ C1,ρ(Ti)

∂1−→ C0,ρ(Ti) −→ 0

where

∂2 =

(
O

xi − I

)
, ∂1 =

(
xi − I O

)

We have

H2(Ti) =< ũTi
⊗ w0

i >

H1(Ti) =< m̃i ⊗ w0
i , l̃i ⊗ w0

i >

H0(Ti) =< ṽTi
⊗ w0

i >

21



Choose preference basis h∗ for H∗(Ti) as above and similarly with others.
Without confusion, we omit h∗ in the expression as c∗.

τ(C∗,ρ(Ti)) = | [l̃i ⊗ (xi − I)w±
i , m̃i ⊗ w0

i , l̃i ⊗ w0
i , m̃i ⊗ w±

i ]

[ũTi
⊗ w0

i , ũTi
⊗ w±

i ][ṽTi
⊗ w0

i , ṽTi
⊗ (xi − I)w±

i ]
|

= | [l̃i ⊗ (ζ±1
i − 1)w±

i , m̃i ⊗ w0
i , l̃i ⊗ w0

i , m̃i ⊗ w±
i ]

[ũTi
⊗ w0

i , ũTi
⊗ w±

i ][ṽTi
⊗ w0

i , ṽTi
⊗ (ζ±1

i − 1)w±
i ]

|

= 1 (23)

For T0, we have ∂2 = 0, ∂1 = 0.

H2(T0) =< ũT0 ⊗ ei > (i = 1, 2, 3)

H1(T0) =< m̃0 ⊗ ei, l̃0 ⊗ ei >

H0(T0) =< ṽT0 ⊗ ei >

τ(C∗ρ(T0)) = 1 (24)

For Ai(i = 1, 2, 3), we have

0 −→ C1,ρ(Ai) −→ C0,ρ(Ai) −→ 0

where ∂1 = xri
i − I.

We have

H1(Ai) =< b̃i ⊗ w0
i >

H0(Ai) =< ṽAi
⊗ w0

i >

τ(C∗,ρ(Ai)) = | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]

[ṽAi
⊗ (xri

i − I)w±
i , ṽAi

⊗ w0
i ]
|

= | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]

[ṽAi
⊗ (ζ±ri

i − 1)w±
i , ṽAi

⊗ w0
i ]
|

=
1

|ζrii − 1||ζ−ri
i − 1|

(25)

For A0, we have ∂1 = 0.

H1(A0) =< b̃0 ⊗ ei > (i = 1, 2, 3)

H0(A0) =< ṽA0 ⊗ ei >

τ(C∗ρ(A0)) = 1 (26)

For B, we have

0 −→ C2,ρ(B)
∂2−→ C1,ρ(B)

∂1−→ C0,ρ(B) −→ 0
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where

∂2 =




O O O
O O O
O O O

x1 − I x2 − I x3 − I


 , ∂1 =

(
x1 − I x2 − I x3 − I O

)

We have

H2(B) =< ũi,B ⊗ w0
i , (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1)⊗ ei > (i = 1, 2, 3)

H1(B) =< x̃i ⊗ w0
i , (x̃1 + x̃2x1 + x̃3x2x1)⊗ ei >

τ(C∗,ρ(B))

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , ũ2,B ⊗ w−
2 ]

−1

[ṽB ⊗ (x1 − I)w±
1 , , ṽB ⊗ (x2 − I)w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ (x1 − I)w±

1 , h̃⊗ (x2 − I)w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]

−1

[ṽB ⊗ (ζ±1
1 − 1)w±

1 , ṽB ⊗ (ζ−1
2 − 1)w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ (ζ±1

1 − 1)w±
1 , h̃⊗ (ζ−1

2 − 1)w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ⊗ ei, ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]

−1[ṽB ⊗ w±
1 , ṽB ⊗ w−

2 ]
−1

[x̃i ⊗ w0
i , x̃⊗ ei, h̃⊗ w±

1 , h̃⊗ w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= 1 (27)

where x̃ = x̃1 + x̃2x1 + x̃3x2x1, ũ = ũ1,B + ũ2,Bx1 + ũ3,Bx2x1.
In the long exact sequence for twisted homology group, we have isomor-

phisms
0 −→ H∗(Ti) −→ H∗(Ai, B) −→ 0

Then C∗,ρ(X) is acyclic as follows.
We have

0 −→
3⊕

i=0

H0(Ti) −→
3⊕

i=0

H0(Ai) −→ 0

where ∂(ṽTi
⊗ w0

i ) = ṽAi
⊗ w0

i , ∂(ṽT0 ⊗ ei) = ṽA0 ⊗ ei, det(∂) = 1.

0 −→
3⊕

i=0

H1(Ti) −→
3⊕

i=0

H1(Ai)⊕H1(B) −→ 0

where ∂(m̃i ⊗ w0
i ) = (x̃i − b̃iQi) ⊗ w0

i , ∂(l̃i ⊗ w0
i ) = b̃iPi ⊗ w0

i , ∂(m̃0 ⊗ ei) =

(x̃1+x̃2x1+x̃3x1x2)⊗ei, ∂(l̃0⊗ei) = b̃0⊗ei, Qi =
∑qi

j=1 x
−jri , Pj =

∑pi−1
j=0 xjri ,

det(∂) = p1p2p3.

0 −→
3⊕

i=0

H2(Ti) −→ H2(B) −→ 0
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where ∂(ũTi
⊗ w0

i ) = ũi,B ⊗ w0
i , ∂(ũ0 ⊗ ei) = (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1) ⊗ ei,

det(∂) = 1.
According to Multiplicativity lemma, Equations 23, 24, 25, 26, 27 and the

calculations about homology above, we have

Tor(C∗,ρ(X)) =
p1p2p3∏3

i=1 4 sin
2 2πrini

pi

3.3 Modular data from Seifert fibered spaces

We will show that the modular data constructed from 3-component SFSs are
related to the Temperley-Lieb-Jones categories at root of unit. So let us collect
some basic facts about those. For references, see for instance [20].

Let A be a complex number such that A4 6= 1. For an integer n, define the

quantum integer [n]A = A2n−A−2n

A2−A−2 . So [0]A = 0, [1]A = 1, [2]A = A2 + A−2.

For each A, usually called the Kauffman variable, such that A4 is a primitive
r-th root of unity for some integer r ≥ 2, there is an associated premodular
category, called the Temperley-Lieb-Jones category and denoted by TLJ(A).
The category has the label set (simple objects) [0 · · · p− 2] where the label 0 is
the unit object. For i, j ∈ [0 · · · p− 2], the quantum dimension is

dj(A) = (−1)j[j + 1]A = (−1)j
A2j+2 −A−2j−2

A2 −A−2
,

the twist is
θj(A) = (−A)j(j+2) ,

and the (un-normalized) S-matrix is

S̃ij(A) = (−1)i+j [(i + 1)(j + 1)]A.

The total dimension can be computed directly,

D(A) =

√
2r

|A2 −A−2| .

Denote by TLJ(A)0 (resp. TLJ(A)0) the subcategory linearly spanned by even
(resp. odd) labels. We call TLJ(A)0 and TLJ(A)1 the even and odd subcategory
of TLJ(A), respectively.The even and odd subcategory has the same dimension,

both equal to D(A)√
2
.

It is well known that if A is a primitive 4r-th root of unity, then TLJ(A)
is non-degenerate. If r is odd and A is a primitive 2r-th root of unity, then
TLJ(A) is degenerate, but the even subcategory TLJ(A)0 is non-degenerate.

Now we consider the construction of modular data. As before, set M =
{0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}. Here each pair (pk, qk) are co-prime. Choose
integers sk and rk such that pksk − qkrk = 1. If qk is odd, set ck = pkqksk − rk.
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Otherwise, set ck = pkqksk − rk(pk − 1)2. Let Ak = − exp( 2πi4pk
ck). Note that

while ck depends on the choice of sk and rk, Ak does not. Moreover, Ak is a
primitive 4pk-th root of unity if qk is odd, a primitive 2pk-th root of unity if
qk = 0 mod 4, and a primitive pk-th root of unity if qk = 2 mod 4. In the
latter two cases, pk clearly must be odd. Hence, in all cases, A4

k is a primitive
pk-th root of unity.

If some q′ks are even, we re-arrange the elements of χnab(M) as follows. For
(p, q) co-prime, j ∈ [0 · · · p− 2], let

np,q(j) =

{
p−1−j

2 , q even and j even
j+1
2 , otherwise

Then from Equation 21, χnab(M) can also be written as
{
(np1,q1(j1), np2,q2(j2), np3,q3(j3),

1

2
) | jk ∈ [0 · · · pk − 2]e, k = 1, 2, 3

}

⊔
{
(np1,q1(j1), np2,q2(j2), np3,q3(j3), 0) | jk ∈ [0 · · · pk − 2]o, k = 1, 2, 3

} (28)

Thus, the elements of χnab(M) are indexed by ~j ∈ ∏3
k=1[0 · · · pk − 2]e ⊔∏3

k=1[0 · · · pk − 2]o. Given such a ~j = (j1, j2, j3), denote a corresponding repre-
sentation by ρ~j . (The choice of a representative is irrelevant.)

Proposition 3.1 shows that all non-Abelian characters of M are adjoint
acyclic and Proposition 2.1 shows that the CS invariants of non-Abelian char-
acters are all rational. We choose the candidate label set L(M) to be χnab(M).

We propose the correspondence between L(M) and loop operators by the
following map,

ρ~j 7→
{
(xck

k , Symjk) | k = 1, 2, 3
}
. (29)

Moreover, we designate ρ~0 = ρ(0,0,0) as the unit object, which of course corre-
sponds to the loop operator

1 = ρ~0 7→
{
(xck

k , Sym0) | k = 1, 2, 3
}
. (30)

The following two lemmas are direct consequences of Proposition 2.1 and
Proposition 3.1, respectively.

Lemma 3.2. Let M, ck, Ak be given as above. For each ~j = (j1, j2, j3) ∈∏3
k=1[0 · · · pk−2]e ⊔ ∏3

k=1[0 · · · pk−2]o with ρ~j a corresponding representation,
then

CS(ρ~j) =

3∑

k=1

−ck
4pk

(jk + 1)2. (31)

As a consequence,

e−2πiCS(ρ~j) =

3∏

k=1

(−Ak)
(jk+1)2 = (−A1A2A3)

3∏

k=1

θjk(Ak). (32)
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Lemma 3.3. LetM, ck, Ak be given as above and letD = D(A1)D(A2)D(A3)/2.

For each ~j = (j1, j2, j3) ∈
∏3

k=1[0 · · · pk − 2]e ⊔ ∏3
k=1[0 · · · pk − 2]o with ρ~j a

corresponding representation, then

Tor(ρ~j) =

3∏

k=1

pk

4 sin2(πrk(jk+1)
pk

)
, (33)

and hence,

(
2Tor(ρ~j)

)− 1
2 = 2

3∏

k=1

∣∣∣∣
djk(Ak)

D(Ak)

∣∣∣∣ =
|∏3

k=1 djk (Ak)|
D

. (34)

The main result of the section is the following theorem.

Theorem 3.4. Let M = {0; (p1, q1), (p2, q2), (p3, q3)} and {Ak}k=1,2,3 be given
as above. With the operators and tensor unit given in Equations 29 and 30,
respectively, the modular data constructed fromM matches that of the following
pre-modular category,

B :=
(
⊠

3
k=1TLJ(Ak)0

)⊕(
⊠

3
k=1TLJ(Ak)1

)

Proof. Since A4
k is a primitive pk-th root of unity, the label set for B is clearly

L :=
∏3

k=1[0 · · · pk − 2]e ⊔ ∏3
k=1[0 · · · pk − 2]o, the same index set for L(M).

The modular data of B can be easily expressed in terms of that of the individual
TLJ(Ak). For ~i,~j ∈ L,

d~j =

3∏

k=1

djk(Ak), θ~j =

3∏

k=1

θjk(Ak), S̃~i~j =

3∏

k=1

S̃ikjk(Ak).

Also, the total dimension of B is D = D(A1)D(A2)D(A3)/2.
Lemma 3.2 shows that, up to a global phase, the Chern-Simons invariant

gives the twist,
e−2πiCS(ρ~j) = θ~j,

and Lemma 3.3 shows that the torsion matches the absolute value of the nor-
malized quantum dimension,

(
2Tor(ρ~j)

)− 1
2 =

d~j
D

.

Lastly, We check the S-matrix computed from local operators. Given ~i =
(i1, i2, i3), ~j = (j1, j2, j3) ∈ L, we have (choosing ǫ = −1)

W~i(
~j) =

3∏

k=1

TrSymjk (−ρ~i(x
ck
k )).
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Note that,

Tr
(
ρ~i(x

ck
k )
)

= 2 cos
2npk,qk(ik)πck

pk
= 2 cos

(ik + 1)πck
pk

,

where the second equality holds irrelevant of the parity of qk. Combining the
previous two equations, we get

W~i(
~j) =

3∏

k=1

∆jk (−2 cos
(ik + 1)πck

pk
) =

3∏

k=1

(−1)jk
sin (ik+1)(jk+1)πck

pk

sin (ik+1)πck
pk

,

where ∆jk(·) is the Chebyshev polynomial (see Equation 12). Therefore, the

(~j,~i)-entry of the potential un-normalized S matrix is,

W~i(
~j)W~0(

~i) =

3∏

k=1

(−1)ik+jk
sin (ik+1)(jk+1)πck

pk

sin πck
pk

=

3∏

k=1

S̃(Ak)jkik ,

which is precisely S̃~j~i of B.

The premodular category produced in the previous theoremmay not be mod-
ular in general, and it depends crucially on the topology of the three manifold.
For a three-component SFS M , it is a Z2 homology sphere, i.e., H1(M,Z2) = 0,
if and only if

p1p2p3(
q1
p1

+
q2
p2

+
q3
p3

) ∈ 2Z+ 1

Lemma 3.5. Assume that r is odd. Suppose that

T (p, j, l, ∗) =
∑

m∈[p]∗

(
e(j+l)mr π

p
i − e(j−l)mr π

p
i − e(−j+l)mr π

p
i + e(−j−l)mr π

p
i
)

where ∗ = 1, 0, and [p]∗ denotes the set of odd integers from 1 to p− 1 if ∗ is 1
and the set of even integers in the same range otherwise.
When p is odd, j 6= l, j + l is odd,

T (p, j, l, ∗) =
{

0 j + l 6= p

(−1)∗p j + l = p

When p is odd, j 6= l, j + l is even,

T (p, j, l, ∗) = 0

When p is odd, j = l,
T (p, j, l, ∗) = −p
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When p is even, j 6= l, j + l is odd,

T (p, j, l, ∗) = 0

When p is even, j 6= l, j + l is even,

T (p, j, l, ∗) =
{

0 j + l 6= p

(−1)∗p j + l = p

When p is even, j = l,

T (p, j, l, 0) =

{
−p j + l 6= p

0 j + l = p

T (p, j, l, 1) =

{
−p j + l 6= p

−2p j + l = p

Proof. We prove the lemma by direct computation.
When p is odd, j 6= l, j + l is odd,

T (p, j, l, 1) =

p−2∑

m=1,m odd

(e(j+l)mr π
p
i − e(j−l)mr π

p
i + e(j−l)(p−m)r π

p
i − e(j+l)(p−m)r π

p
i)

=

p−2∑

m=1,m odd

(e(j+l)mr π
p
i − e(j−l)mr π

p
i) +

p−1∑

m=2, even

(e(j−l)mr π
p
i − e(j+l)mr π

p
i)

= −
p−1∑

m=1

(−e(j+l)r π
p
i)m +

p−1∑

m=1

(−e(j−l)r π
p
i)m

=

{
0 j + l 6= p

−p j + l = p

= −T (p, j, l, 0)

Similarly, we get other cases.

Proposition 3.6. Given a three-component SFS M , the premodular category
BM produced in Theorem 3.4 is modular if and only if M is a Z2 homology
sphere.

Proof. Since the structure from Section 3 respects the change of parametrization
of Seifert fiber space, it suffices to verify the following 5 cases for (p1

q1
, p2

q2
, p3

q3
).

(
odd

odd
,
odd

odd
,
odd

odd
), (

odd

odd
,
odd

odd
,
even

odd
), (

odd

odd
,
even

odd
,
even

odd
),

(
even

odd
,
even

odd
,
even

odd
), (

odd

odd
,
odd

odd
,
odd

even
)
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The first two cases correspond to Z2-homology sphere. In the following, we will
explicitly calculate S2, which directly implies the proposition.

When q1, q2, q3 are odd, j1 = j2 = j3 mod 2, l1 = l2 = l3 mod 2.
Up to a scalar,

S(j1,j2,j3),(l1,l2,l3) = (−1)j1+l1

3∏

k=1

sin jklkrk
π

pk

(S2)(j1,j2,j3),(l1,l2,l3)

=
∑

(m1,m2,m3)

(−1)j1+m1+m1+l1

3∏

k=1

sin jkmkrk
π

pk
sinmklkrk

π

pk

= (−1)j1+l1
∑

(m1,m2,m3)

3∏

k=1

−1

4
(e

(jk+lk)mkrk
π
pk

i − e
(jk−lk)mkrk

π
pk

i − e
(−jk+lk)mkrk

π
pk

i

+ e
(−jk−lk)mkrk

π
pk

i
)

= (−1)j1+l1(
∑

(m1,m2,m3),mi odd

+
∑

(m1,m2,m3),mi even

)...

= (−1)j1+l1(
3∏

k=1

T (pk, jk, lk, 1) +
3∏

k=1

T (pk, jk, lk, 0))

When p1, p2, p3 are odd,

(S2)(j1,j2,j3),(l1,l2,l3) =





0 (j1, j2, j3) 6= (l1, l2, l3)
p1p2p3
32

(j1, j2, j3) = (l1, l2, l3)

When p1, p2 are odd, p3 is even,

(S2)(j1,j2,j3),(l1,l2,l3) =





0 (j1, j2, j3) 6= (l1, l2, l3)
p1p2p3
32

(j1, j2, j3) = (l1, l2, l3)

Thus S2 = cI for the above two cases.
When p1 is odd, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =





p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,p2−1,p3−1),(l1,l2,l3) =





p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

29



When p1, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =





p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,p2−1,p3−1),(l1,l2,l3) =





p1p2p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

S2 is degenerate for above two cases.
When q1, q2 are odd, q3 is even, j1 = j2 mod 2, l1 = l2 mod 2, j3 = 0 mod 2,
l3 = 0 mod 2.

(S2)(j1,j2,j3),(l1,l2,l3) =
2∏

k=1

T (pk, jk, lk, 1)T (p3, j3, l3, 0) +
3∏

k=1

T (pk, jk, lk, 0)

When p1, p2, p3 are odd,

(S2)(1,1,2),(l1,l2,l3) =




−p1p2p3

32
(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

(S2)(p1−1,p2−1,2),(l1,l2,l3) =




−p1p2p3

32
(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

S2 is degenerate.

It is worth noting even if every TLJ(Ak) appearing in the construction of BM

in Theorem 3.4 is not modular, BM could still be modular. For instance, for the
SFS M0 = (0; (o, 0); (5, 1), (3, 2), (5, 4)), the corresponding Kauffman variables

are A1 = −e
iπ
10 , A2 = −e

iπ
3 , A3 = −e

2iπ
5 . It is direct to see that TLJ(A1) is

modular, but TLJ(A2) and TLJ(A3) are not. However, M0 is a Z2 homology
sphere, by Proposition 3.6, BM0 is modular, a rank-8 MTC.

3.4 Examples: Realization of SU(2)k

Here we study a special class of SFSs with three components, namely, M(r) :=
{0; (o, 0); (3, 1), (3, 1), (r, 1)}. We show explicitly that different choice of charac-
ters as the unit object may lead to different theories. In fact, it will be proved
that from M(r) we can construct either the MTC SU(2)r−2 or TLJ(e

2πi
4r ).

For each integer r ≥ 2, there is a unitary MTC, usually denoted by SU(2)r−2

[3], which is closely related to the Temperley-Lieb-Jones categories. Here r − 2

is called the level of the MTC. It has the same label set as TLJ(e
2πi
4r ), but
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differs from it in modular data by some signs. Explicitly, setting A = e
2πi
4r , the

modular data for SU(2)r−2 is given as follows,

θj = Aj(j+2) = e
2πi j(j+2)

4r ,

S̃ij = [(i + 1)(j + 1)]A =
sin (i+1)(j+1)π

r

sin π
r

.

In particular, its quantum dimensions are all positive (since it is unitary),

dj = [j + 1]A =
sin (j+1)π

r

sin π
r

,

and the total dimension is

D =

√
r

2

1

sin π
r

.

Note that dj = |dj(A)| and D = D(A), where dj(A) and D(A) are the quantum
dimension of j and total dimension of TLJ(A), respectively.

We will use notations from Section 3.1 and 3.3. The non-Abelian characters
of M(r) is given by

χnab(M(r)) =

{(
1

2
,
1

2
,
j + 1

2
,
1

2

)
| (0, 0, j) ∈ {0} × {0} × [0 · · · r − 2]e

}

⊔
{(

1, 1,
j + 1

2
, 0

)
| (1, 1, j) ∈ {1} × {1} × [0 · · · r − 2]o

}
.

(35)

Thus, each j ∈ [0 · · · r − 2] corresponds to a non-Abelian character indexed
by (j mod 2, j mod 2, j). We denote the corresponding representation by ρj
(instead of using the triple as the subscript). The eigenvalues of ρj(x3) are

e±
(j+1)πi

r . The eigenvalues of ρj(x1) and those of ρj(x2) are both e±
ajπi

3 , where
aj = 1 if j even and aj = 2 otherwise.

Also, it is direct to see that c1 = c2 = c3 = 1, and A1 = A2 = −e
πi
6 ,

A3 = −e
2πi
4r .

In Section 3.3, we chose the candidate label set L(M(r)) to be χnab(M(r)),
and defined the following map from χnab(M(r)) to local operators,

ρj = 7→
{
(x1, Sym

j mod 2), (x2, Sym
j mod 2), (x3, Sym

j)
}
. (36)

It can be checked directly that for i, j ∈ [0 · · · r − 2], Tr(ρi(x1)) = Tr(ρi(x2)) =
±1, and it follows that,

Wi(j) = TrSymj mod 2(−ρi(x1))TrSymj mod 2(−ρi(x2))TrSymj (−ρi(x3))

= TrSymj (−ρi(x3)).

Hence, we may as well choose a simplified map to local operators,

ρj 7→ {(x3, Sym
j)}. (37)

31



The unit object was chosen to be ρ0 which corresponds to the local operator
(x3, Sym

0). By Theorem 3.4, the modular data match that of the premodular
category,

BM(r) =
(
⊠

3
k=1TLJ(Ak)0

)⊕(
⊠

3
k=1TLJ(Ak)1

)
. (38)

Note that TLJ(A1) = TLJ(−e
πi
6 ) has label set {0, 1}, the twists θ0 = 1,

θ1 = i, and un-normalized S-matrix,

S̃ =

(
1 −1
−1 −1

)
.

This means that BM(r) has the same twists for even labels and S-matrix as
TLJ(A3). The twists for odd labels differ by a minus sign between the two

theories. Let A(r) = −A3 = e
2πi
4r . Note that a change of the Kauffman vari-

able from A to −A does not change the S-matrix. It follows that BM(r) and
TLJ(A(r)) has the same modular data. In fact, they are isomorphic.

Therefore, by using the local operator correspondence in Equation 37 and
letting ρ0 be the unit object, we recover the MTC TLJ(A(r)).

Now we examine an alternative choice of the unit object. Since M(r) is
a Z2 homology sphere, a potential unit object ρα0 can be determined by the
equation,

∣∣∣∣∣∣

∑

ρ∈χnab(M(r))

exp(−2πiCS(ρ))

2Tor(ρ)

∣∣∣∣∣∣
= (2Tor(ρα0))

− 1
2 . (39)

Such a ρα0 would have quantum dimension in absolute value equal to 1 in any
MTC produced byM(r). Since we already know that we can produce TLJ(A(r))
fromM(r) and the only non-unit object in TLJ(A(r)) whose quantum dimension
is 1 in absolute value is ρr−2, we can choose ρr−2 as the unit object in a new
theory.

In this case, we reverse the previous order of the simple objects. Denote
by ρ̃j := ρr−2−j , j ∈ [0 · · · r − 2]. Set ρ̃0 = ρr−2 as the unit object. The
correspondence between characters and local operators is now defined as,

ρ̃j 7→ (x3, Sym
j). (40)

We claim that with above choice of unit object and local operators, the modular
data produced from M(r) matches that of SU(2)r−2 where ρ̃j corresponds to
j in the label set of SU(2)r−2. See Section 3.3 for a collection of facts about
SU(2)r−2.

Firstly, by Lemma 3.2, up to an irrelevant phase factor,

CS(ρj) = − j(j + 2)

4r
+

1− (−1)j

4
mod 1. (41)

Then rewriting above equation in terms of ρ̃j , we get, again up to an irrelevant
factor,

CS(ρ̃j) = − j(j + 2)

4r
mod 1. (42)
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Thus,

e−2πiCS(ρ̃j) = e
2πi j(j+2)

4r (43)

is the twist θj of SU(2)r−2.
Next, we check the S-matrix.

W0(j) = TrSymj (−ρ̃0(x3)) = ∆j(2 cos
π

r
) =

sin (j+1)π
r

sin π
r

, (44)

and the (j, i)-entry of the potential S-matrix is,

Wi(j)W0(i) = TrSymj (−ρ̃i(x3))W0(i) (45)

= ∆j(2 cos
(i + 1)π

r
)∆i(2 cos

π

r
) (46)

=
sin (i+1)(j+1)π

r

sin π
r

, (47)

which is S̃ji of SU(2)r−2.
Lastly, by Lemma 3.3,

(
2Tor(ρ̃j)

)− 1
2 =

(
2Tor(ρr−2−j)

)− 1
2 =

|dr−2−j(A3)|
D(A3)

, (48)

where we used the fact that in TLJ(A1) = TLJ(A2), the two simple objects have
quantum dimensions ±1 and thus the dimension of the category is D(A1) =√
2. Also note that A3 = −e

2πi
4r , then |dr−2−j(A3)| = |dj(A3)| and D(A3) are

equal to the quantum dimension dj and the total dimension D, respectively,
in SU(2)r−2. Hence, the torsion invariant computes the normalized quantum
dimension,

(
2Tor(ρ̃j)

)− 1
2 =

dj
D

. (49)

To summarize, for the SFS M(r), two choices of the unit object together

with appropriate definition of local operators produce the MTCs TLJ(e
2πi
4r ) and

SU(2)r−2, with the former non-unitary and the latter unitary.

3.5 Graded product of graded premodular categories

In Section 3.3, we have seen that the premoduar category resulting from three-
component SFSs is formed from three Temperley-Lieb-Jones categories, by tak-
ing the Deligne product of the even sectors, that of the odd sectors, and suming
them up. Here we generalize the operation.

Definition 3.7. Let C = ⊕g∈GCg and D = ⊕g∈GDg be two G-graded pre-
modular tensor categories for some finite group G (which must be Abelian).
The graded product of C and D is again a G-graded premodular category
C ⊠gr D = ⊕g∈G(C ⊠gr D)g such that (C ⊠gr D)g := Cg ⊠Dg.
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The monoidal and braiding structure on C ⊠gr D is defined in the obvious
way which make it into a premodular category. Another way to see this is
that C ⊠gr D is a full subcategory of the premodular category C ⊠ D and is
closed under tensor product and braiding. The graded product operation ⊠gr

is associative up to canonical equivalence.
For a Kauffman variable A, TLJ(A) is a Z2-graded premodular category with

TLJ(A)0 spanned by even labels and TLJ(A)1 odd labels. Hence, Theorem 3.4
states that, for a three-component SFS M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}
with Ak, k = 1, 2, 3 defined as in Section 3.3, the premodular category resulting
from M is BM = TLJ(A1)⊠gr TLJ(A2)⊠gr TLJ(A3).

The graded product operation provides method to construct new premodular
categories from old ones. A very interesting question is when the graded product
of two pre-modular categories is modular. For instance, take A1 = −e

iπ
6 , A2 =

−e−
iπ
5 . Here A1 is a primitive 12-th root of unity and A2 a primitive 5-th root

of unity. Hence TLJ(A1) is modular of rank 2 and TLJ(A2) is none modular of
rank 4. Their S-matrices are given by,

S̃(A1) =

(
1 −1
−1 −1

)
, S̃(A2) =




1 ϕ ϕ 1
ϕ −1 −1 ϕ
ϕ −1 −1 ϕ
1 ϕ ϕ 1


 , (50)

where ϕ = 1
2 (1 −

√
5). Then the S-matrix of TLJ(A1) ⊠gr TLJ(A2) with its

simple objects ordered as {0⊠ 0, 0⊠ 2, 1⊠ 1, 1⊠ 3} is,

S̃ =




1 ϕ −ϕ −1
ϕ −1 1 −ϕ
−ϕ 1 1 −ϕ
−1 −ϕ −ϕ −1


 , (51)

which can be checked straightforwardly to be non-degenerate. Thus TLJ(A1)⊠gr

TLJ(A2) is modular.
We leave the question of when the graded product of two arbitrary graded

(and more generally multiple) premodular categories is modular as a future
direction. In the rest of this section, we focus on the case where the group is Z2

and study a special class of Z2-graded modular categories, namely SU(2)k. For
basic facts, see Section 3.4.

Let C = C0 ⊕ C1 be a Z2-graded MTC. Denote by I the label set of C
and partition I = I0 ⊔ I1 where Iα consists of objects of I that are in the Cα
sector. To avoid confusion, when there is more than one MTC present, we write
I(C), S̃(C), etc.

Proposition 3.8. Let C and D be two Z2-graded MTCs. Then C ⊠gr D is a
proper (i.e., degenerate) premodular category if and only if there exist i ∈ I(C),
j ∈ I(D), scalars c0(C), c1(C), c0(D), and c1(D), such that,

1. i and j belong to sectors of the same parity;
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2. the following equations concerning S-entries hold:

S̃(C)ik =

{
c0(C)dk(C) k ∈ I0(C)
c1(C)dk(C) k ∈ I1(C)

S̃(D)jk =

{
c0(D)dk(D) k ∈ I0(D)

c1(D)dk(D) k ∈ I1(D)

3. c0(C)/c1(C) = c1(D)/c0(D) 6= 1.

Proof. The main idea is to show that the conditions presented in the statement
of the proposition are equivalent to the property that in the S-matrix of C⊠grD,
the row corresponding to the object i ⊠ j is proportional to the first row (i.e.,
the row corresponding to the unit object).

Remark 3.9. In the above proposition, the conditions c0(C)/c1(C) 6= 1 and
c1(D)/c0(D) 6= 1 are used to eliminate the trivial case where i and j are both
the unit object. When neither of i nor j is the unit object, those conditions
automatically hold since otherwise the S-matrix of C or D would be degenerate.
Also, note that if either C0 or D0 is non-degenerate, then i and j must be in the
sector of odd parity.

For m ≥ 0, SU(2)m is a Z2-graded MTC with (SU(2)m)0 spanned by even
labels and (SU(2)m)1 by odd labels.

Theorem 3.10. For m,n ≥ 0, SU(2)m⊠gr SU(2)n is an MTC if and only if the
pair (m,n) have different parity. In particular, SU(2)m ⊠gr SU(2)m is always
degenerate.

Proof. In SU(2)m, the un-normalized S-matrix is given by,

S̃ab =
sin (a+1)(b+1)π

m+2

sin π
m+2

.

Hence, S̃mb = (−1)bS̃0b = (−1)bdb. For (m,n) with the same parity, with
the notation from the statement of Proposition 3.8, we choose i = m, j = n.
Then the relevant constants are c0(SU(2)m) = c0(SU(2)n) = 1, c1(SU(2)m) =
c1(SU(2)n) = −1 which satisfies the conditions stated in that proposition, and
hence SU(2)m ⊠gr SU(2)n is degenerate. For the converse direction, it can be
seen that the only non-unit simple object in SU(2)m for which c0(SU(2)m) and
c1(SU(2)m) exist is the object m. Therefore, if (m,n) have different parity, the
only pair of indexes for (i, j) is (m,n) which contradicts the first condition of
Proposition 3.8. This implies that SU(2)m ⊠gr SU(2)n is non-degenerate.

Example 3.11. By Theorem 3.10, SU(2)2⊠gr SU(2)3 is an MTC of rank 6. Its
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un-normalized S-matrix and T -matrix are given by,

S̃ =




1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

1+
√
5√

2

√
2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1 −
√
2 1+

√
5√

2

1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

− 1+
√
5√

2
−
√
2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1
√
2 − 1+

√
5√

2
1+

√
5√

2
−
√
2 − 1+

√
5√

2

√
2 0 0

√
2 1+

√
5√

2
−
√
2 − 1+

√
5√

2
0 0




T =




1 0 0 0 0 0

0 e
4iπ
5 0 0 0 0

0 0 −1 0 0 0

0 0 0 −e
4iπ
5 0 0

0 0 0 0 e
27iπ
40 0

0 0 0 0 0 −ie
3iπ
8




Since SU(2)2 ⊠gr SU(2)3 contains the even part of SU(2)3 as a subcategory
which is itself an MTC (Fibonacci), SU(2)2 ⊠gr SU(2)3 must split. In fact,

SU(2)2 ⊠gr SU(2)3 ≃ Fib⊠ TLJ(−ie
πi
8 ).

4 Modular tensor categories from SOL geome-

try

4.1 Character varieties of torus bundles over the circle

One of the non-hyperbolic geometries is SOL and some examples of closed man-
ifolds are torus bundles over the circle with Anosov monodromy maps.

Let M be a torus bundle over S1 with the monodromy map

(
a b
c d

)
∈

SL(2,Z) where |a+ d| > 2. Its fundamental group has the presentation,

π1(M) = 〈x, y, h | xayc = h−1xh, xbyd = h−1yh, xyx−1y−1 = 1〉, (52)

where x and y are the meridian and longitude, respectively, on the torus, and
h corresponds to a loop around the S1 component. We consider non-Abelian
characters of M to SL(2,C). Let ρ : π1(M) → SL(2,C) be a non-Abelian
representation.

First, we consider the case where ρ(x) is diagonalizable. Up to conjugation,
assume ρ(x) is diagonal. Since y commutes with x, ρ(y) is also diagonal, and
moreover, ρ(x) and ρ(y) cannot be both contained in the center {±I}. (Oth-
erwise, the image of ρ would be Abelian.) If ρ(x) 6= ±I, it follows from the
relation xayc = h−1xh that ρ(h), up to conjugation, simply permutes the two
eigenvectors of ρ(x). The same conclusion is obtained if ρ(y) 6= ±I. Hence, we
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may assume ρ takes the following form (abbreviating ρ(x) simply as x),

x =

(
α 0
0 α−1

)
, y =

(
β 0
0 β−1

)
, h =

(
0 1
−1 0

)
, (53)

where Im(α) ≥ 0 and either α 6= ±1 or β 6= ±1. The presentation of π1(M)
yields the following equations for ρ,

αa+1βc = αbβd+1 = 1, (54)

from which we deduce the relations,

αa+d+2 = βa+d+2 = 1. (55)

Let N = |a + d + 2|. Hence α and β are both N -th root of unity. Set α =

e
2πi k
N , β = e

2πi l
N such that 0 ≤ k ≤ N

2 , 0 ≤ l < N , and either k 6= 0, N2 or

l 6= 0, N2 . Then, Equation 54 can be equivalently written as,

(a+ 1) k + c l = 0 mod N

b k + (d+ 1) l = 0 mod N
(56)

The solutions to Equation 56 depend on a number of conditions involving a, b, c,
and d. When at least one of a+1, c, b, d+1 is co-prime to N , there is a compact
form to organize all the solutions. For instance, when (c,N) are co-prime, the
solutions are simply given by,

l = −c̃(a+ 1)k mod N, k = 1, · · · , ⌊N − 1

2
⌋, (57)

where c̃ is the multiplicative inverse of c in ZN . The representations thus ob-
tained are all irreducible.

Now we consider the case where ρ(x) is not diagonalizable. Then neither
is ρ(y) diagonalizable. Up to conjugation, we may assume that ρ(x) and ρ(y)
are both upper triangular, each have a single eigenvalue +1 or −1 lying on the
diagonal, and ρ(h) is diagonal. Thus, ρ takes the form,

x = (−1)ǫx
(
1 1
0 1

)
, y = (−1)ǫy

(
1 u
0 1

)
, h =

(
v 0
0 v−1

)
, (58)

where ǫx, ǫy ∈ {0, 1} and u 6= 0. From the presentation of π1(M), we deduce
the equations to be satisfied,

(a+ 1) ǫx + c ǫy = 0 mod 2

b ǫx + (d+ 1) ǫy = 0 mod 2
(59)

c u2 + (a− d)u − b = 0, v2 =
1

cu+ a
. (60)

Equation 60 is equivalent to,

(v + v−1)2 = a+ d+ 2, u =
v−2 − a

c
. (61)
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From Equation 61, we see that for each fixed ǫx and ǫy, there are four inequiv-
alent representations, but only two characters. We choose a representative for
each character by setting,

u =
d− a+

√
(a+ d)2 − 4

2c
, v2 =

1

cu+ a
=

a+ d−
√
(a+ d)2 − 4

2
. (62)

The solution set to Equation 59 depends on the parity of the entries of
the monodromy matrix. Let P be the quadruple that records the parity of
the entries (a, d; b, c) and we use ‘e’ to denote for ‘even’ and ‘o’ for ‘odd’. For
instance, P = (e, e; o, e) means b is odd and the rest are even. The solutions
contain the following possible values for ǫx and ǫy,

• ǫx = 0, ǫy = 0;

• ǫx = 1, ǫy = 1, only if P = (e, e; o, o) or P = (o, o; e, e);

• ǫx = 0, ǫy = 1, only if P = (o, o; o, e) or P = (o, o; e, e);

• ǫx = 1, ǫy = 0, only if P = (o, o; e, o) or P = (o, o; e, e).

Note that the last three cases above all imply that N = |a+ d+ 2| is even and
all possible configurations of P that have N even are contained in one (or more)
of the last three cases.

To summarize, the non-Abelian characters of M contain two types, the ir-
reducible and the reducible ones. The irreducible characters take the form of
Equation 53 and are determined by Equation 56. The reducible characters take
the form of Equation 58 and are determined by Equation 62 and the possible
values of ǫx and ǫy discussed above.

4.2 Torsion and Chern-Simons invariant of torus bundles

In this subsection, we compute the torsion and Chern-Simons invariant for the

torus bundle over the circle M with the monodromy map

(
a b
c d

)
∈ SL(2,Z)

where |a+ d| > 2. Its fundamental group has a presentation given in Equation
52.

Construct a cell structure for M as follows. See Figure 2. The cell structure
contains,

• a single 0-cell v;

• three 1-cells corresponding to the generators x, y, and h in the presenta-
tion of π1(M);

• three 2-cells corresponding to the three relations in the presentation of
π1(M). Explicitly, denote them by s1, s2 and s3 such that ∂s1 = yxy−1x−1,
∂s2 = h−1xh(xayc)−1, and ∂s3 = h(xbyd)h−1y−1. Graphically, s1, s2 and
s3 correspond to the top face, the back face, and the left face, respectively,
in Figure 2 with the induced orientation of the cube.
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xayc

xbyd

Φ =

(
a b
c d

)

v x

y

h

Figure 2: A cell structure for the torus bundle with monodromy matrix Φ For
convenience but no other purposes, mark the vertical edges green, the horizontal
on the top face red, and the 45o-slope edges on the top face blue. Edges of the
same color and the same arrow are identified. The front and back faces are
identified by the obvious map, and so are the left and right side faces. The
bottom face is identified to the top via the monodromy map Φ. Hence, the
single-arrow edge and the double-arrow edge at the bottom face are homotopic
to xayc and xbyd, respectively.

• a single 3-cell t. Think of a 3-cell as a cube. Then the attaching map is
determined by the identification of faces described in Figure 2.

Let V be a representation ρ : π1(M) → GL(V ), and let {vj | j = 1, 2, · · · }
be an arbitrary basis of V . We now construct the chain complex. For simplicity,
assume that a, b, c, d ≥ 0, a ≥ c, b ≥ d. Other cases can be dealt similarly. Fix
an arbitrary preimage ṽ of v. For each other cell σ, fix a lifting σ̃ starting at
the base point ṽ. We have the following chain complex,

0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 −→ 0

where Ci = Ci(M̃) ⊗Z[π1(M)] V . As a vector space, Ci has the following basis,

C3 = span{t̃⊗ vj | j = 1, 2, · · · }, C2 = span{s̃i ⊗ vj | i = 1, 2, 3, j = 1, 2, · · · },
C1 = span{σ̃ ⊗ vj | σ = x, y, h, j = 1, 2, · · · }, C0 = span{ṽ ⊗ vj | j = 1, 2, · · · }.
We present the boundary map ∂i as a block matrix with each entry a dim(V )×
dim(V ) block. Also, denote S : Z[π1(M)] → Z[π1(M)] the antipode map that
sends a group element g ∈ π1(M) to its inverse g−1 and linearly extends to the
whole ring. Lastly, for a matrix A with entries in Z[π1(M)], ρ ◦ S(A) is meant
applying ρ ◦ S to every entry of A. With the above conventions, the boundary
map is given by,

∂3 = ρ ◦ S



1− hw(x, y)

1− y
1− x




∂2 = ρ ◦ S



y − 1 1− h

∑a−1
i=1 xi h

∑b−1
i=1 x

i

1− x −hxa
∑c−1

i=1 y
i hxb

∑d−1
i=1 yi − 1

0 x− 1 1− y
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∂1 = ρ ◦ S
(
x− 1 y − 1 h− 1

)

where w is a polynomial of x, y with the sum of its coefficients equal to 1.
For each of the non-Abelian characters of π1(M) to SL(2,C), we will compute

its torsion below and show (implicitly) that the associated chain complex is
always acyclic and the torsion does not depend on the representation chosen in
the equivalence class of a character.

For an irreducible representation ρ given in Equation 53 that satisfies Equa-
tion 56, its adjoint representation has the form,

x =



α2 0 0
0 1 0
0 0 α−2


 , y =



β2 0 0
0 1 0
0 0 β−2


 , h =




0 0 −1
0 −1 0
−1 0 0




Denote by I and O and 3× 3 identity matrix and zero matrix, respectively, and
let

A =



1 0 0
0 0 0
0 1 0


 , B =



0 0 0
0 0 1
0 0 0


 .

Define the block matrices,

K1 =



A
O
B


 , K2 =



O A
I O
O B


 , K3 =

(
I
)
.

It can be checked directly that the columns (as vectors in Ci−1) of ∂iKi is a
basis of Im(∂i). Set K4 = K0 to be the empty matrix. Now for i = 0, 1, 2, 3, let

Ai =
(
∂i+1Ki+1 Ki

)
,

then the columns of Ai give a basis for Ci. By direct calculations, we obtain
the torsion,

Tor(ρ) =

∣∣∣∣
det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ =
|a+ d+ 2|

4
.

Now we compute the torsion of the reducible representations ρ given in
Equation 58. The associated adjoint representation takes the form,

x =




1 −2 −1
0 1 1
0 0 1


 , y =




1 −2u −u2

0 1 u
0 0 1


 , h =




v2 0 0
0 1 0
0 0 1

v2


 ,

which are clearly independent on the sign terms ǫx and ǫy. Let,

A =



0 0 0
1 0 0
0 1 0


 , B =



0 0 0
0 0 1
0 0 0


 , C =



0 0 0
0 0 0
1 0 0


 ,

D =



0 0 0
0 1 0
0 0 1


 , E =



0 0 0
0 0 0
0 0 1


 , F =



1 0 0
0 0 0
0 1 0


 .
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Define the block matrices,

K1 =



E
O
F


 , K2 =



A O
B C
O D


 , K3 =

(
I
)
.

The matrices Ki have the same properties as outlined in the case of irreducible
representations above, and in the same way define the matrices Ai. It can be
computed that,

Tor(ρ) =

∣∣∣∣
det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ = |a+ d+ 2|.

Some details for the derivation are as follows, where the condition cu2 + (a −
d)u− b = 0 is used to simplify expressions,

Tor(ρ) = | (2cu+ a− d)(b − u+ du)(a− b+ 1 + (c− d− 1)u)

u(1− cu− a)2(u − 1)
|

= | (2cu+ a− d)(b − u+ du)(a− b+ 1 + (c− d− 1)u)

(cu2 + (a− 1)u)(cu2 + (a− 1− c)u− a+ 1)
|

= | (2cu+ a− d)(b − u+ du)(a− b+ 1 + (c− d− 1)u)

((d− 1)u+ b)((d− c− 1)u+ b− a+ 1)
|

= | (d− c− 1)u+ b− a+ 1

2(c− d− 1)cu2 + (2c(a− b+ 1) + (a− d)(c− d− 1))u+ (a− d)(a− b+ 1)
|

= | (2c(a− b+ 1)− (a− d)(c − d− 1))u+ (a− d)(a− b+ 1) + 2b(c− d− 1)

(d− c− 1)u+ b− a+ 1
|

= | (a+ d+ 2)((d− c− 1)u+ b− a+ 1)

(d− c− 1)u+ b− a+ 1
|

= |a+ d+ 2|.

Now, we compute the CS invariant of M . Any irreducible representation of
π1(M) to SL(2,C) can be conjugated to one into SU(2) (see Equation 53), and
Kirk and Klassen computed its CS invariant in [11]. Here we use methods in
Section 2.3 to compute the CS invariant of both irreducible and reducible but
indecomposable ones, the latter of which can not be conjugated to SU(2).

Let Ti (i = A,B) be two copies of the torus, and I be the interval [0, 1].
Then M is obtained by gluing the two Ti × I such that TB × {0} is glued to
TA × {1} via the identity map and TB × {1} is glued to TA × {0} via the map(
a b
c d

)
. Let (µi, λi) be a positive basis of H1(Ti) so that, under the embedding

Ti× I →֒ M , µi and λi are sent to x and y, respectively. For κ = 0, 1, denote by
µκ
i the element of H1(Ti×{κ}) that corresponds to µi in H1(Ti× I), and by λκ

i

in a similar way. Then (µ1
i , λ

1
i ) is a positive basis for H1(Ti×{1}) and (−µ0

i , λ
0
i )

is a positive basis for H1(Ti × {0}). These basis are identified as follows,

(µ0
B, λ

0
B) = (µ1

A, λ
1
A), (µ1

B, λ
1
B) = (µ0

A, λ
0
A)

(
a b
c d

)
.
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Set N = |a+d+2|. For an irreducible representation ρ in Equation 53 where

α = e
2πi k
N and β = e

2πi l
N , we have

cTi×I(ρ) = [
k

N
,
l

N
,
k

N
,
l

N
; 1](µ1

i ,λ
1
i ),(µ

0
i ,λ

0
i )

= [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

i ,λ
1
i ),(−µ0

i ,λ
0
i )

Hence,

cTA×I(ρ)

= [
k

N
,
l

N
,
k

N
,
l

N
; 1](µ1

A
,λ1

A
),(µ0

A
,λ0

A
)

= [
k

N
,
l

N
,
ak + cl

N
,
bk + dl

N
; 1](µ1

A
,λ1

A
),(µ1

B
,λ1

B
)

= [
k

N
,
l

N
,− k

N
,
bk + dl

N
; exp(2πi(−ν)

bk + dl

N
)], (ν :=

(a+ 1)k + cl

N
)

= [
k

N
,
l

N
,− k

N
,− l

N
; exp(2πi(−ν)

bk + dl

N
+ 2πi(−µ)

k

N
)], (µ :=

bk + (d+ 1)l

N
)

= [
k

N
,
l

N
,− k

N
,
l

N
; exp(2πif)](µ1

A
,λ1

A
),(−µ1

B
,λ1

B
)

where,

f = ν
bk + dl

N
+ µ

k

N
=

kµ− lν

N
+ µν.

Note that, by Equation 56, µ and ν are both integers. Also,

cTB×I(ρ) = [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

B
,λ1

B
),(−µ0

B
,λ0

B
)

= [
k

N
,
l

N
,− k

N
,
l

N
; 1](µ1

B
,λ1

B
),(−µ1

A
,λ1

A
)

By taking the pairing on cTA×I(ρ) and cTB×I(ρ), we obtain that,

CS(ρ) = f =
kµ− lν

N
. (63)

For reducible representations ρǫx,ǫy in Equation 58 depending on the values
of ǫx and ǫy (see Section 4.1), the computation of the CS invariant proceeds
in the exactly the same way as for irreducible representations by making the
substitution,

k

N
→ ǫx

2
,

l

N
→ ǫy

2
.

Consequently, by setting

ν =
(a+ 1)ǫx + cǫy

2
, µ =

bǫx + (d+ 1)ǫy
2

,

42



we obtain that,

CS(ρǫx,ǫy ) =
ǫxµ− ǫyν

2
=

ǫxµ+ ǫyν

2

=
(a+ d+ 2)ǫxǫy + bǫx + cǫy

4
(64)

It can be checked that CS(ρǫx,ǫy ) ∈ 1
2Z.

4.3 Modular data from torus bundles over the circle

In this subsection, let M be a torus bundle over the circle with the monodromy
map given by a matrix, (

a b
c d

)
∈ SL(2,Z).

We assume that N := a + d + 2 > 4 is odd and (c,N) are co-prime. It is
direct to see that b and c are both odd, while a and d have different parity. Set
N = 2r + 1. Denote by c̃ ∈ ZN the multiplicative inverse of c in ZN .

The non-Abelian character variety of M to SL(2,C) consists of the repre-
sentations χnab(M) = {ρ+, ρ−, ρk, k = 1, · · · , r} which are defined as follows.
For ρ±,

x 7→
(
1 1
0 1

)
, y 7→

(
1 u
0 1

)
, h 7→

(
v± 0
0 v−1

±

)
(65)

where

u =
d− a+

√
(a+ d)2 − 4

2c
, v± = ± 1√

cu+ a
. (66)

For ρk, k = 1, · · · , r,

x 7→
(
e

2πik
N 0

0 e−
2πik
N

)
, y 7→

(
e

−2πic̃(a+1)k
N 0

0 e
2πic̃(a+1)k

N

)
, h 7→

(
0 1
−1 0

)
(67)

In Section 4.1, we computed the adjoint torsion and CS of representations
of π1(M). In particular, it implies that all non-Abelian characters are adjoint-
acyclic and their CS invariants are all rational numbers. As with the example
of SFSs, we choose the candidate label set L(M) = χnab(M). According to
Section 4.1, the torsion of these representations are given by

Tor(ρ±) = N, Tor(ρk) =
N

4
. (68)

The Chern-Simons invariant of ρ± is 0 by Equation 64.

Lemma 4.1. For k = 1, · · · , r, the Chern-Simons invariant of ρk is given by,

CS(ρk) = − c̃k2

N
. (69)

Proof. This can be derived from Equation 63.
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We will show below that the premodular categories obtained from the torus
bundles are related to quantum group categories associated with so2r+1.

For an odd integer N = 2r + 1 > 0, let soN (Type B) be the Lie algebra of

SO(N). Given q = e
mπi
2N such that q2 is a primitive 2N -th root of unity (thus

m is odd and (m,N) are co-prime), there is an associated premodular category
C(soN , q, 2N) of rank r + 4. See [15] and references therein. When m = 1, the
corresponding category is always an MTC, and is denoted by SO(N)2 in physics
literature. The MTC has the label set,

{1, Z} ⊔ {Y1, · · · , Yr} ⊔ {X1, X2}. (70)

We will mainly be interested in the (adjoint) monoidal subcategory C(soN , q, 2N)ad
linearly spanned by the objects 1, Z, Y1, · · · , Yr. So only modular data on this
subcategory is given below.

The twists are,

θ1 = θZ = 1, θYk
= q2(Nk−k2), k = 1, · · · , r. (71)

The un-normalized S-matrix is,

S̃αβ =

{
1 α ∈ {1, Z}, β ∈ {1, Z}
2 α ∈ {1, Z}, β ∈ {Y1, · · · , Yr}

(72)

S̃kj := S̃YkYj
= 2(q4kj + q−4kj) = 4 cos

2πmkj

N
. (73)

In particular, there are only two values for quantum dimensions, d1 = dZ = 1
and dk := dYk

= 2. The total dimension isD =
√
2N . Note that C(soN , q, 2N)ad

is a proper premodular category of rank r + 2.

Remark 4.2. The label set as ordered in Equation 70 correspond to the labels
{0, 2λ1, λ1, · · · , λr−1, 2λr, λr, λr + λ1} in [15]. Although the S-matrix in [15] is

only given for the root q = e
πi
2N , the case for other roots can be easily deduced

by either applying a Galois action to the original S-matrix or using the formula

S̃λµ = θ−1
λ θ−1

µ

∑

ν

Nν
λ∗µθνdν .

Now, for the torus bundle defined at the beginning of the subsection, recall
that N = a + d + 2 is odd, and c̃c = 1 ∈ ZN . Let m = −2c̃−N ∈ Z which is
well defined up to multiples of 2N . For clarity, fix an arbitrary representative
for m, and let q = e

mπi
2N . Note that m is odd and co-prime to 2N . Hence q2 is

a primitive 2N -th root of unity.
We propose the following correspondence between χnab(M) and local oper-

ators,

ρ± 7→ (x, Sym0),

ρk 7→ (xmk, Sym1).
(74)

and designate ρ+ as the unit object,

ρ+ = 1 7→ (x, Sym0). (75)
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Theorem 4.3. Let M be the torus bundle over the circle with the monodromy

matrix

(
a b
c d

)
such that N = a + d + 2 > 4 is odd and (c,N) are co-prime.

With the choice of local operators and unit object in Equations 74 and 75,
respectively, and q as above, the modular data constructed from M matches
that of C(soN , q, 2N)ad, the adjoint subcategory of C(soN , q, 2N).

Proof. For convenience, we also write ρ± and ρk simply as ± and k, respectively.
The correspondence between χnab(M) and label set of C(soN , q, 2N)ad is,

ρ+ ↔ 1, ρ− ↔ Z, ρk ↔ Yk, k = 1, · · · , r.
We first check the twists. By Equation 71,

θYk
= q2(Nk−k2) = e−

2πi
N

Nk−k2

2 (2c̃+N) = e2πi
c̃k2

N .

Note that in the last equality, we used the fact that (Nk − k2)/2 is an integer.
By Lemma 4.1, we immediately have

θYk
= e−2πiCS(ρk).

Of course, for ρ±, a similar relation to the above holds trivially.
Next, we verify quantum dimension.

W+(±) = 1, W+(k) = TrSym1(ρ+(x
mk)) = 2. (76)

This means that the total dimension is D =
√
2N (equal to the dimension of

C(soN , q, 2N)ad), and by Equation 68, for each ρ ∈ χnab(M), the normalized
quantum dimension matches the torsion,

W+(ρ)

D
= (2Tor(ρ))−

1
2 .

Lastly, for the S-matrix computed from the W matrix,

S̃αβ = 1, α, β ∈ {+,−}.

S̃αk = Wk(α)W+(k) = 2,

S̃kα = Wα(k)W+(α) = 2, α ∈ {+,−}.

S̃kj = Wj(k)W+(j) = 2TrSym1(ρj(x
mk)) = 4 cos

2πmkj

N
, k, j = 1, · · · , r.

This matches the S-matrix of C(soN , q, 2N)ad in Equations 72 and 73.

Remark 4.4. In this subsection, we restricted ourselves to the case where
N = a + d + 2 > 4 is odd and (c,N) are co-prime. In other cases, it seems
less straightforward to derive the character variety and the structure of the
character variety depends on the parity of N (among other factors). This is
expected, since we conjecture in the general case the corresponding premodular
category is also related to the adjoint subcategory of some C(soN , q, l) whose
structure varies dramatically depending on the parity of N and the value of N
modulo 4 in the case of even N . We leave this as a future direction.
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5 Full data of modular categories and beyond

The structure theory of MTCs is naturally divided into two parts: one is the
classification of modular data (MD), and the other is for a fixed modular data,
the classification of modular isotopes (MIs)4. The missing steps in the program
from three manifolds to MTCs are then an algorithm to define loop operators
for an admissible candidate label set, hence a candidate MD, and the F -matrices
for the fusion structures beyond MD.

Physics point to a framework that is a generalization of gauging finite group
symmetries [2, 5] to continuous non-Abelian Lie group symmetries such as
SU(2). One hint from physics is the form of the primitive loop operators in
this paper: a pair (a,R), where a is a conjugacy class of the fundamental group,
some kind of flux, and R is an irreducible representation of SU(2), some charge
of the SU(2) symmetry. The F -matrices are difficult to find, so we wonder if
they depend on more than topology: some geometric information of the given
three manifolds.

5.1 Towards the full data

5.1.1 From non-Abelian characters to loop operators

The identification of a simple object type with a non-Abelian character is based
on the relation between a simple object type and a loop operator in the solid
torus. In a (2 + 1)-TQFT, the rank of an MTC is the same as the dimension of
the vector space V (T 2) associated to the torus T 2 from the TQFT. One basis
{ea} of the vector space V (T 2) consists of labeled core curves of a solid torus
by a complete representative set of simple objects {a}. Then each basis element
ea can be obtained as the image of a loop operator Oa on e0—the basis element
associated to the vacuum, i.e. |ea >= Oa|e0 >.

Suppose a non-Abelian character corresponds to a primitive loop operator
(a,R) of the three manifold X . Then a can be represented by a knot Ka in
X . The knot complement of Ka in X determines a vector in V (T 2) from the
reduction of 6d SCFT onto X , which should be related to ea, hence a simple
object type eventually.

5.1.2 From flatness equations to pentagons

One possible relation between pentagon equations and flatness is that the flat-
ness of SL(2,C)-connections corresponding to the fundamental group represen-
tations can be translated into pentagon equations for the F -matrices. It is
known that pentagon equations can be interpreted as flatness equations for bi-
unitary connections on finite graphs (see e.g. [10]).

4A terminology due to C. Delaney: distinct MTCs with the same MD are called modular
isotopes of each other.
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5.2 Towards gauging SU(2) R-symmetry

An R-symmetry of a super-symmetric theory is an outer automorphism of the
super-Poincare group that fixes the Poincare group. It is pointed out in [4] that
the R-symmetries in infrared could be different from those in ultra-violet. Hence
we could have an SU(2) R-symmetry for the residual topological theory in in-
frared, which is probably often trivial. We believe that the MTCs obtained from
three manifolds in this program are actually the results of gauging such SU(2)
R-symmetries of the residual topological theory in infrared, which generalizes
gauging of finite group symmetries [2, 5].

5.3 Towards quantum double of infinite discrete groups

An interesting class of MTCs comes from the representation categories of quan-
tum doubles of finite groups. A naive generalization to infinite discrete groups
does not work. The program in this paper can be regarded as a first step in this
direction for the class of 3-manifold groups. The choice of the simple Lie group
serves as an analogue of a level in quantum groups.

5.4 Climbing the dimension ladder

Two interesting classes of quantum algebras are vertex operator algebras (VOAs)
andMTCs. The bulk-edge correspondence of topological phases of matter makes
them into a unified theory of two and three dimensions. The program in this
paper suggests an inversion of dimensions: MTCs and VOAs could also fit into
a unified theory of three and four dimensional manifolds, where 4-manifolds
with 3-manifold boundaries could give rise to VOAs that realize the boundary
MTCs.

5.5 Open questions

There are many other interesting open questions in this program. One obvious
one is to extend our results to more examples such as Seifert fibered spaces with
more than three fibers and the remaining cases of our torus bundles over the
circle examples. It is also not clear how to obtain MTCs which are not self-dual.
As mentioned in Sec. 2, representations of SL(2,C) come in group of four and
a natural guess is that one of the four is the dual anyon type. If so, then which
one? The dual representation is a candidate. Another general direction is what
operations on MTCs that standard topological constructions of three manifolds
such as connected sum and torus decomposition correspond to. Connect sum
should correspond to Deligne product.

Our adjoint-acyclic condition for a representation ρ is closely related to
H1(π,Adj ◦ ρ) = 0. Are they equivalent? It should be equivalent for irre-
ducible representations, but for the indecomposable reducible ones, it is not
clear.
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