
ar
X

iv
:2

21
0.

01
68

2v
1

 [
co

nd
-m

at
.s

tr
-e

l]
 4

 O
ct

 2
02

2 Quantum circuits for toric code and X-cube

fracton model

Penghua Chen ∗1, Bowen Yan ∗1, and Shawn X. Cui †1,2

1
Department of Physics and Astronomy, Purdue University, West Lafayette

2
Department of Mathematics, Purdue University, West Lafayette

{chen3014, yan312, cui177} @purdue.edu

Abstract

We introduce a systematic and efficient quantum circuit only composed

of Clifford gates to achieve the ground state of surface code model. Our

algorithm transforms the question into a purely geometric one, which can

be easily extended to achieve the ground state of some 3D topological

phases i.e. 3D toric code model and X-cube fracton model. We also

introduce the gluing method with measurements to enable our method to

achieve the ground state of 2D toric code on an arbitrary planar lattice

and pave the way to more complicated 3D topological phases.

1 Introduction

The subject of topological phases of matter (TPMs) has been under extensive
study for the past few decades. Topological phases are gapped spin liquids at
low temperatures which are not described by the conventional Landau theory
of spontaneous symmetry breaking and local order parameters; instead, they
are characterized by a new order, topological order. The ground states of a
topological phase have stable degeneracy and robust long range entanglement.
Topological phases in 2D also support quasi-particle excitations with anyonic
exchange statistics which make them an appealing platform to fault-tolerantly
store and process quantum information. Two peculiar features among others
are that the ground state degeneracy is a topological invariant of the underlying
system, and that the quasi-particles can freely move without costing energy.
A large class of topological phases is realized by exactly solvable spin lattice
models with bosonic degrees of freedom. A paradigmatic example in 2D is the
toric code, and more generally Kitaev’s quantum double model based on finite
groups [6], and yet even more generally the Levin-Wen string-net model based

∗The first two authors contributed equally to this work.
†Corresponding author

1

http://arxiv.org/abs/2210.01682v1

on fusion categories [7]. Examples of 3D topological phases include toric code
(3D version) and the Walker-Wang model based on premodular categories [18].

In recent years, more exotic phases in 3D, called fracton phases, have been
discovered [5, 16, 17]. Fractons also possess stable ground state degeneracy and
long range entanglement. However, the ground state degeneracy of fractons
depends on the system size, and hence is not a topological invariant. Moreover,
the mobility of excitations is constrained. The excitations can only move in
certain subsystems or cannot move at all. Well known examples of fractons
include the Haah code [5] and the X-cube model [17]. While regular topological
phases are described by topological quantum field theories, it is still an open
question what theories mathematically characterize fractons. Since fractons also
satisfy the topological order conditions in the sense of [1], we call the ground
states of a fracton topologically ordered states, in the same way as those of
regular topological phases.

Realizing topological phases in physical systems remains an extremely chal-
lenging task. On the other hand, there now exist quantum processors based
on a number of platforms such as superconducting qubits [10], Rydberg atomic
arrays [4], etc. These devices can host physical qubits at the scale of 102, and
this number is expected to increase significantly in the near future. Hence, it is
both feasible and interesting to simulate topological phases in quantum proces-
sors. Thanks to the intrinsic robustness of topological phases, the simulation is
relatively less sensitive to the noises in the current quantum processors. We may
also gain more insight in topological phases by engineering them in processors.

The toric code ground states were realized in the superconducting-qubit-
based systems [10] and the Rydberg-atom systems [14]. In [10], the authors
gave a quantum circuit consisting of Clifford gates to realize the ground states
of the planar toric code (a.k.a. surface code [3]). Quantum circuits realizing
non-Abelian topological orders such as Levin-Wen string-net model and Kitaev
quantum double model have also been studied. See for instance [8, 11, 15, 2, 12,
13], though in these cases, the gates utilized are no longer in the Clifford group
and measurements are required.

In this paper, we develop quantum circuits realizing the ground states for a
number of topological phases. In [10], only planar toric code is considered where
the lattice is defined on a planar surface. Here we generalize their method to
apply to a large class of surfaces with or without boundary. The quantum
circuit consists of only Clifford gates. In toric code, the Hamiltonian consists
of two types of operators, the term Av for each vertex v and the term Bp for
each plaquette p. See Figure 2. The key idea of constructing the ground state
in [10] is as follows. Start with the product state |φ0〉 = ⊗|0〉 which is the +1
eigenstate for all vertex terms. The ground state is then obtained by projecting
|φ0〉 to the +1 eigenstate of all plaquette operators, that is,

|GS〉 ∼
∏

p

1 +Bp

2
|φ0〉. (1)

The effect of
1+Bp

2
acting on certain states can be simulated by an appropriate

2

combination of the Hadamard gate and the CNOT gate. For this method to
work, the control qubit for CNOT has to be in the |0〉 state prior to applying
the Hadamard and CNOT. Hence, it is critical to choose the right sequence for
the plaquettes so that, immediately before simulating the term corresponding
to each plaquette p, there is always at least one edge on the boundary of p with
the state |0〉. When the lattice is a simple planar lattice, the problem can be
easily solved by dividing the lattice into several parts and applying the CNOT
gates in a specific order. In this paper, since we consider lattices on arbitrary
surfaces, this question is much subtler.

Here we provide an explicit algorithm to determine the sequence in which
the plaquette operators are simulated. We show that this is always possible for
a large class of lattices with or without boundary. The result of the algorithm
is a quantum circuit consisting of Clifford gates realizing the ground state of
the toric code. Moreover, we also adapt this method to 3D phases including
the 3D toric code and the X-cube fracton model. For the X-cube model, we
again initialize the state to the product of |0〉 state and simulate the projectors
corresponding to cube terms. A similar issue arises that we need to choose
the correct sequence to simulate the cube terms. We note that the circuit we
provide here realizes an exact ground state of the X-cube model. By comparison,
using cluster states and measurements, the authors in [15] gave an approximate
realization of the model.

In addition to the above method using only quantum gates, we also provide
a different way of realizing the same states. The alternative way, called gluing
method, combines Clifford gates and measurement of the Pauli X gate. The
resulting circuit has a shorter depth than the first one. Of course, for the
toric code or X-cube, it is possible to only use measurement to obtain the
ground state. Considering that frequent measurements in near-term quantum
processors are costly, our method is a trade-off between circuit depth and degree
of measurements.

2 Realizing ground state of 2D toric code

2.1 Toric code

It is well known that for any Hamiltonian in the form

H = −
∑

i

Hi, (2)

where all elements in Hi are projectors and mutually commuting, |GS〉 is the
ground state as long as it is non-zero:

|GS〉 =
∏

i

Hi|φ〉, (3)

where |φ〉 stands for an arbitrary state. Specifically, in a given connected lattice
Γ, V refers to the set of vertices, P refers to the set of plaquettes and E refers

3

to the set of edges. We define Bo(p) ⊆ E, p ∈ P to represent the border edges
of the plaquette p, τ(e) ⊆ P, e ∈ E to represent the plaquettes consist of the
edge e, and σ(e) ∈ V, e ∈ E represents the vertices attached with the edge e.
As each edge is associated with a qubit, we may abuse the notation e, e ∈ E to
represent the qubit attached. As an example, if an edge e appears as a subscript
of an operator, it means the operator acts on the qubit attached to the edge e.

z-boundary

x-boundary

direct string

x-boundary

z-boundary

dual string

Figure 1: The black solid net on left represents the lattice Γ and the black
dashed net on right represents the dual of Γ induced by the gray net.

As shown in Figure 1, an edge e is a z-boundary when τ(e) contains only
one element, and it is an x-boundary if σ(e) contains only one element (see [3]
for details). On the lattice Γ, a direct string S is a series of edges ei, i = 1 · · ·n
such that τ(ei)

⋂

τ(ei+1) 6= ⊘ for 1 ≤ i < n. A direct string operator F (S) is
one operator applies X on all edges along the string S and creates two electric
charges on both ends. Similarly we can define a dual string S′, which is a direct
string in the dual lattice of Γ. A dual ribbon operator F (S′) applies Z on all
edges crossed by the dual string S′ and creates two magnetic charges on both
ends. Notice those dual string operators which come across a z-boundary at one
end will would create (or annihilate) a magnetic charge at the other end.

Z

Z

ZZ

Av

X

X

XX
Bp

Figure 2: Definition of Av and Bp operator in toric code.

4

The toric code Hamiltonian H has two terms as defined in Figure 2:

H = −
∑

v∈V

Av −
∑

p∈P

Bp. (4)

The action of Av (vertex term) is to apply Pauli matrix Z over edges e if
v ∈ σ(e), and Bp (plaquette term) acts to apply Pauli matrix X over edges e if
p ∈ Bo(e). Naturally, we have a ground state

|GS〉 =
∏

p∈P

1 +Bp

2
|φ0〉, (5)

where |φ0〉 is the product state with each qubit set to be |0〉. It is non-zero
because each component has a positive coefficient.

2.2 Single plaquette

To systematically introduce our method to simulate the ground state, we begin
with the simplest case: applying

1+Bp

2
on a single plaquette, which is the basic

structure in 2D toric code. A Hadamard gate H is naturally described by X+Z√
2
,

and CNOT gate Ci→j is defined as

Ci→j |ij〉 =
1− Zi

2
Xj +

1 + Zi

2
|ij〉, (6)

where i is the control qubit and j is the target qubit.

H1

1

2

3

4
C1→2

|0〉+|1〉
2

|0〉

|00〉+|11〉
2 |0000〉+|1111〉

2

Figure 3: A qubit |0〉 is placed at each gray dot at beginning, and the color
changes to black when a quantum gate is applied on the qubit; The circle on
a dot means applying Hadamard gate on the qubit and an arrow stands for a
CNOT gate pointing from control qubit to target qubit.

In the single plaquette shown in Figure 3, we have four qubits denoted by
1, 2, 3, 4 and we set all qubits at |0〉 as the initial state. We will apply Hadamard
and CNOT gates in a specific order described in the figure. After applying H1

and C1→2, we will have

C1→2H1|0000〉 = (
1 − Z1

2
X2+

1 + Z1

2
)
X1 + Z1√

2
|0000〉 = X1X2 + 1√

2
|0000〉. (7)

5

Applying the other CNOT gates results in

4
∏

i=2

C1→iH1|0000〉 =
X1X2X3X4 + 1√

2
|0000〉 = 1 +Bp√

2
|0000〉, (8)

which is the desired ground state. Notice this procedure works as long as there
exists a qubit from Bo(p) in |0〉 at the beginning. We call the qubit free qubit,
and the existence of them is crucial when we think about many plaquettes cases.

2.3 Developing to a surface with boundary

Given a complicated lattice Γ at |φ0〉, we need to find a path through all pla-

quettes pi,
⋃

i pi = P with a series of edges ei ∈ Bo(pi) such that ei /∈ ⋃i−1

j=1
pj .

Then we can use ei as the free qubit to apply a series of operators on the in-

troduced basic structure to achieve
∏

i

1+Bpi√
2

over |0 · · · 0〉, which is the ground

state of the toric code on lattice Γ. To illustrate the procedure, we take four
plaquettes as an example:

e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

e1 e2

e3e4

Figure 4: The procedure on the basics structure is applying Hadamard gate on
any qubit at |0〉 first and CNOT gates to other qubits in any order.

As shown in Figure 4, we have chosen a path with four free qubits e1 to e4.
We repeat the basic structure plaquette by plaquette. Notice ei is always |0〉 at
the beginning of each step. Finally, we will get the desired ground state when
the path is completed.

2.4 Developing to a surface without boundary

The situation changes for a surface without boundary. The beginning state is
still |φ0〉, but we can not find a path with enough free qubits completing the
lattices. Fortunately, because every edge sides two plaquettes, we must have

∏

p∈P

Bp = 1, (9)

which implies we can choose a Bp to be redundant. Then we choose the last
plaquette to be redundant and the path stops here. We take the lattices on a

6

torus as an example shown in Figure 5. We do not need to apply Hadamard gate
and CNOT gates on the bottom left plaquette as we have already simulated the
ground state for toric code.

e1 e2

e3

e1 e2

e3

e1 e2

e3

Figure 5: Boundaries with the same color are identified together to represent a
genus 1 torus.

This method could be applied to a more complicated 2D surface with or
without boundary as long as we can find the path. Appendix A and B show
more examples and the gluing method in Section 3 will enable us to simulate
ground state on arbitrary planar lattice.

2.5 Simulate arbitrary ground state

According to [6], the degeneracy of ground states for 2D toric code on torus
is four: |00〉, |01〉, |10〉 and |11〉. The ground state |00〉 introduced in Section
2.4 is simulated from the beginning state φ0. Because logical operators could
interchange ground states and commute with Bp, we can apply them on φ0 to
get the other ground states.

φ0 φ01 φ10 φ11

Figure 6: A qubit |0〉 is placed at each gray dot and the color changes to black
when operator X flips the qubit from |0〉 to |1〉.

As shown in Figure 6, a vertical loop and a horizontal loop of X represent
the two logical operators. They could change φ0 into φ01, φ10 and φ11, which
are corresponding initial states for |01〉, |10〉 and |11〉. After that, we repeat the

7

same procedure used in Section 2.4 but apply XiCi→jXi instead of Ci→j when
we encounter the flipped qubit ei.

One step further, to get an arbitrary ground state φ = aeiθa |00〉+beiθb|01〉+
ceiθc |10〉 + deiθd |11〉, we can apply the unitary operator U in Equation 10 on
an adjacent pair of vertical and horizontal edges of φ0 and use CNOT gates
to transmit vertically and horizontally. After that, we just need to repeat the
method above but avoid the used qubits.

U1 =

a√
a2+b2

−b√
a2+b2

0 0

b√
a2+b2

a√
a2+b2

0 0

0 0 c√
c2+d2

−d√
c2+d2

0 0 d√
c2+d2

c√
c2+d2

√
a2+b2 0 −

√
c2+d2 0

0
√
a2+b2 0 −

√
c2+d2√

c2+d2 0
√
a2+b2 0

0
√
c2+d2 0

√
a2+b2

 ,

U2 =

(

eiθa 0 0 0

0 eiθb 0 0

0 0 eiθc 0

0 0 0 eiθd

)

and U = U2U1. (10)

3 Gluing method for 2D toric code

3.1 Gluing method for two single plaquettes

The method introduced in previous sections is efficient but relies on the choice
of a path. It could be hard for a complicated surface, so we propose a gluing
method to overcome this difficulty. We will begin with a simple example to
illustrate the spirit of gluing method. To simulate the ground state of toric
code on the two plaquettes in Figure 7, we can introduce an ancilla qubit to
divide it into two independent plaquettes p1 and p2. Let us denote the edges in
Bo(p1) by 1, 2, 3, 4 and edges in Bo(p2) by 5, 6, 7, 8. We begin with φ0 and ignore
the overall normalization constant to simplify the calculation in the following.

p1 p2
4 52

1

3

7

8

6

p1 p2
C4→5

Figure 7: The lattice of two plaquettes is divided into two independent plaque-
ttes by introducing the ancilla qubit in red.

First, apply 1 +Bp1
and 1 +Bp2

independently to get

(1 +X1X2X3X4)(1 +X5X6X7X8)|0〉⊗
8

. (11)

8

Next, apply C4→5 as and notice this operator commutes with 1 +Bp2
:

(
1− Z4

2
X5 +

1 + Z4

2
)(1 +X1X2X3X4)(1 +X5X6X7X8)|0〉⊗

8

= (1 +X1X2X3X4X5)(1 +X5X6X7X8)|0〉⊗
8

. (12)

Then, do a measurement over the ancilla qubit with basis |+〉 = |0〉+|1〉√
2

and

|−〉 = |0〉−|1〉√
2

. If we get +1, it is equivalent to applying 1+X4

2
and thus

1 +X4

2
(1 +X1X2X3X4X5)(1 +X5X6X7X8)|0〉⊗

8

= (
1 +X4

2
)(1 +X1X2X3X5)(1 +X5X6X7X8)|0〉⊗

8

. (13)

The ancilla qubit is disentangled now and the remaining part is precisely the
ground state of two plaquettes. Observing that, when we glue two boundaries
ei and ej together, all plaquettes terms commute with each other and Ci→j

commutes with all plaquette terms except 1 + Bpk
where ei ∈ Bo(pk). So the

combination is still a ground state even if we glue multiple plaquettes together
at the same time.

On the other hand, if we get -1, it is equivalent to applying 1−X4

2
and thus

1−X4

2
(1 +X1X2X3X4X5)(1 +X5X6X7X8)|0〉⊗

8

= (
1−X4

2
)(1−X1X2X3X5)(1 +X5X6X7X8)|0〉⊗

8

, (14)

which is not the expected ground state. Notice it is an excited state that a
magnetic charge exists at p1. Fortunately, we can correct it by applying Z1, Z2

or Z3, which is a short dual ribbon operator. In the next section, we will prove
that correcting operator always exists for any planar lattice.

3.2 Gluing method for many arbitrary plaquettes

When we generate the gluing method from two single plaquettes to many ar-
bitrary plaquettes, we do not need to worry about the edges measured +1 but
need to find a systematic method to correct the edges measured -1. For the
example shown in Figure 8, if we apply Ci→j to glue two boundaries and get -1
after measuring qubit ei, the correcting operator needs to anti-commute with
Bpi

and commute with everything else 1. A natural thought is to apply a dual
string operator starting at pi and ending crossing a z-boundary.

One step further, for any connected planar lattice γ =
⋃n

i=1
pi with at least

one z-boundary e0. Take a series T = {pi}, Bo(pi)
⋂⋃i−1

j=1
Bo(pj) 6= ⊘ for any

i ∈ [2, n], we can insert ancilla qubits to separate it into several plaquettes and
glue them together. To illustrate the idea, let us present an example consist of
four plaquettes shown in Figure 9:

1It may be easily ignored, this correcting operator commutes with all vertex terms.

9

z-boundary

correcting operator

pi

pj
ei ej

Ci→j

Figure 8: The bold black edge is a z-boundary and the blue line represents the
dual string operator used to correct ground state if the red ancilla edge ei is
measured to be -1 after gluing.

First, we use ancilla qubits to split the lattice into single plaquettes. For
τ(ek) containing pi and pj , where 1 ≤ i < j ≤ n according to the series T ,
insert an ancilla edge e′k into pi and leave ek in pj . Then we apply 1 + Bp to
every single plaquette p ∈ P . After that, we glue them together piece by piece.
For pi, 1 < i ≤ n, we need to apply Ce′→e to all pairs of e′ ∈ ⋃i−1

j=1
Bo(pj)

and e ∈ Bo(pi). Finally, we measure and disentangle e′. If we get -1, apply
a dual string operator connecting pi and the z-boundary of p1 to correct it.
Notice that we can glue all plaquettes together simultaneously and two magnetic
charges could be annihilated by a dual string operator connecting them. For
this example, if we get -1 for e′1 and e′4 simultaneously, the correcting operator
will cancel out.

For the lattice without boundary, we can choose a plaquette p to be redun-
dant and thus Bo(p) become z-boundaries. Then the situation is exactly the
same with the lattice with boundaries, which is left to readers. If the lattice only
contains x-boundaries, we could consider the dual lattice of it, and everything
is the same as flipping the plaquette and vertex operators. Thus we conclude
our method is able to simulate ground state for toric code on any planar lattice.

10

e0 e1

e2

e3

e4

p1 p2

p3p4

p1 p2

p3p4

e0 e1e′1

e′3e3

e2

e′2

e4

e′4
Ce′

1
→e1

p1 p2

p3p4

e0

e2

e′2

e′3e3

e4

e′4
Ce′

2
→e2

p1 p2

p3

p4

e0

e′3

e3

e4

e′4

Ce′
3
→e3

Ce′
4
→e4

Figure 9: e0 is a z-boundary and e′ in red represents an ancilla qubit.

4 Simulate ground state for 3D models

4.1 3D toric code

We can generalize the method of 2D toric code to 3D toric code with boundary
directly using a plaquette as the basic structure. It is complicated but direct, so
we leave it in Section C. However, this method does not work on 3D toric code
without boundary as there is no free edge in final step. To avoid this problem,
we need to use a different basic structure as shown in Figure 10. We change the
beginning state from |φ0〉 to |φ−〉, where |−〉 is set at each edge. And we need

to simulate 1+Av

2
rather than

1+Bp

2
to get ground state.

Using this basic structure to develop the lattice vertex by vertex, we will
end with a redundant vertex as

∏

v∈V

Av = 1. (15)

An example consisting of eight cubes is shown in Figure 11 to illustrate the
method, where the opposite faces are identified together. We begin with |φ−〉
and choose four free qubits in the lower layer to take the procedure in basic
structure. After this step and identification of opposite faces, we get the lattice

11

|0〉

1+Bp

2 1+Av

2
|−〉

Figure 10: Comparison of two different basic structures.

with the middle untouched. Finally, choose three more free qubits to repeat the
basic structure and leave a vertex redundant.

Figure 11: A qubit |−〉 is placed at each gray dot at beginning. The color
changes to black when a quantum gate is applied on the qubit.

4.2 X cube code

To simulate ground state for X cube code, a model consisting of n3 cubes with
the opposite faces identified is shown in Figure 12. The beginning state is |φ0〉,
but the basic structure is a cube rather than a plaquette. The choice of a path is
obvious if we choose redundant cubes in a specific way, namely the three edges
of cubes in blue. The redundancy of the blue cube in the front face comes from
the identity requirement of the front layer in green. Applying this condition
layer by layer, we will get a edge consist of redundant cubes. As there are three
directions to slice layers independently, the desired structure 2 is formed.

2There could be more redundant cubes but we only need to use the chosen ones in the

method.

12

|0〉

1+Bv

2

Figure 12: The left figure is a X cube model consist of n3 cubes; The right figure
shows the basic structure to be used.

To illustrate the method, we take the eight cubes case in Figure 13 as an
example. Considering the redundant cubes in blue, we only need to develop
four cubes left. Let us begin with the cube at the right front higher corner to
apply the basic structure. After this step and identifying opposite faces, we
get the result on the right-hand side of Figure 13. Then we choose three more
free qubits from each cube connecting with the developed cube to repeat the
procedure of basic structure. Finally, we get the ground state of X cube model
consisting of eight cubes.

Figure 13: The left figure is an example of X cube model with opposite faces
identified. The right figure shows the result after the first step and the free
qubits for next step are circled.

13

4.3 Gluing method for 3D models

Similar to the 2D toric code case, we can simulate the ground state by breaking
the lattice into basic structures, simulating on and gluing them back in the 3D
toric code case. We will have one vertex term redundant and the excitations are
quasi-particles that are able to move freely. The situation is exactly the same
with 2D toric code, so we can find correcting operators to annihilate all of the
excitations, which is left to readers. But the X-cube model is rather difficult as
the excitations are fractons. The systematic method to find correcting operators
is based on the following two facts:

1. There are three columns of redundant cubes as shown in Figure 12.
2. Excitation betraying cube terms is a fracton that are not able to move

freely. While a membrane operator (see [9] for details) creates fractons on four
corners of a rectangular.

x

y

z

(i, j, k)(1, j, k)

(1, j, 1) (i, j, 1)

(1, 1, 1)

(1, 1, k)

(i, 1, 1)

(i, j, k)

(i′, j′, k′)

Figure 14: A membrane operator consisting of Z operators on green edges
creates fractons at four corners; The correcting operator is a product of three
membrane operators.

As shown in Figure 14, we label each cube by Cartesian coordinates (i, j, k),
1 ≤ i, j, k ≤ n in a n3 cubic lattice underlying 3D torus topology. The redundant
cubes are set at three columns (i, 1, 1), (1, i, 1) and (1, 1, i), i = 1 · · ·n. A mem-
brane operator M[(i, j, k), (i′, j′, k′)], consists of Z operators in the rectangle
from (i, j, k) to (i′, j′, k′) creates excitations at the four corners. If we have an ex-
citation at (i, j, 1), we can apply M[(1, 1, 1), (i, j, 1)] to annihilate the excitation
but create excitations at redundant cubes which does not matter. For a general
excitation at (i, j, k), i, j, k 6= 1. We can first apply M[(1, j, 1), (i, j, k)] to anni-
hilates it but creates three more at (1, j, 1), (1, j, k) and (i, j, 1). The first one
at a redundant cube can be neglected. While the other two will be annihilated

14

byM[(1, 1, 1), (1, j, k)] and M[(1, 1, 1), (i, j, 1)] as introduced. Thus the product
operatorM[(1, 1, 1), (1, j, k)]M[(1, 1, 1), (i, j, 1)]M[(1, j, 1), (i, j, k)] annihilates
the general excitation.

5 Conclusion and outlook

In this paper, we use only Clifford gates to simulate ground states of 2D toric
code on different surfaces with or without boundary, 3D toric code and X-
cube model. We introduced the definitions of free qubit and basic structure
to describe the algorithm geometrically in different models. In addition to the
method using only Clifford gates, we also provide the gluing method using mea-
surements. These two methods can be combined to simulate ground states of
2D toric code on an arbitrary surfaces or a practical system with a balance
between circuit depth and degree of measurements.

There are several future directions to proceed. Naturally, we can generate
our method to other 3D models of interest. Secondly, our method could be
applied to non-abelian Kitaev model.

Acknowledgments.

The authors are partially supported by NSF CCF 2006667, Quantum Science
Center (led by ORNL), and ARO MURI.

References

[1] Sergey Bravyi, Matthew B Hastings, and Spyridon Michalakis. Topological
quantum order: stability under local perturbations. Journal of mathemat-
ical physics, 51(9):093512, 2010.

[2] Sergey Bravyi, Isaac Kim, Alexander Kliesch, and Robert Koenig.
Adaptive constant-depth circuits for manipulating non-Abelian anyons.
arXiv:2205.01933, 2022.

[3] Sergey B Bravyi and A Yu Kitaev. Quantum codes on a lattice with bound-
ary. arXiv preprint quant-ph/9811052, 1998.

[4] Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Se-
meghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pich-
ler, Wen Wei Ho, et al. Quantum phases of matter on a 256-atom pro-
grammable quantum simulator. Nature, 595(7866):227–232, 2021.

[5] Jeongwan Haah. Local stabilizer codes in three dimensions without string
logical operators. Physical Review A, 83(4):042330, 2011.

[6] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of
Physics, 303(1):2–30, 2003.

15

[7] Michael A Levin and Xiao-Gang Wen. String-net condensation: A physical
mechanism for topological phases. Physical Review B, 71(4):045110, 2005.

[8] Yu-Jie Liu, Kirill Shtengel, Adam Smith, and Frank Pollmann. Methods
for simulating string-net states and anyons on a digital quantum computer.
arXiv:2110.02020, 2021.

[9] Abhinav Prem, Jeongwan Haah, and Rahul Nandkishore. Glassy quan-
tum dynamics in translation invariant fracton models. Physical Review B,
95(15):155133, 2017.

[10] KJ Satzinger, Y-J Liu, A Smith, C Knapp, M Newman, C Jones, Z Chen,
C Quintana, X Mi, A Dunsworth, et al. Realizing topologically ordered
states on a quantum processor. Science, 374(6572):1237–1241, 2021.

[11] Nathanan Tantivasadakarn, Ryan Thorngren, Ashvin Vishwanath, and
Ruben Verresen. Long-range entanglement from measuring symmetry-
protected topological phases. arXiv:2112.01519, 2021.

[12] Nathanan Tantivasadakarn, Ruben Verresen, and Ashvin Vishwanath. The
shortest route to non-Abelian topological order on a quantum processor.
arXiv:2209.03964, 2022.

[13] Nathanan Tantivasadakarn, Ashvin Vishwanath, and Ruben Verresen. A
hierarchy of topological order from finite-depth unitaries, measurement and
feedforward. arXiv:2209.06202, 2022.

[14] Ruben Verresen, Mikhail D Lukin, and Ashvin Vishwanath. Prediction of
toric code topological order from Rydberg blockade. Physical Review X,
11(3):031005, 2021.

[15] Ruben Verresen, Nathanan Tantivasadakarn, and Ashvin Vishwanath. Ef-
ficiently preparing Schrödinger’s cat, fractons and non-Abelian topological
order in quantum devices. arXiv:2112.03061, 2021.

[16] Sagar Vijay, Jeongwan Haah, and Liang Fu. A new kind of topological
quantum order: A dimensional hierarchy of quasiparticles built from sta-
tionary excitations. Physical Review B, 92(23):235136, 2015.

[17] Sagar Vijay, Jeongwan Haah, and Liang Fu. Fracton topological or-
der, generalized lattice gauge theory, and duality. Physical Review B,
94(23):235157, 2016.

[18] Kevin Walker and Zhenghan Wang. (3+ 1)-TQFTs and topological insu-
lators. Frontiers of Physics, 7(2):150–159, 2012.

16

A 2D toric code on sphere

Similar with the example of genus 1 torus, we identify different qubit pairs to
change the four plaquettes into a sphere as shown in Figure 15. The bottom right
plaquette is chosen to be redundant and two steps will complete the procedure.

Figure 15: Boundary edges are identified according to the double-headed arrows.

B 2D toric code on genus n surface

Figure 16 shows a genus n surface which is a disk enclosed by a ribbon with
identified edges. Beginning with |φ0〉, we develop a disk from inside and leave
the ribbon with all identified edges undeveloped. Then we choose one edge
in the ribbon to apply the method of basic structure and repeat in clockwise
direction. After 2n− 1 steps for a genus n torus, we will get the ground state
of the closed surface.

Figure 16: The shaded area represents the developed disk; Boundaries with the
same color are identified to change the plaquettes into a genus n torus.

17

C 3D toric code with boundary

The generation from 2D toric code to 3D toric code with boundary is compli-
cated but direct. We can continue to use a plaquette as the basic structure but
consider four different types of cubes. Let us take the eight cubes in Figure 17
as an example. We begin with the red cube and develop it into pink cubes.
Orange cubes are the next and the yellow cube completes the model. In the
following, we will divide the method into four steps, each step describes one
type of cubes.

Figure 17: The beginning cube is colored red. The pink, orange and yellow cube
represent the cubes connected with one, two or three faces developed.

To develop the qubits in the beginning red cube, we need to develop five
rather than six faces as the cube is a closed surface with one redundant face.
As shown in Figure 18, we develop a face first and choose the four qubits on
the opposite face to repeat the basic structure. After that, considering the pink
cube shares a face with developed cube, we only need to develop four more faces
as the second cube is also a closed surface. We choose the four qubits on the
face opposite to the developed cube to repeat the basic structure.

Figure 18: The left two cubes describe the first step to develop the red cube.
The right cubes describes the second step to develop the pink cube.

Similarly, we need to develop three faces for the orange cubes and two faces
for the yellow cube as shown in Figure 19. The four steps complete the procedure
to simulate the ground state of toric code on the eight cubes lattices. And we

18

are able to develop any size cubes with boundary using the method described
above.

Figure 19: The left figure describes the step of orange cubes, and we need to
develop the face in front first. The right figure describes the final step to develop
the yellow cube, and we need to develop the face above first.

19

	1 Introduction
	2 Realizing ground state of 2D toric code
	2.1 Toric code
	2.2 Single plaquette
	2.3 Developing to a surface with boundary
	2.4 Developing to a surface without boundary
	2.5 Simulate arbitrary ground state

	3 Gluing method for 2D toric code
	3.1 Gluing method for two single plaquettes
	3.2 Gluing method for many arbitrary plaquettes

	4 Simulate ground state for 3D models
	4.1 3D toric code
	4.2 X cube code
	4.3 Gluing method for 3D models

	5 Conclusion and outlook
	A 2D toric code on sphere
	B 2D toric code on genus n surface
	C 3D toric code with boundary

