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Abstract
A quantum computer can perform exponentially faster than its classical coun-
terpart. It works on the principle of superposition. But due to the decoherence
effect, the superposition of a quantum state gets destroyed by the interaction
with the environment. It is a real challenge to completely isolate a quantum
system to make it free of decoherence. This problem can be circumvented by
the use of topological quantum phases of matter. These phases have quasiparti-
cles excitations called anyons. The anyons are charge-flux composites and show
exotic fractional statistics. When the order of exchange matters, then the anyons
are called non-abelian anyons. Majorana fermions in topological superconduc-
tors and quasiparticles in some quantum Hall states are non-abelian anyons.
Such topological phases of matter have a ground state degeneracy. The fusion
of two or more non-abelian anyons can result in a superposition of several
anyons. The topological quantum gates are implemented by braiding and fusion
of the non-abelian anyons. The fault-tolerance is achieved through the topologi-
cal degrees of freedom of anyons. Such degrees of freedom are non-local, hence
inaccessible to the local perturbations. In this paper, the Hilbert space for a topo-
logical qubit is discussed. The Ising and Fibonacci anyonic models for binary
gates are briefly given. Ternary logic gates are more compact than their binary
counterparts and naturally arise in a type of anyonic model called the metaplec-
tic anyons. The mathematical model, for the fusion and braiding matrices of
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metaplectic anyons, is the quantum deformation of the recoupling theory. We
proposed that the existing quantum ternary arithmetic gates can be realized by
braiding and topological charge measurement of the metaplectic anyons.

Keywords: topological quantum computation, ternary logic design, ternary
arithmetic circuits, metaplectic anyons

(Some figures may appear in colour only in the online journal)

1. Introduction

Two of the greatest revolutions of the twentieth century were the discovery of quantum mechan-
ics and the invention of computers. At the end of the twentieth century, these two fields
merged and a new field of quantum information was born. The quantum information sci-
ence ends Moore’s law, according to which the computing power would double every eighteen
months. This law governed silicon chip-based computers, for which the density of chips can
be increased. Such computers obey the laws of classical mechanics. But we cannot reduce the
physical size of chips infinitely. At the atomic level, particles behave according to the laws of
quantum mechanics rather than the laws of classical mechanics.

In 1982, Richard Feynman pointed out that there is a fundamental limit with the ability
of classical computers to efficiently simulate a quantum system [1]. He showed that some
problems can be solved exponentially faster on a quantum computer using exponentially large-
sized Hilbert space than they could be solved on a classical computer. David Deutsch showed
that classical computers cannot efficiently simulate a quantum computer [2]. Hence, a quantum
computer is important for two reasons; it can perform faster, and it can answer questions about
nature.

The building blocks of a classical computer are bits. These bits are based on classical logic
that has values of either 0 or 1. Operations on these bits are performed by a series of gates.
These gates change their values and answer the operations. The classical circuits are composed
in space from gates connected by wires. But quantum computers are based on quantum logic,
which has values in the superposition of 0 and 1. The quantum gates manipulate the quantum
superposition and give outputs with some probability. A ternary quantum gate is a three-valued
logic design, based on the superposition of 0, 1, and 2.

Many methods of encryption on a classical computer are based on difficulty in finding the
prime factors of a large number. Peter Shor [3] invented an algorithm to find the prime factors
of a number on a quantum computer with an exponential speed up. This algorithm created
widespread interest in quantum computers. Many other quantum algorithms have already been
proposed. Grover’s search algorithm for an unstructured search [4, 5] offers a quadratic speed
up compared with a classical counterpart. These algorithms are implemented on a particular
model of quantum computation.

Building a quantum computer is a great challenge due to its susceptibility to errors. The
quantum superposition is destroyed due to its interaction with the environment. This process
is called decoherence. Moreover, we cannot measure the state and look for errors. In doing so
we would kill the superposition. Errors can also be in the phase of a state. There are quantum
error correction codes [6–8], but a quantum system needs to be completely isolated from the
environment. In 1997, Alexei Kitaev proposed a model for the fault-tolerant quantum compu-
tation [9]. Information is encoded in some non-local degrees of freedom of particles, hence
inaccessible to local perturbations [10–12]. This is done using the systems which are topologi-
cal in nature. The topology is a study of spaces that are continuously deformable to each other.
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Such spaces are called manifolds. A manifold is a space that is Euclidean flat space locally
when a small patch is taken, but it has some non-Euclidean structure globally. To compare two
spaces, some properties of the spaces are computed. These properties remain invariant under
the continuous deformation of one space to the other. Such properties are called topological
invariants. We will discuss topology in appendix B.

The topological nature of particles can be studied through their exchange statistics. Let
ψ(ri, r j) be the wave function of two particles at positions ri and r j. In three dimensions, when
two particles exchange their places, the wave function gets multiplied with a phase factor.
That is,

ψ(ri, r j) = eiθψ(r j, ri), (1)

where the values θ = 0, 2π correspond to the exchange of bosons and θ = π corresponds to
the exchange of fermions. The phase acquired by the wave function is +1 for bosons and −1
for fermions. Bosons are integral spin particles and obey Bose–Einstein statistics, whereas
fermions are half-integer spin particles and obey Fermi–Dirac statistics. A double exchange
of these particles is equivalent to no exchange. If the particles are distinguishable, then their
statistics is described by the permutation group SN . A group is a mathematical structure to
study symmetries. The permutation group is used to study the exchange symmetry.

Jon Magne Leinaas in 1977 [13] suggested that in a two-dimensional space, another statistic
may occur, called fractional statistics. For this new kind of statistics, θ has an arbitrary value
between 0 andπ. Bosons and fermions do not obey fractional statistics even in two-dimensional
space. Wilczek [14, 15] proposed a model for the realization of the fractional statistics. He also
named these particles as anyons (neither boson nor fermion but any on) [15].

An anyon is not an elementary particle, but a collective phenomenon or a local disturbance in
two-dimensional topological materials in a high magnetic field and at a very low temperature.
A large number of elementary particles behave in a coordinated way to make quasiparticles.
These particles can exist only inside a material, not in free space. Magnetic fluxes are attached
to quasiparticles and make charge-flux composites. These quasiparticles obey fractional statis-
tics. The Chern–Simons gauge theory is used as an effective field theory to describe these
materials. Quasiparticles have a topological charge which is a topological quantum number
and is a generalization of the conventional charge. It is a topological invariant and changes on
topological phase transition. We will discuss the topological invariants in appendix B.

The anyons are quasiparticles in quantum Hall states [16–18] and as Majorana fermions
in topological superconductors [19]. Anyons are detected in laboratory [20–25], and more
recently [23, 24]. The measurement of an anyon is done by interference as described in
[11, 26]. The discussion of topological materials, and their effective field theory, is beyond
the scope of this paper, see [11, 27] and the references therein.

The fundamental difference between 2D and 3D is the difference in the topology of space-
time. The motion of particles makes knots and links in spacetime. Two paths are topologically
equivalent if one can be deformed to the other. In two dimensions, in general, we cannot trans-
form one path to the other without cutting, as shown in figure 1. All smoothly deformable
trajectories are in the same equivalence class. Fermions and bosons do not obey the fractional
statistics even in 2D, but the change in the wave function of the system in two-dimensional
topological materials, when two quasiparticles are exchanged, is independent of the distance
and speed of exchange. In contrast, the evolution may depend on some global characteristic of
the path. Therefore, the statistics of anyons are topological. Instead of the permutation group,
the double exchange of anyons is not equal to the identity. The exchange statistics of anyons
is described by a braid group in (2 + 1)-dimensional spacetime. The braid group is defined in
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Figure 1. Two closed paths C1 and C2 are topologically distinct in two dimensions, but
they can be deformed to each other in three dimensions.

appendix B. When the order of composition of two elements of a group does not matter then
the group is abelian, otherwise, it is non-abelian.

One of the properties of the topological phases of matter is the existence of ground state
degeneracy. The degenerate ground states have a large energy gap to the excited states. The
degeneracy depends on the topology of the two-dimensional system and the types of anyons
present. The ground state is unique for trivial topology. For abelian anyons, the braid operators
commute and the ground state is unique, but for non-abelian anyons, the braiding corresponds
to the evolution of the system in the degenerate ground state. The change of the system from
one ground state to the other is studied using the Berry phase [28] as described in appendix
C. Let g be degenerate states ψa with a = 1, 2, . . . , g of particles at positions x1, x2, . . . , xn.
Exchanging particles 1 and 2 may not just change the phase but may rotate it into a different
state ψb. Braiding of 1 and 2 and that of 2 and 3 are given as

ψa → Mabψb, ψa → Nabψb, (2)

where Mab and Nab are g × g dimensional unitary matrices. For abelian anyons, the θ in
equation (1) is arbitrary and clockwise and anticlockwise exchanges commute. Which means
that even the clockwise and anticlockwise exchanges may not be the same, but if we exchange
particles clockwise then anticlockwise, it will be the same as if we perform anticlockwise
exchange first then clockwise. In contrast, Mab and Nab in equation (2) do not commute in
general, that is MabNab − NabMab �= 0 and particles obey non-abelian statistics.

Since the unitary evolution only depends on the topology of the path, wiggles of the path
would not affect the outcome. No local perturbation can split the degeneracy, hence the system
is decoherence-free. The topological nature of anyons is the source of the fault tolerance in a
quantum computer. A topological quantum computer is based on three steps; the creation of
anyon–antianyon pairs from the vacuum, braiding, and fusion [11, 29]. Anyons can be com-
bined by bringing them close to each other. This is called fusion. The fusion is an inverse of the
creation of the particles. The fusion of an anyon with its antiparticle gives the total topologi-
cal charge zero, but the fusion of an anyon with another different type of anyon or antianyon
may give the third particle or a superposition of a collection of several particles. The resultant
types of particles depend on the fusion rules. The topological charge of an anyon is assigned
with respect to its fusion with other particles to get a vacuum. There might not be a unique
way to combine anyons. Different ways of the fusion of multiple anyons to get an outcome
are called the fusion channels. These fusion channels provide the basis states of the Hilbert
space for quantum gates. The dimension of the Hilbert space is equal to the degeneracy of the
ground state. The transformation between different fusion channels is given by F-matrices. The
internal degrees of freedom of the anyons are changed by braiding and can put the system in
another ground state. The phases acquired by anyons during the braiding are computed through
R-matrices. A quantum superposition of states can be created by a suitable combination of F
and R matrices.
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From the path integral point of view, the anyon’s trajectories make knots whose invariants
are the probability amplitudes from an initial to a final configuration of the system of anyons.
The orientations of knots correspond to the direction of particle trajectories, and the twist in a
ribbon knot corresponds to the topological spin. The topological spin is the phase due to the
rotation of a topological charge around its magnetic flux attached to it. To specify the braiding
statistics, we need the data such as; particle species, fusion rules, F-matrices, R-matrices, and
topological spin. The mathematical model for such data is the category theory and the quantum
deformation of the recoupling theory of angular momenta.

The ternary logic gates and circuits, or the ones that consist of a combination of binary
and ternary, are more compact than their binary counterparts [30]. There are some non-abelian
anyons for which the ternary structures naturally arise. Such anyons are called metaplectic
anyons. In this dissertation, we proposed improved ternary arithmetic circuit designs that can
be implemented with the metaplectic anyons.

This paper is organized as follows. The concept of the Hilbert space and topological qubit in
topological quantum computation is described in section 2. Topological ternary logic design is
based on the SU(2)k anyon model which is the quantum deformation of the recoupling theory
of angular momentum. This model will be discussed in section 3. Section 4 is on one-qutrit
and two-qutrit topological gates. Our proposed topological ternary arithmetic circuit designs
are presented in section 5. We concluded this paper in section 6. Appendices are added as
the background on topological quantum computation. In appendix A, the basic of quantum
binary and ternary logic is explained. The topology and knot theory, and geometric phases are
discussed in appendices B and C. The recoupling theory of angular momentum is given in
appendix D.

2. Topological quantum computation

Topological quantum computing is a fault-tolerant quantum computing, proposed by Alexei
Kitaev [9], manifested by manipulating quantum information using anyons. A quantum com-
putation model involves three main steps; initialization, unitary evolution, and measurement
[31]. In quantum theory, the time evolution of a state is represented by the unitary time evo-
lution operator U(t). When the initial state |ψi〉 evolves unitarily to the final state, it is written
as |ψ f 〉 = U(t)|ψi〉. The initial state is an input and the final state is an output of a quantum
gate, and the readout is a measurement in a certain basis to get a classical result [32]. See
appendix A for further details. The gate operation U(t) is equivalent to the rotation of states in
the Hilbert space. Analogous to conventional quantum computing, topological quantum com-
puting has three steps; the creation of pairs of anyons from the vacuum, their braiding, and their
fusion. The result of fusion corresponds to the measurement, and the braiding corresponds to
the unitary transformation Ψ f = (Braid)Ψi. The braids cause rotation within degenerate N-
particles space. The change of state by braiding can be explained by geometric phases. The
braid group and the geometric phase are discussed in appendices B and C. To see how topo-
logical quantum computing is a fault-tolerant quantum computing, let two spacetime histories
|1〉 and |2〉 in figure 2 have time reversed states 〈1| and 〈2|. By the Kauffman bracket we have
〈1||1〉 = 〈2||2〉 = d2, 〈2||1〉 = d. The number d is assigned to a loop as we discussed in con-
text of the Kauffman bracket in appendix B. So |1〉 and |2〉 are distinct states as long as |d| �= 1
[33]. The states |1〉 and |2〉 locally look the same, but the outcomes of their fusion with |1〉 or
|2〉 are different. Therefore, disturbing one of the particles would not affect the outcome if the
topology of a spacetime trajectory is not changed. The state |1〉 can also be interpreted as the
creation of two pairs of anyons and the state 〈1| as a fusion of the two pairs of anyons.
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Figure 2. States of spacetime histories [33].

For a basic introduction on topological quantum computation, see [29, 34]. The topological
gates with Ising anyons, using the Kauffman version of the recoupling theory [35], are proposed
by [36]. For the implementation of gates with Ising anyons in the quantum Hall phase, see
[37, 38] and for gates with Fibonacci anyons, see [39].

2.1. Hilbert space

According to the axioms of topological quantum field theory, a vector space V(Σ) is associated
with a d-dimensional oriented manifold Σ, which depends only on the topology of Σ [40]. The
vector space of two disjoint vector spaces of Σ1 and Σ2, is the tensor product of the spaces of
each Σ. Reversing the orientation of the surface Σ gives dual vector space V∗. Here ∂M = Σ
can be thought of as a time slice of the system, and V(∂M) is some possible Hilbert space of the
ground state. The interior of the rest of the manifold, other than a boundary, is the spacetime
history of the system.

Let us have two punctures on a Riemann sphere which is a complex manifold. The gluing
axiom of topological quantum field theory [40] states that we can glue the two punctures when
they have opposing orientations. If we imagine one puncture as a particle, then the other hole
must be considered as an antiparticle. It is explained in appendix C that the ground state degen-
eracy for an m number of particles on a torus is mg, where g is a genus. A genus is a handle in
a manifold. From figure 3, we get a genus-one torus T2 when we glue the two opposing par-
ticles together. Therefore, the dimension of Hilbert space on a torus is equal to the number of
particles types. This idea can be generalized to n punctures and higher genus torus, written as
n-torus or T n. Any Riemann surface can be formed by the composition of three punctured Rie-
mann spheres, which is also called pants [11, 41] shown in figure 4. If two of them are fused, a
two-punctured sphere will result. Since the opposite orientations of punctures in TQFT are the
opposite charges in anyonic models, two punctures on a sphere with labels a and ā should have
the same topological charge to fuse into the vacuum. The fusion of two particles requires that
for k charges, there are k + 1 different possible allowed boundary conditions. These charges
can be identified as j = 0, 1/2, . . . , k/2 and the corresponding anyonic model is SU(2)k model
with k + 1 quasiparticles [11, 42].

A sphere with one hole is topologically equivalent to a two-dimensional manifold. Let we
have a two-dimensional manifold as a disc. When there are no particles on this manifold, then
the spacetime history will make a cylinder M. The time direction is taken upward in this article.
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Figure 3. Punctures on tori equivalent to the types of particles present.

Figure 4. A manifold M that is a spacetime history of a time slices Σ1 and Σ2.

Figure 5. Time slice of a manifold with particles.

Here the boundary ∂M = Σ can be thought of as a time slice of the system, and V(∂M) some
possible Hilbert space of the ground state. In figure 5, we have particles on a boundary of a
manifold M. When we move these particles around each other, the trajectories or worldlines of
the particles will make braids in (2 + 1)-dimensional spacetime and the spacetime history will
have a nontrivial topology. This evolution is corresponding to the change of the system from
one ground state to the other. Unless a particle is its antiparticle, the worldlines are assumed to
be directed.

The types of anyons are categorized by quantum numbers attached to them called the topo-
logical charges. When the charges are created from the vacuum, their total charge must be zero.
Therefore, the value of the topological charge is assigned with respect to its fusion with other
anyons. The topological charge zero is assigned to the vacuum. The vacuum is also called a
trivial charge. For example, in Ising anyon model, there are three charges {1, σ,ψ}. In some
anyonic models, the vacuum is represented by 0 or I. The 1 represents a vacuum, or a trivial
particle, whereas the σ and ψ are nontrivial particles. Since the anyons are created from the
vacuum, to conserve the total charge, they must be fused to vacuum. The number of ways these
anyons are fused to vacuum is called the fusion channels or fusion trees. The number of the
fusion channels is equal to the ground state degeneracy of the system. The fusion space is a
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shared property of a collection of non-abelian anyons regardless of where they are located.
Therefore, local perturbations do not affect the degeneracy of the system. In quantum topol-
ogy, anyons on a two-dimensional manifold can be identified as the punctures or holes on a
sphere.

Let several anyons be created from the vacuum, and let us consider a subtree consisting
of two anyons a and b. A fusion tree diagram is equivalent to the anyons’ creation tree if the
time direction is reversed. When these anyons are abelian, they fused to only one outcome and
the dimension of Hilbert space for two anyons is one. But when the particles a and b are non-
abelian, there is more than one fusion outcome, that is a × b =

∑
cNc

ab. Their Hilbert space
is denoted as Vc

ab. The dimension of Hilbert space is given as Nc
ab = dim(Vc

ab). The numbers
Nc

ab are also called the fusion rules. These fusion rules appear in conformal field theory and
category theory in the form as φa × φb =

∑
c Nc

abφc. The fusion rules put some restrictions on
what types of anyons a particular anyonic model can have. As the fusion of two non-abelian
anyons can result in several anyons, in general, Nc

ab could have more values than one. Most of
the anyonic models are built by considering only the two fusion outcomes; vacuum or another
anyon, that is Nc

ab = 0, 1. When the fusion of a and b gives the topological charge c then Nc
ab =

1, but when a and b cannot be fused to c then Nc
ab = 0.

The dimension of Hilbert space increases with the number of anyons, analogous to the
addition of spins 1/2 ⊗ 1/2 = 0 ⊕ 1. This analogy is not exact, because the anyons are not
elementary particles, but they have internal degrees of freedom. The dimension of Hilbert space
of N particles of type a is roughly∼ dN

a , where d is the dimension of Hilbert space of one anyon
and is called the quantum dimension. It is a measure of how much the Hilbert space is increased
by adding this anyon. Therefore, it is an asymptotic degeneracy per particle. It needs not to be
an integer. The quantum dimension of vacuum is one. In terms of knot theory, the d is a number
assigned to a loop. For the process a × b =

∑
cNc

abc, the quantum dimension can be defined
to satisfy dadb =

∑
cN

c
abdc.

Let there be a situation when the fusion outcome of three non-abelian anyons a, b, c is d.
(It can be a subtree of another fusion tree in which d can be fused with another anyon and
the outcome is vacuum or some other anyons). There are more different fusion channels than
one. For example, a can be fused to b first, then their outcome i is fused with c to get d.
Or b can be fused to c first, then their fusion outcome j can be fused with a to get d. The
fusion channels i and j make two sets of basis. The transformation between these bases i and
j is given by F-symbols or F-moves. As for the non-abelian anyons, i and j occur in more
ways than one, the F-moves between different i’s and j’s will be a matrix called the F-matrix
shown in figure 6(a). The vector space for these anyons can be written as Vd

abc = ⊕iVi
ab ⊗ Vd

ic =

⊕ jV
j

bc ⊗ Vd
ja. The fusion diagrams which can be continuously deformed into each other are

equivalent and represent the same state. For a diagram of n anyons shown in figure 7, the
dimension of Hilbert space can be written in terms of the fusion rules as Ne1

a1a2
Ne2

e1a3
. . .Nan

en−3an−1
.

Now let us braid two anyons a and b by exchanging their places. Abelian anyons get a
complex phase that depends on the types of anyons and on whether the exchange is clockwise
or counterclockwise. But it does not depend on the order of exchange. Therefore, for a abelian
anyon we have the R-move given as Rab = eiθab . But for non-abelian anyons, the R-move is a
matrix Ri

ab = eiθi
ab and it depends on the order of the exchange [19]. Topologically equivalent

braids have the same outcomes. The braid matrix is shown in figure 6(b).
The fusion channel of a pair of anyons cannot be changed by R-move only. In other words,

the system would not evolve from one ground state to the other by exchanging the two anyons
of the same pair. To change their fusion channel, we need to braid b and c. For this braiding, we
have to transform i bases to the j bases by an F-move. Therefore, having only two anyons is not
enough for making a topological qubit. To see the effect of the exchange of b and c in the basis
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Figure 6. (a) F and (b) R-moves.

Figure 7. Fusion space of anyons [29].

Figure 8. Braiding for the superposition of the two fusion channels.

i, first an F-matrix is applied to change the basis from i to j, then an R matrix is applied, and
then an F−1-matrix is applied to change the basis back to i. This process is shown in figure 8
and can be written as

Bab = Fd
acb

−1
RabFd

acb. (3)

The matrix B creates the superposition of the fusion channels, with a distinct phase factor
for different fusion channels.

The twist factor or spin factor of an anyon is a phase corresponding to the rotation of a
charge around its own magnetic flux. It can be thought of as a twist in a framed ribbon, as
discussed in appendix B. This factor is written as θa = e2πiha when an anyon is rotated by 2π
as shown in figure 9, where ha is the topological spin of an anyon a. It is an integer for bosons
and gives spin factor identity. It is a half-integer for fermions that would give the spin factor−1.

9
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Figure 9. Removing a twist is equivalent to adding a phase (a) θa = e2πiha and (b) θ∗a =
e−2πiha .

Figure 10. Braid-twist or spin-statistics correspondence.

Its value is between 0 and 1 for an anyon. For vacuum, h0 = 0. Through the ribbon equation,
the spin factor can also be used to derive the entries of an R-matrix for a particular anyonic
model. For example, when two anyons a and b are fused to c, the spin factor is given by the
ribbon equation pictorially shown in figure 10 [29, 43]

[Rc
ab]2 =

θc

θaθb
=

e2πihc

e2πiha e2πihb
= e2πi(hc−ha−hb). (4)

This is interpreted as the full twist of fusion product c combined with the full twist of the
charges a and b in the opposite direction, and is equal to the double exchange of the a and b.

2.2. Topological qubit

Now we will summarize what we discussed in the last section and build a qubit from this dis-
cussion. A pair of non-abelian anyons cannot be used directly as a qubit, because the two states
belong to different topological charge sectors |ab; i1〉 and |ab; i2〉, and cannot be superposed
by braiding. Let three anyons a, b and c be fused to d. The first two are fused to i, then their
outcome is fused with the third gives d. We can write the two different fusion channels as the
two states of our qubit as

|i〉 = |a, b → i〉|i, c → d〉, (5)

10
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where the tensor product symbol is omitted. Alternatively, when the last two anyons b and c
are fused to j, the j is fused with c to make d. i and j are two sets of bases. This is shown in
the figure 6. A qubit can also be formed as

| j〉 = |b, c → j〉| j, a → d〉. (6)

The change of basis is performed by using the F-matrices as

|i〉 =
∑

j

(Fd
abc)

i
j| j〉. (7)

The (Fd
abc)

i
j are the matrix elements of Fd

abc summed over j. F and R matrices are obtained for
a particular anyon model from the solution of the pentagon and hexagon equations [29]. Ising
and Fibonacci anyons are the most popular systems to make the topological quantum comput-
ing logic gates. These anyons are found as quasiparticles in non-abelian fractional quantum
Hall effect and topological superconductors.

A possible error in topological quantum computation is due to the braiding or fusion with
some unattended anyon in the system. This error can be avoided by carefully accounting for
the charges participating in the encoding. Another type of error could be due to the energy of
the system, such that the gap between the ground state and the excited state gets filled. This
error can be minimized by keeping the system at a very low temperature. The measurement
of outcome is either interference or the projective measurement as discussed in references
[11, 44].

2.2.1. Example 1: Fibonacci anyon. The simplest non-abelian anyon model consists of only
two particles 1 and τ [45–47]. The fusion rules for this anyon model are

τ × τ = 1 + τ. (8)

The basis states can be written as

|0〉 = |τ , τ → 1〉, |1〉 = |τ , τ → τ〉. (9)

The dimension is the different number of ways the fusion of all anyons can result in topological
charge 1 or τ . In the fusion outcome of two τ we get 1 with probability p0 = 1/φ2 and τ with
probability p1 = φ/φ2 = 1/φ [47]. The dimension grows as the Fibonacci series, in which the
next number is a sum of the last two numbers. The quantum dimension dτ = φ = (1 +

√
5)/2

is the golden mean.

τ × τ × τ = 1 + 2τ

τ × τ × τ × τ = 2 · 1 + 3 · τ

τ × τ × τ × τ × τ = 3 · 1 + 5 · τ
.

As we discussed above, no amount of braiding can change one qubit state to the other.
Therefore, we need more than two τ particles for the qubit. Also, topological quantum compu-
tation has no tensor product structure. That means, if three τ anyons are used to make a qubit
then the six anyons have only the five dimensional fusion space. Therefore, only a subspace
is used to encode a qubit. Three Fibonacci anyons are required for the qubit and the fusion

11
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Figure 11. (a) Two orthogonal qubit states, i would be either 1 or τ . (b) Fusion space for
n Fibonacci anyons.

of four particles results in the vacuum [19]. F and R matrices for this model are obtained by
consistency conditions, as in reference [29] are given as

[Fτ
ττ1]ττ =

⎛
⎜⎝

1
φ

1√
φ

1√
φ

− 1
φ

⎞
⎟⎠ (10)

Rττ =

(
R1
ττ 0
0 Rτ

ττ

)
=

(
e4πi/5 0

0 −e3πi/5

)
. (11)

Quantum computing with Fibonacci anyons is done as follows. The fusion of two τ particles
gives either 1 or τ . These two orthogonal states are represented as |(•, •)1〉 and |(•, •)τ〉. The
addition of the third τ particle to the state |(•, •)1〉 gives τ and is denoted as |((•, •)1, •)τ〉 ≡ |0〉.
But when the third particle is added to the state |(•, •)1〉, we get either 1 or τ . These states
are represented as |((•, •)τ , •)τ〉 ≡ |1〉 and |((•, •)τ , •)1〉 ≡ |N〉, here |N〉 stands for the non-
computational state. The amplitude in this state is considered as the leakage error [11, 39].
The states |((•, •)1, •)τ 〉 ≡ |0〉 and |((•, •)τ , •)τ 〉 ≡ |1〉 are the basis states for a qubit and which
are interchanged by an F matrix (10). The braiding of these particles is represented by an R
matrix (11). These basis states and the fusion of Fibonacci anyons is shown in figure 11. The
set of gates required to build any kind of circuit is called the universal quantum gate set. The
Fibonacci anyonic model is the universal for quantum computing. These kinds of anyons are
proposed to be found in the Read–Rezayi state ν = 12/5 which is a very fragile state, so other
anyon models are also under consideration [11] (figure 12).

2.2.2. Example 2: Ising anyon. This model has three anyons 1, σ and ψ. The fusion rules for
these anyons are;

σ × σ = 1 + ψ, ψ × ψ = 1, ψ × σ = σ. (12)

Two basis states can be written as

|0〉 = |σ, σ → 1〉, |1〉 = |σ, σ → ψ〉. (13)

Since two fusions belong to different topological charge sectors, at least three anyons are
needed that can fuse to σ in two different ways. For every added σ the dimension of fusion
space doubles, hence for 2N anyons the dimension is 2N−1. This model is non-universal, so
non-topological schemes are also devised in addition to topological computation. The F and R
matrices for this model [19] are,

Fσ
σσσ =

1√
2

(
1 1
1 −1

)
, Rσσ = e−iπ/8

(
1 0
0 i

)
, (14)
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Figure 12. Orthogonal states of three Fibonacci particles [11].

where R1
σσ = e−iπ/8 and Rψ

σσ = ei3π/8. The topological charges are labeled as 0, 1/2, 1 corre-
sponds to 1, σ,ψ. The total charge of two particles with charges 1/2 is either 1 or 0. The total
charge is 0 when both particles have charges 1, but the total charge is 1/2 when one particle
has charge 1 and other has 1/2. The quantum dimensions, d1 = dψ = 1 and dσ =

√
2, for these

anyons are computed in reference [29] using the fusion rules.
Let us consider four particles of charge 1/2 with a total charge of 0. The first two are fused

either to 0 or 1. In case it is zero, then the total of the third and fourth must be zero. If the total
of first and second is 1 then the total of third and fourth must be equal to 1. In this way, we
have two states of four 1/2 quasiparticles. There are 2n−1 states for 2n particles [11, 48]. When
particles of the same pair, say i, are braided, only the phase is changed, but when a particle
of pair i is braided with the particle of other pair j, a NOT gate is applied [11]. Taking both
particles of i around both particles in j then the basis state is multiplied by +1 if j has a charge
0, but it gets multiplied by −1 if it has a charge 1. Six σ anyons are required for two-qubit
encoding. See references [11, 19] for the implementation of CNOT and phase gates. The Ising
anyon model is implemented by using the quantum Hall state ν = 5/2 and Majorana particle
in topological superconductors.

3. Q-analog of recoupling theory

The fusion of quasiparticles is similar to the recoupling theory of addition of angular momen-
tum in quantum mechanics [49–51]. Ternary logic gates are designed using the q-deformed
version of the recoupling theory. Therefore, for the intuition, we will discuss the quantum
deformation and the recoupling of angular momenta and then discuss the quantum deformation
of recoupling theory [52–54]. The quantum deformed quantities are also called q-analogs.

3.1. Quantum deformation

In classical mechanics, states on phase space make a manifold represented by say (q, p). Phys-
ical quantities are observables that are the functions of (q, p). The abelian algebra formed for
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these observables and associated geometry is commutative. In quantum mechanics, due to the
Heisenberg uncertainty principle, there is no arbitrary precision of the quantities. Algebra is
non-commutative and classical mechanics is the limiting case when Planck constant h → 0.
Therefore, quantum mechanics is a kind of deformation of classical mechanics. In quantum
mechanics, the commuting classical observables are replaced with the noncommuting Her-
mitian operators. Hence we can say that we deform classical algebra and the deformation
parameter is h. The noncommutativity of the variables X and Y in the deformed space is
written as

XY = qYX, (15)

where q is a complex number in general. It is called the deformation parameter. Let q be a
number different from 1, and h be a number different from 0. If we take x = qx0 or x = x0 + h
we can have the classical values when h → 0 or q → 1. These two are related as q = eh [55]. For
q → 1, we would get back the classical commuting variables. Let us choose q = eiθ. Consider
an example when the operators Tα and Gθ/α are acting on a function ψ(x) of real variable x,
such that

Tαψ(x) = ψ(x + α), Gθ/αψ(x) = eiθx/αψ(x). (16)

When we apply both Tα and Gθ/α operators, we get

TαGθ/αψ(x) = eiθ(x+α)ψ(x + α) = eiθGθ/αTαψ(x). (17)

With the fixed value of variables θ and α, Tα and Gθ/α become noncommuting variables that
can be written as

TαGθ/α = eiθGθ/αTα. (18)

3.1.1. q-analogs. An anyon or a pair of anyons interacts through braiding in the plane
deformed by the existence of the fields of the other anyons in an abstract way. This braid-
ing interaction may cause the twist factor that is related to the topological spin of an anyon and
involves the parameter q. Algebraically, we can think of q as a small perturbation of the usual
mathematical objects. The q can be generic or a root of unity. The root of unity is defined as
when a complex number q is raised to some power n so that it equals 1 for that power, then
we say that this complex number is nth root of unity. Now the q-analog quantities give the
corresponding classical quantities for the limiting case when q → 1. For n ∈ Z we define what
is called a q-integer

[n]q =
qn − q−n

q − q−1
, (19)

which is the Laurent polynomial equal to n ∈ Z for q → 1. It is done by taking the limit q →
1 and applying L’Hospital’s rule. The q-analog of natural numbers is as follows, [0]q = 0,

[1]q = 1, [2]q =
q2−q−2

q−q−1 , and so on. We can get q-factorial [n]! that can be written as

[n]! = [n][n − 1] . . . [1] (20)

=
qn − q−n

q − q−1
· qn−1 − q−(n−1)

q − q−1
. . .

q2 − q−2

q − q−1
· 1. (21)
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Sometimes, we take [n]q =
1−qn

1−q , as in [55, 56]. In that case the q-analog of natural numbers

and q-factorials are written as [0]q = 0, [1]q = 1, [2]q = 1 + q, [3]q = 1 + q + q2,

[n]! = 1 · (1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1). (22)

3.2. SU(2)k anyon model

The F-symbols in topological quantum computation can be computed using the SU(2)k model
[44] and Temperley-Lieb recoupling theory [35] also called the JKk anyon model [57]. Where
the k is called the level of the theory. It is the coupling constant of Chern–Simons theory and
is related to the number of particles present as we discussed in section 2. These theories are
the quantum analog of theory of addition of angular momentum. The SU(2)k is the q-deformed
version of SU(2) with q = exp(i2π/(k + 2)), for q at the root of unity. The detailed derivation
of the parameter q in this form is given in [58]. The anyon’s fusion amplitudes would be written
as the recoupling coefficients. The F-symbols and R-symbols are obtained by using these two
models at level k = 4 gave identical values. The charges are half integral in SU(2)k model, but
are integral in JKk model. For F and R symbols in the JK4 model, see [57]. In our work, we
will use the SU(2)4 model. The topological data for this model are given as

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
,

C = {0, 1/2, . . . , k/2},

j1 × j2 =

min j1+ j2,k− j1− j2∑
j=| j1− j2|

,

(23)

[F j1, j2, j3
j ] j12, j23 = (−1) j1+ j2+ j3+ j

√
[2 j12 + 1]q[2 j23 + 1]q

⎧⎨
⎩

j1 j2 j12

j3 j j23

⎫⎬
⎭

q

, (24)

where
⎧⎨
⎩

j1 j2 j12

j3 j j23

⎫⎬
⎭ = Δ( j1, j2, j3)Δ( j12, j3, j)Δ( j2, j3, j23)Δ( j1, j23, j)

×
∑

z

(−1)z[z + 1]q!

[z − j1 − j2 − j12]q![z − j12 − j3 − j]q![z − j2 − j3 − j23]q![z − j1 − j23 − j]q!

× 1
[ j1 + j2 + j3 + j − z]q![ j1 + j12 + j3 + j23 − z]q![ j2 + j12 + j + j23 − z]q!

, (25)

Δ( j1, j2, j3) =

√
[− j1 + j2 + j3]q![ j1 − j2 + j3]q![ j1 + j2 − j3]q!

[ j1 + j2 + j3 + 1]q!
,

[n]q! ≡
n∏

m=1

[m]q,

R j1, j2
j = (−1) j− j1− j2q

1
2 [ j( j+1)− j1( j1+1)− j2( j2+1)],
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d j = [2 j + 1]q =
sin

[
(2 j+1)π

k+2

]
sin

(
π

k+2

) , D =

√
k+2

2

sin
(

π
k+2

) ,

θ j = q j( j+1) = ei2π j( j+1)
k+2 , S j1 j2 =

√
2

k + 2
sin

[
(2 j1 + 1)(2 j2 + 1)π

k + 2

]
.

Where d, D, and S j1, j2 are quantum dimension, total quantum dimension and topological
S-matrix respectively. The data in SU(2)k theory are used to compute the [F j1, j2, j3

j ] j12, j23 and

R j1 j2
j matrices [59]. The F and R symbols are calculated using these fusion rules and from the

F and R matrices, the σ matrices are obtained in section 4 [57, 59].

4. Ternary logic design with metaplectic anyons

Quantum computation is performed with metaplectic anyons which are simple objects in
weakly integral categories. The term metaplectic is for a braid group that is in the metaplec-
tic representation. These representations are the symplectic analog of spinor representation
[59, 60].

The metaplectic anyons can be studied from the category theory. Anyons are simple objects
in a unitary modular category. See references [27, 61] for the introduction to category theory
and [62] for the use of category theory in topological quantum computation. A category is
integral when the quantum dimension or Frobenius–Perron dimension of a simple object is an
integer, whereas a category is called weakly integral if the squares of the quantum dimensions
of all the simple objects are integer. Weakly integral categories are a class of metaplectic cate-
gories [63, 64]. There are five anyons {1, Z, X, X′, Y} in the theory of metaplectic anyons with
fusion rules, quantum dimensions, and topological twists given as

X ⊗ X = 1 + Y,

Y ⊗ Y = 1 + Z + Y,

X ⊗ Z = X′,

X ⊗ X′ = Z + Y,

(26)

d1 = dZ = 1, dX = dX′ =
√

3, dY = 2, (27)

θ0 = θ4 = 1, θ1 = θ3 = eiπ/4, θ2 = ei2π/3. (28)

There is a non-abelian boson quasiparticle Z. These theories also have a fundamental particle
X. This particle is also a non-abelian. It is a vortex for the Z boson. This X particle is fused
with another X particle to give Yi or vacuum, where i = 1, 2, . . . , r and r = (m − 1)/2. These
non-abelian particles Yi have the quantum dimension 2. When X and Z are fused, the result
is the particle X′ [64, 65]. A collection of N quasiparticles X at a fixed position has an nN-
dimensional degenerate subspace with nN ∼ mN/2. The proposed metaplectic anyon systems
are the quantum Hall effect and Majorana zero modes [66–70].
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4.1. One-qutrit gates

Let us consider four X anyons. The first two of the four are fused to c12 and the last two are
fused to c34 as shown in figure 13(a). With the constraint c14 = Y, we get three fusion trees
[59, 60]

(c12, c34) ∈ {−(YY), (1Y), (Y1)}. (29)

These are corresponding to the three states of qutrit |0〉, |1〉, |2〉. The minus sign is just to make
the algebra nicer later. Let σ1 be a braid matrix for the first two particles, and σ2 corresponds to
a braid of the second with the third, and σ3 is a braid matrix for the third and fourth as shown
in figures 14 and 15. The associated Hilbert space is represented by Vεεεε

y , for ε = X. Under the
basis {−|YY〉, |1Y〉, |Y1〉}, the generators of the braid group B4 for the representation Vεεεε

y are

σ1 = γ

⎛
⎝1 0 0

0 ω 0
0 0 1

⎞
⎠, σ3 = γ

⎛
⎝1 0 0

0 1 0
0 0 ω

⎞
⎠, (30)

σ2 =
γ3

√
3

⎛
⎝1 ω ω
ω 1 ω
ω ω 1

⎞
⎠ = γ

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
+

√
3i

6
−1

2
+

√
3i

6
−1

2
+

√
3i

6

−1
2
+

√
3i

6
1
2
+

√
3i

6
−1

2
+

√
3i

6

−1
2
+

√
3i

6
−1

2
+

√
3i

6
1
2
+

√
3i

6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(31)

where ω = e2πi/3 and γ = eπi/12. Ignoring the γ in front, let us define [59] p = σ1σ2σ1, q =
σ2σ3σ2,

p2 = −

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, q2 = −

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

−(q2pq2)2 =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠,

(q2 pq2)2Z∗((q2 pq2)2)∗ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠,

(q2 pq2)2Z((q2 pq2)2)∗ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (32)

These gates correspond to one-qutrit gates Z3(+1), Z3(+2), Z3(01), Z3(12), Z3(02) in conven-
tional quantum computing discussed in appendix A. The phase gate Z = σ1σ

−1
3 = σ1σ

2
3 and
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Figure 13. (a) One-qutrit fusion tree (b) two-qutrit fusion tree [60].

Figure 14. One-qutrit braid matrices (a) σ1 and (b) σ3.

the ternary Hadamard gate H = q2 pq2 can be written in matrix form as

Z =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, H =

1√
3i

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠. (33)

4.2. Two-qutrit gates

The two-qutrit model would consist of eight X anyons with the final fusion outcome Y as shown
in figure 13(b). The braid matrices for two qutrits are written as σ1, σ2, σ3, σ4, σ5, σ6, σ7. Let
us define

s1 = σ2σ1σ3σ2, s2 = σ4σ3σ5σ4, s3 = σ6σ5σ7σ6. (34)

From these matrices, we can calculate a matrix

Λ(Z) = s−1
1 s2

2s1s−1
3 s2

2s3. (35)

The two-qutrit encoding is obtained when restricting the vector space Vεεεεεεεε
y to nine dimen-

sional subspace Vεεεε
y ⊗ Vεεεε

y ⊂ Vεεεεεεεε
y with c14 = c58 = Y. This nine-dimensional restriction

of the Λ(Z) is the controlled-Z gate. The SUM gate is a generalization of the CNOT gate
[59, 60]. It is related to CZ as

SUM = (I ⊗ H)Λ(Z)(I ⊗ H−1). (36)

18



J. Phys. A: Math. Theor. 55 (2022) 305302 M Ilyas et al

Figure 15. One-qutrit braid matrix σ2.

This SUM gate will be combined with the topological charge measurement to build arithmetic
circuits in the next section.

5. Ternary arithmetic circuits

The most important challenge in circuit design is reducing the number of gates. The more
the gates, the harder it is to implement the circuit. The MS gates in conventional quantum
computing are designed by keeping the controlling value 2. Since, in topological quantum
computation, any anyon can be braided to another anyon at any stage of the implementation,
we can have a controlling value of 0, 1, 2. Therefore, we can create a more general methodology
of designing topological circuits presented here. We redesigned the qutrit arithmetic circuits
that can be implemented with one-qutrit and two-qutrit gates made by metaplectic anyons [71]
described in the last section. The universal set of gates cannot be made by braiding alone, it is
to be combined with the topological charge measurement [59].

The gates that can be obtained by braiding alone are the Clifford gates, whereas the non-
Clifford gates cannot be implemented by braiding alone. In this work, we have the Clifford gate
SUM that can be implemented by braiding alone, whereas Cc(X) is a non-Clifford gate that
is implemented by the measurement of the topological charge. As in appendix A, one-qutrit
ternary gates are represented as Z3(+1), Z3(+2), Z3(01), Z3(12), and Z3(02), where the first
two are increment gates and the last three are permutation gates. The non-Clifford gate, that
is Cc(X), applies X when the controlling value is c = 0, 1, 2, where X can be a permutation or
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Figure 16. The graphical representation of two-qutrit ternary gates [71].

increment gate. The gates Cc(X) are 9 × 9 matrices can be written as diag(I3, I3, X) for control
|2〉, diag(I3, X, I3) for control |1〉, and diag(X, I3, I3) for control |0〉, where I3 is 3 × 3 identity
matrix. In reference [71], the SUM gates are called soft-controlled whereas the Cc(U) are called
hard-controlled gates.

The measurement can be projective or based on interference [11, 26, 59]. In case of inter-
ferometric measurement, a probe charge is sent through the paths around some region. The
interference between different paths is related to the total topological charge in that region.
The charge of the region can be found by measuring the charge of the probe. This kind of
measurement can distinguish charge of fusion channel from an overall collection. This is
non-demolition measurement but the fusion channels evolve in non-universal manner. Local
measurement for topological charge of a single quasiparticle is performed by bringing two
charges close to each other and find their charge from their fusion outcome. Let the measure-
ment M1 = {Π1,Π′

1} correspond to the topological charge measurement of the first pair of
anyons spanned by |1Y〉 and its orthogonal complements |− YY〉, |Y1〉. The topological charge
of the first pair of anyons is found by this measurement. If it is 1 or Y then the second pair is
still in a coherent superposition of 1 and Y. This measurement allows us to find whether an
anyon is trivial or not. For the hard-controlled gates Cc(U), braiding gate is applied only when
the controlling value of topological charge is ‘c’, the one mentioned on the gate, otherwise go
to previous step or start over. The process is repeated several times until we get the required
result. The braiding supplemented with the projective measurement provides the universal set
of gates for anyonic quantum computation [59].

As discussed in previous section, the Clifford gate SUM = (I ⊗ H)Λ(Z)(I ⊗ H−1) in
equation (36) is a generalization of the CNOT gate. It can also be written as SUM = |0〉〈0| ⊗
I + |1〉〈1| ⊗ X + |2〉〈2| ⊗ X2. Here, X is an increment gate Z3(+1) or Z3(+2). The two-qutrit
9 × 9 matrix for the SUM is written as diag(I3, X, X2). Let us call this gate SUM1. But if we
use Λ(Z−1) in equation (36), we get the matrix form as diag(I3, X2, X). Let us represent this
form as SUM2. The braiding implementation of SUM1 and SUM2 is equivalent. The SUM1

and SUM2 are used for designing the two-qutrit braiding gates Z3(+1) and Z3(+2). These
gates are shown in figure 16 and their matrices are shown in equation (39). We can also
note that the matrix diag(I3, X2, X) is the square of the matrix diag(I3, X, X2). When control
is the second qutrit and target is the first qutrit, then the SUM gates are written in the form
SUM = I ⊗ |0〉〈0|+ X ⊗ |1〉〈1|+ X2 ⊗ |2〉〈2| = (H ⊗ I)Λ(Z)(H−1 ⊗ I).

Two qutrits can be swapped by the SWAP gate, as discussed in appendix A. This gate can
be formed by braiding alone [60] with the use of the permutation gates. One of the realizations
of the SWAP gate SWAP : |i, j〉 → | j, i〉 is obtained by using the gate Z3(12) [60] and can be
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Table 1. Truth table of the ternary half adder.

A B S cout

0 0 0 0
0 1 1 0
0 2 2 0
1 0 1 0
1 1 2 0
1 2 0 1
2 0 2 0
2 1 0 1
2 2 1 1

Figure 17. Ternary half adder circuit realization.

Figure 18. Ternary full adder circuit realization.

written as

SWAP = (Z3(12) ⊗ I)SUM1,2SUM2,1SUM2,1SUM1,2, (37)

where SUM j,k is a two-qutrit SUM gate applied to kth qutrit when jth qutrit is the control
qutrit. Two other non-Clifford gates used in this paper are Honer gate and controlled-SUM gate
given as

Horner = Λ(Λ(X)) : |i, j, k〉 → |i, j, i j + k〉

C(SUM) = Cc(SUM) : |i, j, k〉 → |i, j, jδi,c + k〉
. (38)

These gates are generalization of Toffoli gate [71, 72].
In figure 16, the non-Clifford gates are represented by the filled circles at the controlling val-

ues with c = 0, 1, 2, whereas for the SUM gates, the hollow circles are drawn at the controlling
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values. To avoid cluttering, labels of the control is omitted when its value is 2. The increment
gates will be represented by +1 and +2 and the permutation gates will be represented by
01, 12, and 02. The gates in the boxes are related to the sum or product column of truth tables.
Blue and orange colors of gates correspond to Clifford gates and non-Clifford gates respec-
tively. A circuit is read from left to right but when it is written as matrices it is read from right
to left, the same as the matrix multiplication.

SUM1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

SUM2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(39)

5.1. Ternary adder

The adder circuit is the most important arithmetic circuit used in almost all circuits, especially
in algorithms such as Grover, Shor, and HHL algorithms. Binary adder circuits are proposed by
references [73–75] and their ternary counterparts are given in references [76–78]. The adder
circuit of reference [30] consists of 14 MS and shift gates and the circuit from reference [79]
obtained using the genetic algorithm, has 13 MS and shift gates. In reference [80], half adder
is designed by 5 MS gates and one shift gate. An output that remains unused and thrown out is
called the garbage output. Most of these designs used the Toffoli gate for their implementation,
but the Toffoli gate cannot be built by braiding alone [59]. Our circuit design for half adder
consist of four gates. Only one braiding gate is used to implement the sum and three non-
Clifford gates are used for the implementation of carry. The constant inputs and the garbage
outputs are the same for our designs as in the existing designs.

When we add two one-digit numbers, then we get the half adder, whereas the full adder
circuit adds three one-digit numbers. The third digit can be a carry from the previous half
adder. The truth table for a half adder is shown in table 1 and the circuit realization is shown in
figure 17. Let us discuss the cases when there is a nonzero carry. For example, the case when
the input A has value 1 and input B has value 2. For the first gate, the control value is not 2
so it would not be applied. For the second gate, control value is 2 but third input is zero. The
second gate will also remain ineffective. Third gate will be applied and it will give the carry 1.
At the fourth gate, within the box, S will be zero as B = 2 will add 2 to A = 1.

When A = 2 and B = 2, the first gate will change the third qutrit from 0 to 2. At the second
gate, third qutrit will be changed to 1. The third gate will not be applied. The fourth gate will
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Table 2. Truth table for ternary full adder.

A B C S cout

0 0 0 0 0
0 0 1 1 0
0 0 2 2 0
0 1 0 1 0
0 1 1 2 0
0 1 2 0 1
0 2 0 2 0
0 2 1 0 1
0 2 2 1 1
1 0 0 1 0
1 0 1 2 0
1 0 2 0 1
1 1 0 2 0
1 1 1 0 1
1 1 2 1 1
1 2 0 0 1
1 2 1 1 1
1 2 2 2 1
2 0 0 2 0
2 0 1 0 1
2 0 2 1 1
2 1 0 0 1
2 1 1 1 1
2 1 2 2 1
2 2 0 1 1
2 2 1 2 1
2 2 2 0 2

add 2 to A = 2 and give the sum S = 1. The garbage bits at the end of the computation will be
ignored.

The full adder adds three qutrits A, B, C as shown in figure 18. The truth table for the ternary
full adder is given in table 2. The sum of A and B is obtained that is added to the third input
qutrit C to get the output S. The input C can be a carry from the previous sum of two qutrits.
The garbage outputs g1 and g2 are ignored.

The addition of two-qutrit numbers and its circuit realization are shown in figures 19(a) and
(b). A half adder and a full adder can be used. The first qutrit A0 of A0B0 is added by the first
half adder and the first digit of the sum S0 and g1 are obtained. Their carry c0 is to be added
with the sum of the second qutrits A1 and B1. This c0 corresponds to the input C of the full
adder. The addition of A1 + B1 + c0 gives the second digits of the output as S1 and a carry
cout. The SWAP gate in equation (37) is used to exchange the qutrits S and c0, and the garbage
qutrits are thrown out.

5.2. Ternary subtractor

A ternary subtractor gives an output as a difference between two inputs. The subtractor circuit
takes two inputs A and B and one ancilla. The difference between two inputs and the borrow is
obtained at the output. For ternary subtractor in conventionalquantum computing, see reference
[78]. The half subtractor truth table is shown in table 3 and the circuit realization is shown in
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Figure 19. Ternary two-qutrit (a) addition and (b) circuit realization by using one half
adder and one full adder.

Table 3. Truth table for ternary half subtractor.

A B D bout

0 0 0 0
0 1 2 1
0 2 1 1
1 0 1 0
1 1 0 0
1 2 2 1
2 0 2 0
2 1 1 0
2 2 0 0

figure 20. Let us discuss the case when A = 1, B = 2. Since the controlling, value needs to be
at 0, but we have B = 2, the first C(SUM) gate would not be applied. For the second gate, the
controlling value is 2, therefore the MS permutation gate would be applied, but the value at the
third qutrit is 0 so this gate will remain ineffective. The gate for the carry will give 1, because
the controlling values are 2. The fourth gate changes A from 1 to 2. Therefore, at the output, we
get a difference D = 2 and the borrow bout = 1. This design of half subtractor circuit consists
of only one braiding gate and three non-Clifford gates.

When taking the difference of two numbers and a borrow is needed, then have a full subtrac-
tor. It has three inputs A, B, and C, where C is the borrow-in. The truth table for full subtractor
is shown in table 4 and the circuit realization is shown in figure 21.

5.3. Ternary multiplier

In a two-qutrit multiplier A0B0 × A1B1, each digit of the first number is multiplied by each digit
of the second number. Then all the partial products are added in the way shown in figure 22.
Therefore, we need ternary partial product generation (TPPG) circuits and adder circuits for
the two-qutrit multiplier. This kind of multiplier is discussed in reference [81]. The outputs of
the two numbers are P0, P1, P2, and P3 and the carry is cout.
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Figure 20. Ternary half subtractor circuit realization.

Table 4. Truth table for ternary full subtractor.

A B C D bout

0 0 0 0 0
0 0 1 2 1
0 0 2 1 1
0 1 0 2 1
0 1 1 1 1
0 1 2 0 1
0 2 0 1 1
0 2 1 0 1
0 2 2 2 2
1 0 0 1 0
1 0 1 0 0
1 0 2 2 1
1 1 0 0 0
1 1 1 2 1
1 1 2 1 1
1 2 0 2 1
1 2 1 1 1
1 2 2 0 1
2 0 0 2 0
2 0 1 1 0
2 0 2 0 0
2 1 0 1 0
2 1 1 0 0
2 1 2 2 1
2 2 0 0 0
2 2 1 2 1
2 2 2 1 1

The carries produced by addition are represented as ci, whereas the cpi are the carries we
get as a result of one-digit multiplication. The first digit of multiplication is P0 = A0B0 and its
carry is represented by cp0. To compute P1, P2, P3 and cout, adder circuits are needed. As each
of the digits A0, B0, A1, B1 can have values 0, 1, 2, not all the partial products produce carries
in multiplication. We do not need extra input lines and gates corresponding to the carries, and
therefore, it is cheaper to implement the circuit without full adders. Instead, we are using the
adder blocks as in Panahi [81]. The one-digit TPPG circuit is shown in figure 23 and the truth
table is shown in figure 5. The carry-out appears only when both the input values are at value
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Figure 21. Ternary full subtractor circuit realization.

Figure 22. Two-qutrit multiplication.

Figure 23. Circuit design of the TPPG component.

2 in the one-digit multiplication. The existing realization in reference [81] has 13 MS and shift
gates.

P0 = A0B0

P1 = cp0 + A1B0 + A0B1

P2 = c0 + cp1 + cp2 + A1B1

P3 = c2 + c1 + cp3

. (40)
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Table 5. Truth table for a two-qutrit partial product.

A B P cp

0 0 0 0
1 0 0 0
2 0 0 0
0 1 0 0
1 1 1 0
2 1 2 0
0 2 0 0
1 2 2 0
2 2 1 1

Table 6. Truth table for ternary adder block 1.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
2 0 0 2 0
0 1 0 1 0
1 1 0 2 0
2 1 0 0 1
0 2 0 2 0
1 2 0 0 1
2 2 0 1 1
0 0 1 1 0
1 0 1 2 0
2 0 1 0 1
0 1 1 2 0
1 1 1 0 1
2 1 1 1 1
0 2 1 0 1
1 2 1 1 1
2 2 1 2 1

Figure 24. Implementation for the ternary block 1.
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Table 7. Truth table for ternary adder block 2.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
2 0 0 2 0
0 1 0 1 0
1 1 0 2 0
2 1 0 0 1
0 0 1 1 0
1 0 1 2 0
2 0 1 0 1
0 1 1 2 0
1 1 1 0 1
2 1 1 1 1

Figure 25. Implementation of block 2.

From the figure 22, we have P1 = cp0 + A1B0 + A0B1. Adder block 1 adds the partial prod-
ucts A1B0, A0B1 and the carry cp0 of the partial products. As we can see from the truth table 5
of the partial product, the carry in the first partial product is never 2. The input values can be 0,
1 and 2 but carry is only 0 or 1. That is, the cp0, cp1, cp2, and cp3 are 1 and the carry is only for
the case when inputs are at values 2. The truth table for the adder block 1 is shown in table 6,
and the implementation is shown in figure 24. The input lines with label 0 are ancilla lines, and
g are the garbage outputs. Adder block 2 adds three qutrits A1B1, cp1 and cp2 to get P2. The
sum of these three qutrits will be added to c0 using block 4. The first input has values 0, 1, 2, but
the second and third inputs have values 0, 1. The partial product A1B1 is added to the two input
carry numbers, which have values 0, 1. The truth table and implementation of block 2 is shown
in table 7 and figure 25. Adder block 3 adds qutrits c1, c2 and cp3 to get P3. The truth table is
shown in table 8 and the implementation is shown in figure 26. All the inputs have values 0 or
1. The output carry appears only when all the inputs have values 1. Adder block 4 is used to
add the sum of adder block 2 and c0. The half adder is used for its implementation. The output
carry is only for one of the cases. The input carry cin is either 0 or 1 and input A = 0, 1, 2. The
truth table of block 4 is shown in table 9 and its implementation is shown in figure 27. The
block 1 is designed with two Clifford and 4 non-Clifford gates, block 2 has 2 Clifford and 2
non-Clifford gates, block 3 consists of 2 Clifford and one non-Clifford gates, whereas block 4
is implemented with only one Clifford gate and 1 non Clifford gate.
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Table 8. Truth table for ternary adder block 3.

A B cin Sum cout

0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 2 0
0 0 1 1 0
1 0 1 2 0
0 1 1 2 0
1 1 1 0 1

Figure 26. Implementation of ternary adder block 3.

Table 9. Truth table for ternary adder block 4.

A cin Sum cout

0 0 0 0
1 0 1 0
2 0 2 0
0 1 1 0
1 1 2 0
2 1 0 1

Now we will combine the TPPG circuits and the adder blocks to get a full two-digit multi-
plier circuit. From the two-digit qutrit multiplication in figure 22, the first digits of two numbers
give the first partial product and first multiplication digit P0. The second multiplication digit
is the addition of partial products A0B1 and A1B0 and added to the carry from the first partial
product. These partial products also create the carries. The carries from these partial products
and the carries of additions are added to the partial product A1B1. These give the third digit of
multiplication. The additions generate two carry digits.

The full two-digit qutrit multiplication circuit is shown in figure 28. When the line goes on
the top of a block, then it is non-interacting, but when a line goes below the block, then it is
given to that block as the input line. In the figure, the upper TPPG at stage 1 gives a partial
product P0 = A0B0 and the carry cp0. The lower TPPG at the stage 1 computes A1B1, and we
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Figure 27. Implementation of block 4.

Figure 28. Ternary two-qutrit multiplier is implemented using the adder blocks and
TPPG circuits [81].

have the carry cp3. At stage 2, the first TPPG computes partial product A1B0 and produces the
carry cp1, whereas the second TPPG computes A0B1 and produces the carry cp2. Inputs of the
first TPPG are B0 and A1 and two ancillae, whereas the inputs of the second TPPG are A0 and
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B1. The stages 3, 4 and 5 consist of adder blocks. As we can see in figure 22, we need to add
cp0, A0B1 and A1B0 to get P1 and the carry c0. This is done by block 1 at stage 3. At this stage,
the adder block 2 adds cp1, A1B1 and cp2. The output of this block is s1 and the carry is c1. At
stage 4, the sum s1 is added to c0 by using the block 4 and the output P2 is obtained. The block
4 has a carry c2. At stage 5, cp3, c1 and c2 are added using the block 3 to get an output qutrit
P3 and the carry cout.

6. Conclusion

The topological quantum computation is a promising candidate for fault-tolerant quantum com-
putation. Our main focus in this article is to find the ternary arithmetic circuits implementation
in topological quantum computation. We explained how to build the fault-tolerant quantum
gates by using the ideas based on topology and the braiding of non-abelian anyons. The Hilbert
space, fusion, and braiding matrices are computed for a topological qubit. Metaplectic anyons
are discussed and fusion and braiding matrices for ternary logic are obtained by the quantum
deformation of the recoupling theory. The universal set of gates cannot be obtained by braiding
alone, it needs to be combined with the measurement gates. The quantum ternary arithmetic
circuits in this paper can be realized by braiding the metaplectic anyons and the topological
charge measurement gates.
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Appendix A. Quantum computing

The time evolution of a state in quantum mechanics is represented by the unitary time evolu-
tion operator U(t) such that U−1 = U† and U(t)U†(t) = U†(t)U(t) = I. It is written as U(t) =
exp(−iHt), where H is the Hamiltonian operator corresponds to the energy eigenvalues. The
unitary evolution relates the changes in the state to the energy of the system. These changes
are reversible so that the inner product is preserved. That means, the phase can be changed but
the amplitude remains the same with time. When the initial state |ψi〉 evolves unitarily to the
final state |ψ f 〉, it is written as

|ψ f 〉 = U(t)|ψi〉. (A.1)

A quantum computation model involves three steps; initialization, unitary evolution, and mea-
surement [31]. The initial state is an input state and the final state is an output state [32] of a
quantum gate. The evolution operator U(t) corresponds to a quantum gate. The readout is a mea-
surement in certain bases that gives a classical result. For basic study on quantum computing,
see the books [82–84], and for technical details, see [32, 85].
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A.1. Binary quantum gates

A classical bit has a value 0 or 1. A qubit is a superposition of 0 and 1, written as

|ψ〉 = α|0〉+ β|1〉. (A.2)

A qubit can be written in a matrix form as

|ψ〉 = α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
, (A.3)

where α and β are complex numbers. The sum of their squares is one, |α|2 + |β|2 = 1, which
means that the sum of probabilities is equal to one. A qubit can be made by any two-level
quantum mechanical system. For example, a spin-half particle can be in a superposition state
of spin-up state |0〉 and spin down spin state |1〉, a photon can be in a superposition of two
polarization states, or an atom can be in a superposition of the ground state and the excited
state. The states |0〉 and |1〉 are the eigenvectors of a system. These eigenvectors |0〉 and |1〉
provide the bases for a qubit state. These bases are orthonormal, that is 〈i|| j〉 = δi j, where
i, j = {0, 1}. When |i〉 is a column vector, 〈i| is a row vector. The superposition allows us to
do many calculations in parallel. For n qubits, a state is written as a 2n-dimensional vector in
a Hilbert space H and the qubits can be entangled.

The purpose of quantum gates and circuits is to get the required output with maximum
probability. Mathematically, a gate is represented by a matrix that must be unitary. The matrix
elements correspond to the probabilities of getting the respective basis state. Two matrices do
not commute in general. Some elementary gates are represented by symbols I, X, Y, Z. These
are called Pauli matrices in physics and denoted as σI, σx, σy, σz. These matrices have the effect
of rotating the qubit about the z-axis by an angle θ.

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (A.4)

where X is the NOT gate, Z is the phase gate and Y is the phase and NOT gate together, that is
Y = iXZ. These matrices have properties that X2 = Y2 = Z2 = I and XY = iZ, YZ = iX, ZX =
iY. The superposition is created by the Hadamard gate,

H|ψ〉 = 1√
2

(
1 1
1 −1

)(
α
β

)
=

1√
2

(
α+ β
α− β

)
. (A.5)

The implementation of these gates is shown in figures A1(a) and (b). Another example of
one-qubit gates is phase gate that can be written as

P(φ) =

(
1 0
0 eiφ

)
. (A.6)

Applying on the state ket |ψ〉, we get

P|ψ〉 = α|0〉+ eiφβ|1〉 =
(

α

eiφβ

)
. (A.7)

When φ = π we have the Pauli matrix Z, that is P(π) = Z. Other examples of phase gates are
S and T gates written as

S = P(π/2) =

(
1 0
0 i

)
, T = eiπ/8

(
e−iπ/8 0

0 eiπ/8

)
=

(
1 0
0 eiπ/4

)
. (A.8)
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Figure A1. The implementation of (a) Pauli gates, (b) Hadamard gate.

We can see T2 = S. T is also known as π/8 gate.
The one-qubit state can be represented by the Bloch sphere as shown in figure A2. The

general state on the Bloch sphere is given by [32]

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 =

⎛
⎜⎝ cos

θ

2
eiφ sin

θ

2

⎞
⎟⎠, where 0 � θ � π, 0 � φ � 2π.

(A.9)

The operators that rotate the state on the Bloch sphere can be written as

Rx(θ) ≡ e−i θ2 X = cos
θ

2
I + i sin

θ

2
X =

⎛
⎜⎝ cos

θ

2
−i sin

θ

2

−i sin
θ

2
cos

θ

2

⎞
⎟⎠,

Ry(θ) ≡ e−i θ2 Y = cos
θ

2
I + i sin

θ

2
Y =

⎛
⎜⎝cos

θ

2
− sin

θ

2

sin
θ

2
cos

θ

2

⎞
⎟⎠,

Rz(θ) ≡ e−i θ2 Z = cos
θ

2
I + i sin

θ

2
Z =

(
e−i θ2 0

0 ei θ2

)
.

(A.10)

These three rotations on a Bloch sphere are combined into a general rotation as

Rn̂(θ) = exp(−i
θ

2
n̂ · �σ) = cos

θ

2
I − i sin

θ

2

(
nxX + nyY + nzZ

)
, (A.11)

where n̂ is a unit vector in three dimensions and �σ is the three-component vector of Pauli
matrices. Rn̂(θ) is the effect of rotation on the state around the unit vector n̂. Let there exist real
numbers α, β, γ and δ such that a general unitary operation on a qubit [32] can be written as

U = eiαRz(β)Ry(γ)Rz(δ) =

⎛
⎝ei(α−β/2−δ/2) cos

γ

2
−ei(α−β/2+δ/2) sin

γ

2

ei(α+β/2−δ/2) sin
γ

2
ei(α+β/2+δ/2) cos

γ

2

⎞
⎠. (A.12)
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Figure A2. One-qubit state can be represented by a Bloch sphere.

The Bloch sphere representation is limited to a single qubit state only.
Two-qubit states can be separable or inseparable. The separable states are written for inde-

pendent composite systems, whereas the inseparable states are entangled state. The separable
state, also called product state, can be factorized into two separate states and written as the
tensor product of the two states as

|ψ〉 = |φ1〉 ⊗ |φ2〉 =
(
α1|0〉+ β1|1〉

)
⊗

(
α2|0〉+ β2|1〉

)
= α1α2|0〉|0〉+ α1β2|0〉|1〉+ β1α2|1〉|0〉+ β1β2|1〉|2〉

= α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (A.13)

where |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The tensor product notation ⊗ means that we multiply
each term of the first vector to each term of the second vector. The dimension of the Hilbert
space of the product state is a product of the dimensions of the two systems, that is H =
H1 ⊗H2. Since the gates are operators and we write them as matrices, the tensor product of
two operators is expressed in such a way that multiply each entry of the first matrix to all entries
of the second matrix. As an example, let us consider two matrices A and B as

A =

(
a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
.

The tensor product of A and B is given as

A ⊗ B =

⎛
⎜⎜⎝

a1

(
b1 b2

b3 b4

)
a2

(
b1 b2

b3 b4

)

a3

(
b1 b2

b3 b4

)
a4

(
b1 b2

b3 b4

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1b1 a1b2 a2b1 a2b2

a1b3 a1b4 a2b3 a2b4

a3b1 a3b2 a4b1 a4b2

a3b3 a3b4 a4b3 a4b4

⎞
⎟⎟⎠. (A.14)

When A|a〉 = α|a〉 and B|b〉 = β|b〉 then the following rules are defined for the tensor product

(A ⊗ B)(|a〉 ⊗ |b〉) = A|a〉 ⊗ B|b〉,
(|a〉+ |b〉) ⊗ |c〉 = |a〉 ⊗ |c〉+ |b〉 ⊗ |c〉,

|a〉 ⊗ (|b〉+ |c〉) = |a〉 ⊗ |b〉+ |a〉 ⊗ |c〉.
(A.15)
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Figure A3. (a) CNOT gate (b) controlled-U gate and (c) SWAP gate (d) physical
realization of SWAP gate.

We also have the notations |a〉 ⊗ |b〉 ≡ |a〉|b〉 ≡ |ab〉. If |a〉 and |b〉 are column vectors of
two elements each, then |ab〉 is a column vector of four elements. Corresponding operators
A and B would become a four by four matrix A ⊗ B. It can be generalized to n-dimensional
Hilbert space. The number of states is increased exponentially with the increase of the number
of qubits.

A typical example of a two-qubit gate is the controlled-NOT or CNOT gate shown in
figure A3(a). This gate flips the second qubit when the first qubit state is |1〉. The first qubit is
called control qubit and the second qubit is called target qubit. This gate is a classical analog
of exclusive-OR gate based on exclusive-OR logic represented by ⊕. The symbol ⊕ is defined
such that the output state |x ⊕ y〉 will give a value 0 when both inputs are either zero or 1, but
the output value will be 1 when one of the inputs is 1. A two-qubit state

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉 (A.16)

is changed by the operation of CNOT gate as

CNOT|ψ〉 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
α
β
γ
δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α
β
δ
γ

⎞
⎟⎟⎠

= α|00〉+ β|01〉+ δ|10〉+ γ|11〉. (A.17)

The second qubit remains the same when the first qubit is |0〉, whereas X gate is applied to the
target qubit when the control state is |1〉. But in general, there can be any one-qubit gate at the
place of X as shown in figure A3(b). In that case, we can write the controlled-U (CU) gate as

CU =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 u1 u2

0 0 u3 u4

⎞
⎟⎟⎠. (A.18)

Another two-qubit gate is a SWAP gate that swaps the states of input qubits. The SWAP gate
and its physical realization are shown in figures A3(c) and (d). It can also be written in matrix
notation as

SWAP =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (A.19)
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Figure A4. The entanglement generating gate.

Figure A5. (a) Toffoli and (b) Fredkin gates.

The computation cannot be performed by a single qubit only. A system should consist of
several qubits and should have the capability to entangle these qubits. One qubit is a super-
position of two basis states, but when there is a quantum correlation among two systems,
then we say that these systems are entangled. The entangled state is non-separable and cannot
mathematically be factorized into two separate superposition states. The Bell’s state

|Ψ+〉 = α00|00〉+ α11|11〉, (A.20)

with |α00|2 + |α11|2 = 1, is an example of the entangled state. It is non-local, that is, the infor-
mation of only one qubit is not accessible locally when two states are far apart. Classically,
the first qubit can be in state |0〉 or |1〉, so can be the second qubit. Therefore, there are four
possibilities of values on measurement. But an entangled state like this Bell’s state would give
|00〉 or |11〉 with the probabilities |α00|2 and |α11|2. On measurement, if the first qubit collapse
to the state |0〉(|1〉) then the second qubit is forced to collapse to |0〉(|1〉). The state is maxi-
mally entangled when |α00|2 = |α11|2 = 1

2 . The entangled state is created in a process that can
be shown as in figure A4.

Toffoli and Fredkin gates shown in figure A5 are examples of three-qubit gates. Toffoli gate,
also known as controlled-controlled-NOT or CCNOT, consists of two control qubits and one
target qubit. When the first and second qubits will be in state |1〉, then the NOT gate X will
be applied to the third gate, but nothing will happen in all other cases. For the Fredkin gate, a
SWAP gate is applied on the second and third qubit when the first one is in state |1〉, nothing
will happen otherwise. Therefore, this gate is also known as the controlled-SWAP gate.

Gates are drawn from left to right in a diagram but mathematically they appear in order
from right to left. For example, the gate in figure A4 is written as

|Ψ+〉 = CNOT(H ⊗ I)|00〉. (A.21)

The set of elementary gates used to perform all kinds of computations is called the universal
set of gates [86]. There are several universal sets of gates. Hadamard,π/8, and a CNOT gate can
make one of the sets of universal quantum gates [32]. The number of gates used to implement a
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circuit is called quantum cost of the circuit. Quantum algorithms are used to solve a particular
problem. The most popular quantum algorithms are Shor’s factoring algorithm [87] and Grover
search algorithm [88]. The former is an exponential speedup over classical factoring algorithm,
and the latter is a quadratic speedup.

The gates and circuits in quantum computing are made reversible. The reversible circuits are
the ones with the same number of outputs as the number of inputs, and there is also a one-to-
one correspondence between input and output states. Landauer [89] proved that the minimum
energy dissipation for the processing of information is KT ln 2. Bennett et al [90] proposed that
the energy dissipation can be avoided if the information processing is made reversible.

The main factors in designing the reversible circuits are the total quantum cost, total hard-
ware complexity, number of shift gates, number of MS gates, and delay time. The total quantum
cost refers to the number of ternary shift gates required to realize the circuit. The total hard-
ware complexity is the complexity of the circuit in which ε denotes a ternary one-qutrit shift
gate and γ denotes a two-qutrit MS gate. The number of constant inputs and the number of
unutilized garbage outputs is also one of the factors sometimes taken into consideration. The
delay time indicated by Δ is the logical depth of the circuit. It is 1 for the shift gates and MS
gates. Shift gates and MS gates have quantum cost unity [78, 80].

The conditions necessary for constructing a quantum computer are known as DiVincenzo
criteria [31]. Five requirements for quantum computations are scalability of the physical sys-
tem, ability to initialize the qubits in a particular basis state, long decoherence time, universal
set of gates, and measurement capability. Two more conditions are added for quantum com-
munication, which are the ability to interconvert stationary and flying qubits, and the ability to
transmit the qubits between two locations. Some physical systems used to construct a quantum
computer are: ion trap, neutral atoms trapped in an optical lattice, superconductors, quantum
dots, nitrogen vacancy centers in diamond, optical, and topological.

A.2. Ternary quantum gates

In quantum technologies, hybrid circuits are sometimes employed, which are a combination of
binary and multivalued circuits. Such gates and corresponding circuits may be advantageous
in some ways, such as the reduction in inputs and outputs, reduction in the quantum cost, and
the complexity of interconnects. Ternary logic is the most popular multi-value logic. The basic
unit of information for multivalued logic is called a qudit and that of ternary logic is called a
qutrit. Khan and Perkowski [76] showed that the ternary logic needs fewer gates comparing
with its respective binary system. A binary quantum system requires n2 = log2 N qubits for
a Hilbert space of dimensions N. On the other hand, an m-valued quantum system requires
nm = logm N qudits, we have

nm = logm N =
log2 N
log2 m

=
n2

log2 m
. (A.22)

Therefore, an m-valued quantum system requires 1/log2 m times the memory of its binary
counterpart. Hence, a logarithmic reduction in the number of qudits for an m-valued logic. It is
also shown in [76] that m = 3 is the most favorable choice. Haghparast et al [30] proved that
the ternary is 37% more compact than binary. Therefore, by using ternary logic gates, we can
reduce the cost of circuits and make them more efficient.

In ternary quantum logic, the state |0〉, |1〉 and |2〉 are computational bases. A state can be
in a superposition of these three basis states, and is written as

φ = α|0〉+ β|1〉+ γ|2〉, (A.23)
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Figure A6. Quantum one-qutrit gates.

with α, β and γ being complex numbers such that |α|2 + |β|2 + |γ|2 = 1. The state vector |ψ〉
is a three-dimensional column vector

|ψ〉 =

⎛
⎝α
β
γ

⎞
⎠ = α

⎛
⎝1

0
0

⎞
⎠+ β

⎛
⎝0

1
0

⎞
⎠+ γ

⎛
⎝0

0
1

⎞
⎠. (A.24)

The elementary gates for ternary logic are 3 × 3 unitary matrices [76, 91–94]. The qutrit
gates and their symbols are shown in figure A6, where Z3(+1) shifts the qutrit state by 1 and
Z3(+2) gate shifts the qutrit state by 2. Z3(01), Z3(12) and Z3(02) permute the states |0〉 and
|1〉, |1〉 and |2〉, and |0〉 and |2〉 respectively [76, 94].

Analogous to the Hadamard in binary, there is a Chrestenson transform that creates a
superposition state from the bases states and is written as [95, 96]

CH =
1√
3

⎛
⎝1 1 1

1 ω ω∗

1 ω∗ ω

⎞
⎠, (A.25)

where ω = exp(2πi/3). The ω is a cube root of unity, that means that it is equal to unity if we
raise it to the cubic power.

A two-qutrit state is written as

|ψ〉 = |φ1〉 ⊗ |φ2〉 =
(
α1|0〉+ β1|1〉+ γ1|2〉

)
⊗

(
α2|0〉+ β2|1〉+ γ2|2〉

)
= α1α2|00〉+ α1β2|01〉+ α1γ2|02〉+ β1α2|10〉+ β1β2|11〉+ β1γ2|12〉
+ γ1α2|20〉+ γ1β2|21〉+ γ1γ2|22〉. (A.26)

The two-qutrit gates analogous to CNOT gate in figure A3 is such that the U is applied when
the controlling qutrit is at |2〉 otherwise the second qutrit does not change. Here, U is one of
the five one-qutrit gates in figure A6. The Toffoli gate is implemented in such a way that U
is applied on the third qutrit when both the controlling qutrit at |2〉. The one-qutrit gates are
called shift gates and the two-qutrit gates are referred to as Muthukrishnan–Stroud (MS) gates
[97]. The shift gates and MS gates have quantum cost unity [78, 80]. We will further discuss
ternary gates and circuits in section 4.

The physical realization of ternary logic was suggested by reference [97] for an ion-trap
quantum computer, by references [98, 99] for a Josephson junction, by reference [100] for
cold atoms, and by reference [101] for entangled photons. Some circuit architectures are
better described by the multi-valued logic. In certain systems containing the non-abelian
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anyons, called metaplectic anyons, qutrits naturally appear. We will discuss ternary gates with
metaplectic anyons in section 4.

Appendix B. Topology and knot theory

The knot theory is of fundamental importance in topological quantum computing. Topological
quantum gates are made up of knots, links, and braids. The path integral of the worldlines of
quasiparticles in topological materials gives the knot invariants [58]. The geometric phases are
associated with such invariants. The knot theory is studied as a branch of topology.

B.1. Topology

The equivalence of two spaces in Euclidean geometry is shown by comparing their lengths and
angles, but angles and lengths are irrelevant in topology. Instead, imagine that the spaces are
made up of a stretchable and moldable material so that we can continuously deform one space
to the other without tearing. For example, a sphere cannot be turned into a torus without tearing
a hole, so they are topologically different. A hole or a handle in a topological space is called
a genus. From this point of view, a disk is equivalent to a rectangle or a square but different
from an annulus. A curve and a straight line are equivalent shapes, but both are different from
a closed curve. A closed curve is equivalent to a circle. A torus is equivalent to a coffee cup as
both have one hole in it as shown in figure B1, and we can smoothly deform one into the other.

The spaces in topology are called the manifolds. A manifold is a space that looks Euclidean
if we take a small patch of the surface, but globally it may have a non-Euclidean structure.
Topology is a study of properties that are preserved under continuous deformation in such a way
that the dimension of the manifold should not change. The continuous deformation is called
homeomorphism. The topological properties that characterize the equivalence of two shapes
under homeomorphism are called topological invariants. These invariants can be numbers, or
certain properties of the topological spaces like connectedness, compactness, homotopy group,
homology group, or cohomology group [102–104]. A genus is a topological invariant, but in
some cases, it is not a very useful one.

The first homotopy group provides an intuition for anyonic statistics and braids. Consider
two regions X1 and X2 in Euclidean space as shown in figure B2. Imagine that any loop in X2

can be shrunk to a point, but when there is a hole as in X1, a loop cannot be shrunk to a point.
From the figure B2, α1 can be deformed to β1, and γ1 can be deformed to δ1, but the loops α1

and β1 cannot be deformed to γ1 and β1. When two loops can be continuously deformed to
each other then they are in the same equivalence class or a homotopic class [105].

Spaces are distinguished by working with equivalent classes rather than loops. This suggests
that the holes are determined by using these equivalence classes. The group structure on these
equivalence classes is called the first homotopy group or a fundamental group represented by
π1(X). The group axioms of a homotopy group are described below. The composition of two
group elements corresponds to two loops that start at the same point and are combined to make
the third one. In figure B2, γ1 and β1 loops are combined to make γ̃ that can be written as
γ̃ = γ1β1. This loop first goes along the β1 then along the γ1. The inverse β−1

1 is given by a
loop that goes in the opposite direction. The identity loop is the one that stays at some point
all the time. The loop ε = β1β

−1
1 is not an identity but homotopic to the identity [105]. When

these loops are physically made by the motion of particles on a two-dimensional space then
they make braids in the third dimension which is time.
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Figure B1. Equivalence of topological diagrams.

Figure B2. In the region X1, the loops β1 and α1 can be deformed to each other but they
cannot be deformed to δ1 or γ1. In the region X2, both the loops can be shrunk to identity.

Figure B3. The trefoil knot, figure 8 knot, and the Hopf link.

B.2. Knot invariants

A knot is a closed loop embedded in the three-dimensional space. A link is a disjoint union of
more than one loop. A knot diagram is a projection of a knot into the plane R

2 such that the
points are segments and double points are under-crossings and over-crossings. A circle is an
unknot or a trivial link. The simplest non-trivial link is a Hopf link. For example, the trefoil,
figure 8 knot, and Hopf link are shown in figure B3. For further study on knots, see [106–108].

Two knot diagrams are equivalent if we can bend, stretch and smoothly deform one to the
other without cutting. In knot theory, the equivalence of two knots is called ambient isotopy.
Other than stretching and bending, a simple way of showing that two knots are isotopic to each
other is by a finite number of the Reidemeister moves shown in figure B4. These moves are
always permitted but not always sufficient to show the isotopy of two knots. When a knot is
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Figure B4. Reidemeister moves: (a) the move I is undoing a twist in the strand,
(b) the move II separates two unbraided strands, and (c) the move III slides strand under
a crossing.

modified by applying these moves on a small portion of the diagram while keeping the rest of
the diagram fixed, we get the formulas called Skein relations.

The knot invariants are a set of rules that give the same output for two equivalent knots.
That is, these invariants should not change under an ambient isotopy. Therefore, different knots
are distinguished by their knot invariants. The knot invariants have their merits and limitations.
The knot polynomials are among several knot invariants assigned to knots and relatively easy to
calculate. The Jones polynomial [109] is of particular interest to us because of its connection to
physics. This connection was first explored by Edward Witten [58]. Physically, the trajectories
of anyons in spacetime make knots. The knot invariants of the trajectories are calculated by
path integral approach to the Chern–Simons theory, see [11, 27]. Edward Witten made this
connection between the knot theory and quantum physics in his seminal paper in 1989 [58].
He won the field medal for this work with Vaughn Jones in 1990. The present form of the Jones
polynomial is due to Kauffman who formulated it in a simpler way [106].

B.2.1. Kauffman bracket. The Kauffman bracket is a polynomial invariant of unoriented link.
The normalized version of Kauffman bracket yields the Jones polynomial when framing of
a knot or a link is also considered. A Kaufman bracket 〈L〉 of a knot or a link L assigns to
each crossing a number that is either A or B as in diagrammatic equation (B.1). The values of
variables A and B are to be computed in present section. This Kauffman skein relation is used
recursively until we get a resulting link diagram to have no crossings. Thus it consists of a
finite set of unlinks or circles [106, 110]. The Kauffman skein relation is written as

(B.1)

Here the variables A and B are assigned according to the convention such that when the first
strand goes over the second, that is an overcrossing, we call it the positive crossing. For a
negative crossing, when the first strand goes below the second, the variables A and B will be
exchanged. It is proved that B = A−1 and d = −(A2 + A−2). See [27, 106] for the detailed
derivation. The number d is assigned to a simple loop therefore, it is called the loop number.
The Kauffman bracket is not invariant under Reidemeister move I. Let us take a twist in a
framed or ribbon strand as in figure B5. The smoothing out of the twist gives a factor of −A3.
Hence, a ribbon is related to the string with a factor −A3 multiplied. In quantum theory, it is
related to the phase accumulated by a particle with a spin when it does a 2π rotation. The skein
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Figure B5. Straightening a loop in a ribbon gives a twist factor.

relations for the Kauffman bracket are now written as

〈L〉 = A〈LA〉+ A−1〈LB〉
〈L ∪ O〉= d〈L〉 = −(A2 + A−2)〈L〉

〈O〉 = 1

, (B.2)

where O refers to unknot or a trivial link. The first relation is the same as equation (B.1), the
second relation tells that if a knot or a link is a union of a knot and an unknot then the resultant
knot would be d times that knot. The third relation implies that an isolated unknot is assigned
a value 1.

B.2.2. Jones polynomial. The Kauffman bracket is not an invariant under all the Reidemeister
moves. We need to account for the twist factor or the self linking. This twist is also called a
writhe. Now we will also assign an orientation to the knot diagrams. If w+ is an overcrossing
and w− is an undercrossing for an oriented knot or link, then the writhe is given by w(L) =
w+ − w−. We can construct a quantity as

VL(A) = (−A3)−w(L)〈L〉. (B.3)

This is called Jones polynomial. It is an invariant under all three Reidemeister moves. Two
knots are equivalent if they have the same value of the Jones polynomial. A twist that con-
tributes a factor (−A−3) would get canceled with (−A3)w(L). With the change of variable
t1/2 = A−2, the Jones polynomial agrees with the original form in Jones’ paper [109]. The Jones
polynomial is an invariant under orientation change. The skein relations for Jones polynomial
can be written as

−t−1V(L+) + (t1/2 − t1/2)V(L0) + tV(L−) = 0, (B.4)

where L0, L−, L+ are shown in figure B6. The writhe is +1 for L+, −1 for L−, and 0 for L0.
The Jones polynomial is an invariant for a knot’s mirror image when t is replaced by t−1.

B.3. Braid group

The trajectories of N particles from their initial position at a time ti to the final position at a
time t f are in one-to-one correspondence with the elements of the braid group BN . The time
direction is taken vertically upward. The trajectories of particles are equivalence classes of all
those trajectories which can be continuously deformed into each other. Assume that the particle
number is fixed, which is the same as saying that there are no loops inside the braids.
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Figure B6. The skein relations for Jones polynomial.

Figure B7. The braid group; generators and their properties.

Let the braiding of the first and the second strand be represented by σ1 and braiding of the
second and the third strands be represented by σ2 and so on. The braid group generators are
shown in figure B7. (a) Is the identity element of the braid group. It consists of all straight
strands. As shown in (b), the clockwise exchange of strands i and i + 1 is represented by the
generator σi, whereas counterclockwise exchange is represented by the inverse σ−1

i . The group
composition of two braids is given by stacking the strands on top of each other. For a non-
abelian group, the multiplication is noncommutative, and the order of stacking matters in this
case. This is because of the degeneracy of the ground state, as discussed in appendix C. The
braid group generators also satisfy two conditions shown in figures B7(c) and (d).

σiσ j = σ jσi for |i − j| > 1, (B.5)

σiσi+1σi = σi+1σiσi+1. (B.6)

The second relation is the famous Yang–Baxter equation.

Appendix C. Geometric phases in quantum physics

Anyons are charge-flux composites that arise in a highly correlated system. Interaction between
these charges and fluxes is through braiding. Topological quantum gates are implemented by
braiding of anyons on a two-dimensional manifold. The state-space of a topological quantum
gate is the ground state degeneracy of the system. This braiding and the ground state degeneracy
can be understood through the Aharonov–Bohm phase [111] and the Berry phase [28]. For
further details of the derivation of geometric phases, see [112].
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C.1. A charged particle in a magnetic field

Classically, the motion of a nonrelativistic charge particle in a magnetic field is described by
the Lorentz equation given as

mẍi = q(E + (v × B)). (C.1)

The electric field E and the magnetic field B can be written in terms of vector potential A =
(Ax , Ay, Az) and scalar potential φ(x) as

E = − ∂

∂t
A −∇φ, B = ∇× A. (C.2)

In quantum mechanics, the momentum p is used instead of v and its status is raised to an opera-
tor p= −ih̄∇. The Schrödinger’s equation for a charged particle moving in an electromagnetic
field can be written as

ih̄
∂ψ(x)
∂t

=

[
1

2m
(p− qA)2 + qφ

]
ψ(x). (C.3)

Let ψ0(x) be an eigenstate of the Hamiltonian when there is no vector potential. The wave
function of the particle in the presence of vector potential is related to ψ0 as

ψ(x) = exp(i
q
h̄

∫
A · dx)ψ0(x). (C.4)

The wave function in a magnetic field will get a phase φ = q
h̄

∫
A · dx other than the dynamical

phase. A dynamical phase is the one that a wave function gets during the time evolution. The
momentum operator (p− qA) appears as a combination of p= −ih̄∇ and the vector potential
A.

C.1.1. Gauge transformation. Let us transform the vector potential as

A → A′ = A +∇Λ, φ→ φ′ = φ− ∂Λ

∂t
, (C.5)

where Λ is a scalar function. The transformation in equation (C.5) is called gauge transfor-
mation. Now the Schrödinger equation will be written in terms of A′,ψ′, and φ′. The wave
function in equation (C.4) can be written as

ψ(x) → ψ′(x) = exp

(
i
q
h̄

∫
A′ · dx

)
ψ0(x)

= exp
(

i
q
h̄
Λ(x)

)
ψ(x). (C.6)

As a result of the gauge transformation, the wave function gets an additional phase of
exp(i q

h̄Λ(x)). The fields E and B will remain invariant under this transformation. The physical
quantities are modulus squared, so the complex phases do not appear. This gauge transforma-
tion is local as Λ(x) is a function of x. The global gauge transformation is not as significant. It
is independent of the position and is corresponding to the transformation of the whole system.
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Figure C1. Aharonov–Bohm effect: switching on and off the flux in the flux tube, causes
a shift in the interference fringes.

C.1.2. Aharonov–Bohm effect. In 1959, Yakir Aharonov and David Bohm [111] suggested
that in quantum mechanics, the vector potential is not just a mathematical artifact, but it leads
to detectable results. The effect of vector potential can be observed in a region where B = 0 but
A �= 0. They proposed an experiment shown in figure C1. Suppose an infinitely long solenoid
having a current through it produces a magnetic field along the z-axis. Since according to the
right-hand rule the magnetic field is along the axis of the solenoid and zero outside, it can be
taken as a tube of magnetic flux. The electron beam from the source S is separated into two parts
as shown in figure C1. The two parts of the beam combined at the screen make an interference
pattern. The phase we get with the wave function of a charged particle in a magnetic field is
given in the equation (C.4). The phase acquired by the evolution of the wave function around
a loop C can be derived as

φ =
q
h̄

∮
A · dr =

q
h̄

∫
S
∇× A · ds =

q
h̄

∫
S
B · ds =

q
h̄
Φ, (C.7)

where dr is a segment of the loop C and S is the surface enclosed by C, ds is the surface area
element, and Φ is the total flux through S. This phase is gauge invariant, i.e. it is independent of
the choice of A provided that it gives the same B. This phase is topological, as it does not depend
on the shape of the path around the flux. Also, it remains invariant under the deformation
of the surface that makes Φ fixed. The two paths in figure C1 are facing different relative
vector potentials, hence interference fringes are modulated by the magnetic flux in the coil
which is affected by the change of the electric current through the coil. Therefore, the choice
of potentials instead of fields is not merely a convenience but a necessity. The electromagnetic
field needs to be described in terms of an abstract four-dimensional vector Aμ = (A,φ).
C.1.3. Anyon and Aharonov–Bohm effect. An anyon is a quasiparticle having fractional
charge and fractional statistics. We can think of these particles as a composite of charge q
and flux Φ. These composites arise in two-dimensional physical systems [15, 16]. See [27] for
a brief introduction to the quantum Hall effect and the effective field theory for the attachment
of magnetic flux to the quasiparticle. Let us exchange two anyons in a two-dimensional space.
The movement of anyons around each other in the (2 + 1)-dimensional space, is described
by the braid group, see appendix B. The charge 1 going around the flux of 2 gets the Aha-
ranov–Bohm phase eiqΦ. At the same time, the flux of 1 going around the charge of 2 and
gets the phase eiqΦ, as in figure C2. Therefore, the system gets a total phase e2iqΦ. This phase
depends on the number of times one charge circulates the other, but it does not depend on the
shape of the path, provided that the adiabaticity condition is satisfied. The adiabaticity condi-
tion dictates that the charges must be moved slowly enough so that the system is not perturbed
drastically from the ground state. The number of times a charge circulates another charge is
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Figure C2. Anyons moving around each other obtain Aharanov–Bohm phase.

called the winding number. The phase will be written as eimqΦ when the winding number is
m. The statistical angle φ = qΦ on an exchange corresponds to the phase shift of their wave
function. The 2π rotation of an anyon around itself gives a phase of eiqΦ due to the charge
ring around it. The spin-statistics theorem [113] says that if s is the effective spin of an anyon
taken counterclockwise, we get a phase ei2πs. Thus, we have a non-trivial spin s = qΦ

2π [29]. The
topological spin or a twist of an anyon is the rotation of the charge around its own flux. The
phase due to the topological spin and the phase due to the braiding are related to each other as
discussed in section 2.

C.2. Berry phase

The Aharanov–Bohm phase is a special case of the geometric phases when the system has
time reversal symmetry [114, 115]. It appears when the underlying geometry is changed by the
magnetic field in an abstract way. A more general geometric phase, acquired by a wave function
during the evolution in parametric space, is called the Berry phase. As an example, consider a
spin-1/2 particle in a magnetic field that is oriented in a particular direction. By slowly varying
the magnetic field orientation and bringing it back to the initial value, the system will come
back to the initial state up to an overall phase with the wave function of the particle [29].

Let us compute the geometric phase in quantum mechanics for a general situation described
by two variables r and R(t). Let r describe a fast motion and R(t) be a variable that describes a
slow motion. The slow variable describes a parameter that varies slowly with time and modu-
lates the fast variable. For example, the motion of electrons of the atoms in a diatomic molecule
is described by the fast variable r and the vibratory motion of atoms is described by a slower
variable R(t). We suppose that the system returns to the original state after completing a loop in
parametric space. The adiabaticity condition should be satisfied, which means that the motion
of the system in the parametric space should be slow enough so that the system does not go to
the excited state. The Schrödinger equation with state vector ψ(t) can be written as

ih̄
∂

∂t
|ψ(t)〉 = H(R(t))|ψ(t)〉. (C.8)

Let |n, R〉 be an eigenstate of the Hamiltonian that has energy eigenvalue as En(R). As the R(t)
is slowly varying, at an instant of time t we can take |n, R(t)〉 as a basis vector, therefore we
can write

H(R(t))|n, R(t)〉 = En(R(t))|n, R(t)〉. (C.9)
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The solution of Schrödinger equation is given by

|ψ(t)〉 = eiγn(t) exp

[
− i

h̄

∫ t

0
dt′En(R(t′))

]
|n, R(t)〉. (C.10)

The phase in brackets is the dynamical phase that depends on time, whereas γn(t) is the Berry
phase that depends on the geometry of parametric space. In 1984, Berry pointed out that γn(t)
has deep physical meaning and cannot be ignored [28]. Consider a situation when the slow
variable R(t) returns to the starting point (R(t) = R(T)) at a time t = T after completing a turn
in the parametric space in a closed path C. If we put the solution (C.10) in the Schrödinger
equation, take derivative, and cancel then exponentials on both sides, and then apply 〈n, R(t′)|,
we get

γn(C) = i
∫ t

0
dt′〈n, R(t′)| d

dt′
|n, R(t′)〉 = i

∮
C

dR · 〈n, R|∇R|n, R〉. (C.11)

One of the examples of the Berry phase is the evolution of a system from one ground state to
the other in topological materials. The degeneracy corresponds to the parametric space R(t).
This idea is used in topological quantum computation in section 2.

C.3. Anyons on a torus

The system may have multiple types of anyons categorized according to their topological
charge. As we discussed in 1, anyons are charge-flux composite found in topological mate-
rials. When two anyons are brought close to each other, their fusion may result in another
anyon or a superposition of several anyons. These two anyons may annihilate to vacuum if
they are antiparticles to each other. The ground state somehow knows what types of anyons
can be created. Let there be two paths C1 and C2 on a torus along meridian and longitude, as
shown in figure C3. Let T1 and T2 be operators correspond to the creation of anyon–antianyon
pair from the vacuum and carrying around meridian and longitude respectively. T−1

2 T−1
1 T2T1 is

two particles created, braided around each other and then re-annihilated. Since the operators T1

and T2 are implemented with some time-dependent Hamiltonian [11], they are unitary. These
two operators do not commute with each other, we have

T2T1 = e−2iθT1T2. (C.12)

Therefore, the system has ground state degeneracy. As T1 is unitary, its eigenvalues must have
a unit modulus, that is, they are just complex numbers. The operation of T1 on a state α can be
written as

T1|α〉 = eiα|α〉, (C.13)

where α is the space of possible ground states. T2|α〉 must also be a ground state since T2

commutes with H. Therefore, we can write

T1(T2|α〉) = e2iθ eiα(T2|α〉). (C.14)

Let us call this new ground state |α+ 2θ〉 = T2|α〉. On similar lines, we can generate more
ground states. Consider a system where anyons have a statistical phase θ = πp/m, where p
and m are relatively prime so that p/m is an irreducible fraction. The ground states can be
written as

|α〉, |α+ 2πp/m〉, |α+ 4πp/m〉, . . . , |α+ 2π(m − 1)/m〉. (C.15)

47



J. Phys. A: Math. Theor. 55 (2022) 305302 M Ilyas et al

Figure C3. Two non-trivial paths in torus.

The phase α+ 2π = α so that we are back to the original state. Now we have m independent
ground states. Since anyons have the statistical angle θ = πp/m, the charge-flux composite
will get (q,Φ) = (πp/m, 1). When there is a fusion of n elementary anyons then we have |n〉 =
(q = nπp/m,Φ = n) = (nπp/m, n). When there are m anyons, we have |m〉 = (πp, m). Now if
we braid |n〉 = (nπp/m, n) around one of these |m〉 = (πp/m), we obtain a net phase of 2πp
which is equivalent to no phase at all. Hence, the cluster of m elementary anyons is equivalent
to a vacuum. In this way, we have m species of anyon and m different ground states on torus
[11]. The subspace used to implement the topological gates depends on a particular model of
anyons and also on the number of anyons present.

In the case of an annulus instead of a torus, the T1 operator corresponds to a particle moving
along a circular loop and T2 to the particle moving from the inside edge to the outside edge.
The degeneracy is 2. On similar bases, the degeneracy for the higher genus space is mg, where
g is genus. The genus is a handle in a topological space.

The total charge and flux of a fusion of two particles must be zero: that is, we should get the
vacuum. Therefore, the antianyon must have charge −q and phase Φ. The phase of an anyon
moving clockwise around another anyon is the same as an antianyon moving clockwise around
another antianyon. However, the phase of an anyon around an antianyon is −2φ. The fusion of
a particle with its antiparticle gives the vacuum, but when two particles are pushed together, we
get a charge 2q and flux 2Φ. Now, the phase of exchanging these two particles is φ = 4qΦ/h̄.

Appendix D. Recoupling theory of angular momenta

We will briefly present the quantum theory of angular momentum to get the idea of the SU(2)k

anyonic model will be discussed in the next section. This model is the quantum deformation
of recoupling theory. For more detailed study, see [49–51]. Let us consider two systems with
angular momentum operators J1 and J2 with eigenvalues j1 and j2. These two systems may be
the orbital angular momentum of two different particles or they may be the spin and orbital
angular momentum of a single particle. The z-components of the angular momenta Jz have
allowed eigenvalues− j1 � m1 � + j1 with 2 j1 + 1 values, and − j2 � m2 � + j2 with 2 j2 + 1
states. The combined system is written as j1 ⊗ j2.

It is like the vector spaces V1 and V2, with dimensions 2 j2 + 1 each, are combined as V1 ⊗
V2 with dimensions (2 j1 + 1)(2 j2 + 1). The total angular momentum operator is acting on
V1 ⊗ V2. This operator constitutes SU(2) Lie algebra. Two quantum numbers are needed to
specify an individual system and four quantum numbers to specify the combined system. For
the whole system

J2 = (J1 + J2)2, Jz = J1z + J2z. (D.1)
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These operators are applied to states as

J2| j, m〉 = j( j + 1)| j, m〉

Jz| j, m〉 = m| j, m〉

J±| j, m〉=
√

( j ∓ m)( j ± m + 1)| j, m ± 1〉,

(D.2)

where J+ = Jx + iJy and J− = Jx − iJy. The uncoupled states | j1 j2m1m2〉 are the eigenstates
of operators

{
J2

1 , J1z, J2
2, J2z

}
and the coupled state | j1 j2 jm〉 are the eigenstate of operators{

J2
1 , J2

2, J2, J2
z

}
. The coupling of j1 and j2 is the construction of eigenfunctions of J2 and Jz

we will write the total angular momentum basis | j1 j2; jm〉 in terms of tensor product basis
| j1m1〉| j2m2〉. That is done by expressing the coupled state in terms of the uncoupled state.

|( j1 j2) jm〉 =
j1∑

m1=− j1

j2∑
m2=− j2

| j1m1〉| j2m2〉〈 j1m1 j2m2| jm〉

=
∑

j1 j2m1m2

C jj1 j2
mm1m2

| j1m1〉| j2m2〉, (D.3)

where j = | j1 − j2|, . . . , | j1 + j2|, m = − j, . . . , j. The coefficients C jj1 j2
mm1m2∑

j1 j2m1m2

C jj1 j2
mm1m2

= 〈 j1m1; j2m2| j1 j2; jm〉 = 〈 j1m1; j2m2| jm〉 (D.4)

are called Clebsch–Gordon coefficients (CGC). These are non-zero only when m = m1 + m2

and | j1 − j2| � j � j1 + j2.
The total angular momentum can have value j = j1 + j2, j1 + j2 − 1, . . . , | j1 − j2|. Any

of the numbers j1, j2, j can have values that are greater than or equal to the difference of the
other two and less than or equal to the sum of the other two. This condition is called triangle
condition and is represented by Δ( j1 j2 j). We can also write the total angular momentum basis
in terms of the product basis by using the Wigner’s 3j-symbols. In that case, the coefficients
are called Wigner coefficients. The Wigner 3j-symbol is zero unless the triangle condition is
satisfied. The CGC are related to the 3j-symbols as

〈 j1m1; j2m2| j1 j2; jm〉 = (−1)− j1+ j2−m
√

2 j + 1

{
j1 j2 j

m1 m2 −m

}
. (D.5)

On similar lines, we can couple three angular momenta J1, J2, J3 whose total angular momen-
tum J = J1 + J2 + J3. There are two coupling schemes as

(J1 + J2) + J3 = J12 + J3 = J J1 + (J2 + J3) = J1 + J23 = J. (D.6)

The total coupling may be done by first coupling j1 and j2 to j12 and then j12 and j3 to J

|( j1 j2) j12 j3; jm〉

=

j12∑
m12=− j12

j3∑
m3=− j3

|( j1 j2); j12m12〉| j3m3〉〈 j12 j3; m12m3| j12 j3; jm〉. (D.7)
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Figure D1. (a) Recoupling (b) the triangle condition.

Alternatively, we can first combine j2 and j3 to get j23 and next j23 can be combined with
j1 to make J

| j1(( j2 j3) j23); jm〉

=

j1∑
m1=− j1

j23∑
m23=− j23

| j1m1〉| j2 j3; j23m23〉〈 j1 j23; m1m23| j1 j23; jm〉. (D.8)

These two coupling schemes are shown in figure D1(a). The coupling scheme results in a
complete orthonormal bases for the (2 j1 + 1)(2 j2 + 1)(2 j3 + 1)-dimensional space spanned
by | j1, m1〉| j2, m2〉| j3, m3〉, m1 = − j1, . . . , j1, m2 = − j2, . . . , j2; m3 = − j3, . . . , j3.

The angular momenta in two coupling schemes are related by a unitary transformation. The
matrix elements of this unitary transformation are known as recoupling coefficients. These
coefficients are independent of m and so we have

|(( j1 j2) j12 j3) jm〉 =
∑

j23

|( j1( j2 j3) j23) jm〉〈( j1( j2 j3) j23) j|(( j1 j2) j12 j3) j〉. (D.9)

These coefficients can be written in terms of Wigner 6j-symbols,

〈( j1( j2 j3) j23) j|(( j1 j2) j12 j3) j〉

= (−1) j1+ j2+ j3+ j
√

(2 j12 + 1)(2 j23 + 1)

{
j1 j2 j12

j3 j j23

}
. (D.10)

The 6j-symbols have a symmetry that permutation of columns or rows leaves it invariant. Sim-
ilar to the 3j-symbols, 6j-symbols are not matrices. The Racah coefficients [116] are related to
the recoupling coefficients as

W( j1 j2 j3J; j12 j23) =
〈( j1( j2 j3) j23) j|(( j1 j2) j12 j3) j〉√

(2J12 + 1)(2J23 + 1)
. (D.11)

Therefore, the Racah coefficients are related to the Wigner 6j-symbols by{
j1 j2 j12

j3 j j23

}
= (−1) j1+ j2+ j3+ jW( j1 j2 j3 j; j12 j23). (D.12)
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If a ≡ j1, b ≡ j2, c ≡ j3, d ≡ j, e ≡ j12, f ≡ j23, we have the triangle condition as

Δ(abc) =

√
(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!
. (D.13)

The right-hand side is zero unless the triangle condition is satisfied. This condition is satisfied
by each side of the quadrilateral in figure D1(b). The Racah coefficient is a product of four of
these factors

W(abcd; e f ) = Δ(abe)Δ(cde)Δ(ac f )Δ(bd f )ω(abcd; e f ), (D.14)

where

ω(abcd; e f )

=
∑

z

(−1)z+β1(z + 1)!
(z − α1)!(z − α2)!(z − α3)!(z − α4)!(β1 − z)!(β2 − z)!(β3 − z)!

,

α1 = a + b + e, α2 = c + d + e, α3 = a + c + f , α4 = b + d + f , β1 = a + b + c + d,
β2 = a + d + e + f , β3 = b + c + e + f . The sum over z is finite over the range
max(α1,α2,α3,α4) � z � min(β1, β2, β3). See [49, 117, 118] for detailed derivation of the
above equation and coupling and recoupling of angular momenta.
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