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ABSTRACT

We generalize Ng’s two-variable algebraic/combinatorial zeroth framed knot contact
homology for framed oriented knots in S3 to knots in S1 × S2, and prove that the
resulting knot invariant is the same as the framed cord algebra of knots. Actually, our
cord algebra has an extra variable, which potentially corresponds to the third variable in
Ng’s three-variable knot contact homology. Our main tool is Lin’s generalization of the
Markov theorem for braids in S3 to braids in S1 × S2. We conjecture that our framed
cord algebras are always finitely generated for non-local knots.
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1. Introduction

The dream of finding new higher categorical quantum invariants of smooth
4-manifolds that can distinguish smooth structures beyond Donaldson/Seiberg-
Witten/Heegaard-Floer theory is largely unrealized, despite the spectacular success
for new invariants in 3-dimensions and recent progress in higher category theory. A
potentially new quantum invariant would be to promote the relative knot contact
homology of knots in S3 in [9] to a (3 + 1)-TQFT-type theory (presumably the
zeroth part of the BRST cohomology of a topological string theory). One lesson
from (2 + 1)-dimensions is the emergence of powerful diagrammatical techniques
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as exemplified by the Kauffman bracket definition of the Jones polynomial, and
the subsequently elementary formulation of Turaev–Viro and Reshetikhin–Turaev
(2 + 1)-TQFTs. We see a striking parallel between the cord algebra invariant and
the Jones polynomial.

In [9], the zeroth part of the relative knot contact homology in S3 is interpreted
using cords and skein relations—the main ingredients of diagrammatical techniques
in (2 + 1)-dimensions, analogous to the reformulation of the Jones polynomial of
knots from von Neumann algebra using knot diagrams and the Kauffman bracket.
Taking the elementary framed cord algebra invariant of knots in general 3-manifolds
M as the main object of interest, we will follow the diagrammatical approach
to constructing (2 + 1)-TQFTs such as the Turaev–Viro and Reshetikhin–Turaev
TQFTs. As a first step, we generalize Ng’s two-variable combinatorial/algebraic
zeroth framed knot contact homology for framed oriented knots in S3 to knots in
S1×S2, and prove that the resulting knot invariant is the same as the framed cord
algebra of knots. Actually, our cord algebra has an extra variable, which potentially
corresponds to the third variable in Ng’s three-variable knot contact homology [10].

It is conjectured in [8] that the cord algebra invariant of knots in a general
3-manifold M is the zeroth relative knot contact homology. We do not prove this
conjecture and will not use any knot contact homology theory. Instead we provide
an algebraic version of this conjectured zeroth knot contact homology for knots
in S1 × S2 following [9] and regard our algebraic definition of the cord algebra as
an effective method to calculate the topologically defined cord algebra invariant of
knots. Our long term goal is to understand the higher categories underlying this
algebraic formulation with an eye toward to a diagram construction of a (3 + 1)-
TQFT-type theory.

A second reason for our interest in the framed cord algebra invariant of knots
is the conjectured relation between the augmentation polynomial and the Hom-
fly polynomial of knots. A well-known question since the discovery of the Jones
polynomial is how to place the Jones polynomial within classical topology (since
knots are determined by their complements, so any knot invariant is determined by
the homeomorphism type of the knot complement). The cord algebra of a knot is
basically within classical topology, so the establishment of the conjectured relation
between the augmentation polynomial and the Homfly polynomial is one answer to
an old question.

To generalize the algebraic zeroth knot contact homology in [9] from S3 to
S1 × S2, we use Lin’s generalization of the Markov theorem for braids in S3 to
braids in S1×S2 [6] developed for defining a Jones polynomial of knots in S1×S2.a

The rest of the paper is organized as follows. In Sec. 2.1, we introduce the
Markov theorem for knots in S1 × S2, which are represented by the closure of

aThis generalization, eventually rendered unnecessary for the intended application by Witten’s
work, finds a similar application in our work. We dedicate our work to X.-S. Lin—an important
vanguard in quantum knot theory.
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elements in Cn, the Artin group with Dynkin diagram Bn. In Sec. 2.2, we give
several actions of Cn on free algebras. We interpret these actions both algebraically
and topologically. These actions will be the key ingredients to define the invariant
HC0 in Sec. 3.1. In Secs. 3.2–3.4, we compute some specific examples, demonstrate
some useful propositions, and prove the invariance of HC0 under Markov moves,
respectively. Sections 4.1–4.4 are devoted to prove several properties of the HC0

invariant. We study two special classes of knots in S1 × S2, torus knots and local
knots. Moreover, we derive a family of invariants, called augmentations, from HC0.
Finally, in Sec. 5, we prove that the HC0 invariant has a nice topological interpre-
tation as the framed cord algebra defined in [9].

The first author also created a Mathematica package for computer calcula-
tions of the HC0 invariant and augmentation numbers. The program can be found
at [3] and is partly motivated by Ng’s computer package, which was used to
compute various invariants derived from knot contact homology for knots in S3.
To run the program, one needs to install the non-commutative algebra package
NCAlgebra/NCGB [5].

2. Markov Moves and Actions of Cn on Free Algebras

First we provide some background materials. Links and knots in this paper are
always framed and oriented.

2.1. Markov Moves in S1 × S2

In this subsection, we describe a theorem on Markov moves for links in S1 × S2.
See [6] for a more detailed discussion.

The classical braid group with n strands, Bn, is defined by the presentation
〈σ1, . . . , σn−1 |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, |i − j| ≥ 2〉. It is the Artin
group with Dynkin diagram type An−1, and can also be viewed as the braid group
on the 2-disk D2 ⊂ R2.

Any link in S3 can be represented as the closure of some braid in the classical
braid group. The Markov theorem states that two braids B,B′ give rise to the same
link if and only if B′ can be obtained from B by a finite sequence of the following
operations or their inverses:

(1) change B ∈ Bn to one of its conjugates in Bn;
(2) change B ∈ Bn to Bσ±1

n ∈ Bn+1.

The Markov theorem for links in S3 is generalized to links in S1 × S2 in [6] as
follows.

Let Cn be the Artin group corresponding to the Dynkin diagram Bn generated
by α0, . . . , αn−1, with the following generating relations:

(1) αiαj = αjαi, |i− j| ≥ 2
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(2) αiαi+1αi = αi+1αiαi+1, i ≥ 1
(3) α0α1α0α1 = α1α0α1α0.

A direct consequence of the presentation of Cn is that there are natural inclusions
C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · ·. Denote by ε− these natural inclusions.

It is shown in [2] that Cn is isomorphic to the braid group on the annulus
[0, 1] × S1, or the 1-punctured disk. Specifically, the isomorphism is illustrated in
Fig. 1.

Simply treating {puncture} × [0, 1] as the first strand of the new braid, we can
regard a braid on the 1-punctured disk as a braid on the disk. Thus we have an
embedding of Cn into Bn+1. Denote the generators of Bn+1 by σ0, σ1, . . . , σn−1.

Then the embedding from Cn to Bn+1 is given by the following map:

Cn → Bn+1, α0 �→ σ2
0 , αi �→ σi, i ≥ 1.

We will identify Cn with its image in Bn+1, which is the subgroup consisting of
the braids that fix the first puncture.

The correspondence between braids on the annulus and links in S1 × S2 is
obtained via open book decompositions.

Consider the standard open book decomposition of S3 with an unknot J as the
binding. Let K be another unknot which is a closed braid with respect to the braid
axis J . Then

M = S3\(J ×D2 ∪K ×D2)

is a fibration over S1 whose fiber is an annulus [0, 1] × S1. S1 × S2 is obtained by
a 0-Dehn surgery along K. Thus S1 × S2 = M 	f D2 × S1, where f is the gluing
homeomorphism which maps the meridian of the solid torus to K × z0, z0 ∈ ∂D2.

Let K∗ be the image of 0 × S1 under f in S1 × S2, where 0 × S1 is the core of

1 2 n 1 k nk+1

Fig. 1. α0 and αk , k ≥ 1.
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the solid torus. We call K∗ the dual knot of K. Then the fibration on M extends
to an open book decomposition on S1 × S2 with the binding J ∪ K∗. Note that
S1 × S2\(J ∪ K∗) is homeomorphic to the product of the annulus with S1. Any
link in S1 × S2 can be isotoped into S1 × S2\(J ∪K∗) transversal to each page,
and thus becomes a braid on the annulus.

To state the Markov theorem, we need one more lemma.
Define a map ε+ : Cn → Cn+1,

ε+(αi) =

{
α1α0α1 i = 0,

αi+1 i ≥ 1.
(2.1)

The map ε+ has a nice geometrical interpretation if we view Cn as the braid
group on the annulus. The map simply inserts a straight strand right next to the
line {puncture} × [0, 1]. See Fig. 2.

Note that the newly inserted line will be labeled by 1, and the other strands’
labels will be shifted up by 1.

Lemma 2.1 ([6]). The map ε+ is an injective group homomorphism.

Proof. From the geometrical interpretation of the map, it should be clear that it
is an injective group homomorphism. For a rigorous algebraic proof, see [6].

Remark 2.2. Now there are two embeddings of Cn into Cn+1, namely the natural
inclusion ε− and the map ε+. From the geometric point of view, ε− is to place a
strand on the far right of the braid, while ε+ is to insert a strand right next to the
line {puncture} × [0, 1].

Here is the statement of the Markov Theorem for links in S1 × S2.

Theorem 2.3 ([6]). The closures of two braids β, β′ ∈ ⋃∞
n=1 Cn give the same link

in S1×S2 if and only if there is a finite sequence of braids, β = β0, β1, . . . , βk = β′,

1 2 n

Fig. 2. ε+(α1α0).
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such that βi+1 can be obtained from βi by one of the following operations or their
inverses:

(1) change βi ∈ Cn to one of its conjugates in Cn;
(2) change βi ∈ Cn to ε−(βi)α±

n ∈ Cn+1;
(3) change βi ∈ Cn to ε+(βi)α±

1 ∈ Cn+1.

Remark 2.4. Given a braid β ∈ Cn, we can obtain the knot in S1×S2 represented
by β as follows. Take a punctured disk D′ = D\Bε(0), and let X = D′× [0, 1]. Draw
the diagram of β inside X . Then S1 × S2 is obtained by identifying the top and
the bottom punctured disk and then gluing a solid torus to each torus boundary
component. The gluing maps are given by sending the meridian of each solid torus
to z0 × S1 and z1 × S1, respectively, for some z0 on the boundary of the puncture
and z1 on the outer boundary of D′. The knot represented by β is the image of the
braid diagram in S1 × S2. See Fig. 3 for β = α0α1.

2.2. Actions of Cn on free algebras

Throughout the paper, R denotes the commutative ring Z[λ±, µ±,Γ±]. Also, the
multiplication sign in an algebra is denoted by the symbol ⊗ or simply omitted,
while the symbol ∗ means concatenation of two curves or some analogous operation
in an algebra which will be introduced in Definition 2.13. We will always omit the
multiplication sign when writing the product of two elements in a group. We define
several free non-commutative algebras over the ring R as follows.

A+
n := R〈axij , 0 ≤ i, j ≤ n, x ∈ Z〉/〈a0

ii − (1 + µ)Γ, 0 ≤ i ≤ n〉,
A−
n := R〈axij , 1 ≤ i, j ≤ n+ 1, x ∈ Z〉/〈a0

ii − (1 + µ)Γ, 1 ≤ i ≤ n+ 1〉,
An := R〈axij , 1 ≤ i, j ≤ n, x ∈ Z〉/〈a0

ii − (1 + µ)Γ, 1 ≤ i ≤ n〉.
The algebra An can be embedded into A+

n and A−
n in the most natural way. We

will always identity An with its images in A+
n and A−

n .

Fig. 3. The closure of β in S1 × S2.
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Now we introduce an action of Cn on An, and extend the action to the larger
algebras A+

n ,A−
n . The action is first presented algebraically and then will be given

a topological interpretation.

2.2.1. Algebraic interpretation of the actions

Recall that the generators Cn are denoted by α0, . . . , αn−1, which satisfy the relation
given in Sec. 2.1. We define a group morphism Φ : Cn → Åut(An) as follows.

For 1 ≤ k ≤ n− 1, 1 ≤ i, j ≤ n,

Φ(αk)(axij)

=



−axk+1,j +
1

Γµ
a0
k+1,ka

x
k,j i = k, j = k, k + 1,

−axk+1,k +
1

Γµ
a0
k+1,ka

x
k,k i = k, j = k + 1,

axk+1,k+1 −
1
Γ
axk+1,ka

0
k,k+1

− 1
Γµ

a0
k+1,ka

x
k,k+1 +

1
Γ2µ

a0
k+1,ka

x
k,ka

0
k,k+1 i = k, j = k,

axk,j i = k + 1, j = k, k + 1,

−axk,k+1 +
1
Γ
axk,ka

0
k,k+1 i = k + 1, j = k,

axk,k i = k + 1, j = k + 1,

−axi,k+1 +
1
Γ
axi,ka

0
k,k+1 i = k, k + 1, j = k,

axi,k i = k, k + 1, j = k + 1,

axi,j i = k, k + 1, j = k, k + 1,

(2.2)

Φ(α0)(axij)

=



ax1,1 i = 1, j = 1,

−µax−1
1,j +

1
Γ
ax1,1a

−1
1,j i = 1, j ≥ 2,

1
µ

(
−ax+1

i,1 +
1
Γ
a1
i,1a

x
1,1

)
i ≥ 2, j = 1,

axi,j −
1

Γµ
ax+1
i,1 a−1

1,j

− 1
Γ
a1
i,1a

x−1
1,j +

1
Γ2µ

a1
i,1a

x
1,1a

−1
1,j i ≥ 2, j ≥ 2.

(2.3)

It is direct, though tedious, to check that Φ is well-defined, i.e. Φ(αi) satisfies
the braid relations that define Cn. Alternatively, in Sec. 2.2.2, we will describe the
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mapping class action of a braid in Cn on Ãn, a quotient of an algebra generated by
paths in a punctured disk. Then Ãn will be shown to be generated by simple paths
and isomorphic to An. Upon identifying these simple paths with the elements axij ,
the map determined by Eqs. (2.2) and (2.3) is seen to agree with this action. See
Theorems 2.7 and 2.8.

We extend the action of Cn to the algebra A+
n by furthermore defining the action

on ax0j , a
x
i0, 0 ≤ i, j ≤ n. This extended action is denoted by Φ+.

Φ+(α0)(axij) =



ax0,0 i = 0, j = 0,

1
µ
ax+1
0,1 i = 0, j = 1,

−ax0,j +
1

Γµ
ax+1
0,1 a

−1
1,j i = 0, j ≥ 2,

µax−1
1,0 i = 1, j = 0,

−axi,0 +
1
Γ
a1
i,1a

x−1
1,0 i ≥ 2, j = 0.

(2.4)

For 1 ≤ k ≤ n − 1, Φ+(αk)(axij) are given by the same equation as Eq. (2.2),
except that now i, j are allowed to be zero when they are not k or k + 1.

Similarly, the extended action of Cn on A−
n is defined by Eqs. (2.2) and (2.3)

except that the range of i, j now is from 1 to n+ 1. We denote this action by Φ−.
Again, one can check directly Φ+,Φ− are both well-defined. Alternatively, see

Theorem 2.10.
A few remarks are in order.

Remark 2.5. (1) For a braid β ∈ Cn, we will write Φβ ,Φ+
β ,Φ

−
β for Φ(β),Φ+(β),

Φ−(β), respectively, in subsequent sections.
(2) From the definitions of the actions mentioned above, we can see that Φβ =

(Φ+
β )|An

= (Φ−
β )|An

, and that Φ−
β = Φε−(β) if we identify A−

n with An+1 in the
obvious way.

(3) Denote by Bn the subgroup of Cn generated by {α1, . . . , αn−1}. Then Bn
is isomorphic to the classical braid group on n strands. In Eq. (2.2), if we set
Γ = −1, µ = 1, and x = 0, then Φ|Bn

acting on Z〈a0
ij〉 is exactly the braid group

action given in [7]. So our braid group action is a generalization of the action in [7].

The above actions will be less mysterious after we give a topological interpreta-
tion in the following subsection.

2.2.2. Topological interpretation of the actions

Let D be the unit disk in the complex plane centered at the origin, Dn be the
punctured disk with n+1 punctures labeled, from left to right, by p, p1, . . . , pn and
let qi = pi − ε, 1 ≤ i ≤ n, ε > 0 be n points in Dn each close to the corresponding
puncture. See Fig. 4.
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Fig. 4. Dn.

Let Qn = {qi, 1 ≤ i ≤ n} and let Qn = {γ : [0, 1] → Dn | γ is continuous,
γ(0), γ(1) ∈ Qn} ∼ be the set of equivalence classes of curves in Dn with end
points belonging to Qn. Here the equivalence relation ∼ means homotopy relative
to end points. So the curves are not allowed to pass through any of the punctures
and their end points are fixed during the homotopy.

Let Ãn be the free non-commutative algebra over R generated by elements of
Qn modulo the “skein” relations shown in Fig. 5. Note that ⊗ in Fig. 5 means the
multiplication in Ãn. And the second relation, as well as other similar relations in
the context, depicts some local neighborhood of the diagrams outside of which they
all agree.

For 1 ≤ i, j ≤ n, x ∈ Z, let γxij and γi be the curves shown in Fig. 6, namely γxij
starts from qi, winds around p counter clock-wise x times if x ≥ 0, or clock-wise
−x times if x < 0, and finally goes through the upper half disk to end at qj . The
curve γi starts and ends at qi and winds around pi counter clock-wise once.

It should be noted that the relations shown in Fig. 7 can be derived from the
ones in Fig. 5. And the second relation in Fig. 7 is equivalent to the property that
if γ, γ′ ∈ Qn such that γ(0) = qi and γ′(1) = qi, then γi ∗ γ = µγ, γ′ ∗ γ̄i = µ−1γ′,

=(1)

(2) +

Fig. 5. Skein relations Ãn.

Fig. 6. γx
ij and γi.
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+(1)

(2)

Fig. 7. Derived skein relations.

where ∗ means concatenation of two curves, and γ̄i is the curve γi with reversed
direction.

We will show below that there is an isomorphism between Ãn and An and that
γxij is identified with axij under this isomorphism.

Pick a base point on the boundary of the diskDn. To make it explicit, let us pick
some z0 on the upper half of the boundary as the base point. The fundamental group
of Dn is the free group Fn+1 on n+ 1 generators, which we denote by e, e1, . . . , en,
where ei is the loop that winds around pi counter clock-wise once and e is the loop
that winds around p counter clock-wise once. See Fig. 8.

For each 1 ≤ i ≤ n, let δi be the straight line from z0 to qi, and δ̄i be the same
line with reversed direction. For any curve γ ∈ Qn with γ(0) = qi, γ(1) = qj , let
γ̃ = δi ∗ γ ∗ δ̄j , then γ̃ becomes an element in π1(Dn, z0) = Fn+1.

For γ̃ ∈ π1(Dn, z0), let l(γ̃) be the minimum number of occurrences of e±1
i , 1 ≤

i ≤ n in the words representing γ̃. So we do not count the occurrences of e in
computing l(γ̃).

The following proposition shows that by repeated applications of the “skein”
relations in Fig. 5, any element of Ãn can be reduced to a (non-commutative)
polynomial in γxij ’s.

Proposition 2.6. The algebra Ãn is generated by {γxij : 1 ≤ i, j ≤ n, i = j, x ∈ Z}.

Proof. Since Ãn is generated by elements of Qn, it suffices to show that each
element of Qn can be written as a polynomial of γxij ’s. We prove this statement by
induction on l(γ̃) for γ ∈ Qn.

Fig. 8. e and ei.
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If l(γ̃) = 0, then γ̃ = ex for some x ∈ Z, and so γ is equal to some γxij .
Assume the statement is true for all γ with l(γ̃) ≤ m − 1,m ≥ 1. Let γ ∈ Qn

be any element such that l(γ̃) = m. Choose a word w representing γ̃ such that the
number of occurrences of e±1

i ’s in w is m. Then there exists some k, 1 ≤ k ≤ n,
such that w = w0ekw1 or w = w0e

−1
k w1, where w0 and w1 are sub-words (possibly

empty).
If w = w0ekw1, apply the second relation in Fig. 5 to γ around the puncture

pk with γ being the first term on the left-hand side. Then there exist γ0, γ1, γ
′ ∈

Qn, such that γ = −γ′ + 1
Γγ0γ1, and that γ̃0 = w0, γ̃1 = w1, γ̃′ = w0w1. Since

l(w0), l(w1), l(w0w1) are all less than m, by induction, γ0, γ1 and γ′ are polynomials
of γxij ’s, and thus γ is also a polynomial of γxij ’s.

The case w = w0e
−1
k w1 can be proved analogously by referring to the first

relation in Fig. 7.

We proceed to prove {γxij : 1 ≤ i, j ≤ n, i = j, x ∈ Z} are actually free generators
of Ãn.

Define an intermediate non-commutative algebra B = R〈e±1, y1, y2, . . . , yn〉/I,
where I is the two-sided ideal generated by ee−1−1, e−1e−1 and y2

i −Γ(1+µ)yi, 1 ≤
i ≤ n. We define a multiplicative map from Fn+1 to B as follows.

τ : Fn+1 → B,

τ(w) =



1
Γ
yi − 1 w = ei, 1 ≤ i ≤ n,

1
Γµ

yi − 1 w = e−1
i , 1 ≤ i ≤ n,

e±1 w = e±1,

1 w = 1.

(2.5)

It follows immediately that τ(e)τ(e−1) = τ(ei)τ(e−1
i ) = 1 = τ(1) in B. There-

fore, we can extend the action of τ uniquely to arbitrary words to get a well-defined
multiplicative map on Fn+1. Actually τ extends to an algebra morphism from the
group ring R[Fn+1] to B.

For 1 ≤ i, j ≤ n, we define an R-linear map αij : R〈e±1, y1, y2, . . . , yn〉 → An,

αij(ei1yj1e
i2yj2 · · · eikyjkeik+1) := ai1i,j1a

i2
j1,j2

· · · aikjk−1,jk
a
ik+1
jk,j

One can verify that αij factors through I using the fact that a0
ii = (1 + µ)Γ.

Thus αij induces a map from B to An, which is still denoted by αij .
Define a map ψ : Qn → An by ψ(γ) := αijτ(γ̃), where γ is an element of Qn

such that γ(0) = qi, γ(1) = qj , and γ̃ = δi ∗ γ ∗ δ̄j . We extend ψ multiplicatively to
the free R-algebra generated by elements of Qn. In Theorem 2.7, it will be proved
that this extended map factors through the “skein relations” shown in Fig. 5, thus
it induces a map, still denoted by ψ, from Ãn to An.
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Theorem 2.7. The map ψ introduced above is a well-defined algebra isomorphism
from Ãn to An sending γxij to axij.

Proof. Clearly, ψ(γ) is independent of the choice of representatives of γ in its
equivalence class.

We first show ψ factors through the “skein” relations in Fig. 5.
It is easily seen that ψ(γxij) = axij . In particular, ψ(γ0

ii) = a0
ii = (1 + µ)Γ, so the

first “skein” relation is preserved ψ.
Let C1, C2 denote the two curves passing above and below pk, respectively, in

the definition of the second “skein” relation in Fig. 5. They have the same initial
and end points, say qi, qj . Let C3, C4 be the curves which ends at qk and starts at qk,
respectively. So C3 starts from qi and C4 ends at qj . Let w3, w4 be the words in Fn+1

which represent C̃3, C̃4, then the words which represent C̃1, C̃2 are w3w4, w3ekw4.
Thus, ψ(C1) + ψ(C2) = αij(τ(w3)τ(w4)) + αij(τ(w3)( 1

Γyk − 1)τ(w4)) =
1
Γαij(τ(w3)ykτ(w4)) = 1

Γαik(τ(w3))αkj(τ(w4)) = 1
Γψ(C3)ψ(C4), which says ψ pre-

serves the second “skein” relation.
The above arguments show that ψ is a well-defined algebra morphism. Define

the inverse map ψ′ : An → Ãn by sending each axij to γxij . Noting that γxij are
generators of Ãn by Proposition 2.6, we have ψψ′ = Id and ψ′ψ = Id. Therefore, ψ
is an algebra isomorphism.

Now we describe a natural action of Cn on Ãn.
Recall that the group of isotopy classes of homeomorphisms of Dn with bound-

ary fixed point-wise is the classical braid group on n + 1 strands Bn+1.
b Here we

assume the generators are σ0, σ1, . . . , σn−1, where σ0 is the Dehn twist that switches
p with p1 counter clock-wise and σi switches pi with pi+1, 1 ≤ i ≤ n− 1. Also recall
that we identified Cn with the subgroup of Bn+1 which consists of the braids that fix
the first puncture. See Sec. 2.1 for the explicit embedding. Therefore, the elements
of Cn fix the puncture p and permute {pi, 1 ≤ i ≤ n}. We can furthermore stipulate
that the horizontal line segments piqi remain horizontal and of fixed length during
the isotopy, so that the elements of Cn also permute the qi’s. It follows that the
elements of Cn act on Qn. One can also check that this action actually preserves
the “skein” relations. Therefore, we get a natural action Φ̃ of Cn on Ãn.

Theorem 2.8. The algebra isomorphism ψ : Ãn → An preserves the action of Cn,
i.e. ψΦ̃β = Φβψ, for any β ∈ Cn.

Proof. It suffices to check for any β = αk, ψΦ̃β = Φβψ holds on the generators
γxij . We left this as an exercise.

Remark 2.9. It is worth pointing out that when we want to find the image of
some complicated curve in Ãn under ψ, it is usually more efficient to use the “skein”

bNote that here Dn has n + 1 punctures.
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relations than using the definition directly. Also, instead of memorizing the action
of Cn on the axij ’s, it is much easier to manipulate the “skein” relations and the
Dehn twists. This provides us another way to calculate the action of a braid β on
axij , namely, first use a sequence of Dehn twists representing β to map γxij to some
curve, and then decompose this curve into a polynomial of generators using “skein”
relations, finally replace the generators in the polynomial by the corresponding
axij ’s.

For example, to obtain Φα2
1α0

(a0
12), we first compute Φ̃α2

1α0
(γ0

12) using Dehn
twists that represent α2

1α0. See Fig. 9. Then we decompose the resulting curve
using “skein” relations to get the expression

Φ̃α2
1α0

(γ0
12) = γ−1

12 − 1
Γ
γ−1
11 γ

0
12 +

1
Γ
γ0
12γ

−1
22 − 1

Γ2µ
γ0
12γ

0
21γ

−1
12 − 1

Γ2
γ0
12γ

−1
21 γ

0
12

+
1

Γ3µ
γ0
12γ

0
21γ

−1
11 γ

0
12.

Replacing the γxij ’s above with axij ’s, we obtain the expression for Φα2
1α0

(a0
12).

There are analogous topological interpretations of the extended actions of Cn
on A+

n and A−
n . The procedure goes the same as above, and we will only point out

what modifications should be made at each step.
First of all, let D+

n be the punctured disk with punctures p, p0, p1, . . . , pn
arranged from left to right and similarly let D−

n be the punctured disk with punc-
tures p, p1, . . . , pn, pn+1. Also in both cases, still choose the points qi = pi − ε, for
some tiny ε > 0. Let Q±

n be the set of equivalence classes of curves in D±
n which

start and end at the qi’s . Define Ã±
n to be the R-algebra generated by elements

of Q±
n modulo the “skein” relations in Fig. 10, where q± = q0 in the “+” case and

q± = qn+1 otherwise.

Fig. 9. Φα2
1α0

(γ0
12).
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=(1)

(2) +

(3)

Fig. 10. Skein relations Ã±
n .

So we added one more relation when defining Ã±
n , namely, the curves are allowed

to pass through the new puncture p0 (respectively, pn+1).
The fundamental group of D±

n is the free group Fn+2 generated by e, e′, ei, 1 ≤
i ≤ n, where e′ is the generator that corresponds to the new puncture
p0 (respectively, pn+1). We will use the same intermediate algebra B, and the map
τ is extended to Fn+2 by furthermore defining τ(e′) = 1.

In the same way as we defined the isomorphism ψ from Ãn to An, we can define
an isomorphism ψ± from Ã±

n to A±
n which sends γxij to axij .

Next, we extend the action of Cn to Ã±
n .

Recall the embedding ε+ : Cn → Cn+1 introduced in Sec. 2.1. For notational con-
venience, we denote the generators of Cn+1 by α−1, α0, . . . , αn−1. Thus the embed-
ding ε+ sends α0 to α0α−1α0 and αi to αi, 1 ≤ i ≤ n − 1. From the geometrical
point of view, ε+ simply inserts a strand labeled by p0 right next to {p} × [0, 1].
See the first picture in Fig. 11.

Any braid in ε+(Cn) fixes p and p0. Thus, the action of Cn via the embedding
ε+ preserves all the “skein” relations defining Ã+

n , and therefore induces an action
Φ̃+ on Ã+

n .
For the action Φ̃− of Cn on Ã−

n , we use the other embedding ε− : Cn → Cn+1.
Note that here the generators of Cn+1 are α0, . . . , αn, and ε−(αi) = αi, 0 ≤ i ≤ n−1.
The map ε− inserts a strand labeled by pn+1 on the right of the braid. See the second
picture in Fig. 11.

Note that in Fig. 11 we use i to represent pi.
Again, since elements of ε−(Cn) fix pn+1, they preserve the “skein” relations

that define Ã−
n . We thus get an induced action Φ̃− of Cn on Ã−

n .
Ãn can obviously be embedded as a subalgebra into Ã±

n . We have the following
theorem which relates the topological interpretations of the actions of Cn to the
algebraic interpretations.

Theorem 2.10. The maps ψ± : Ã±
n → A±

n are algebra isomorphisms and commute
with the extended actions of Cn, namely, for any β ∈ Cn, ψ±Φ̃±

β = Φ±
β ψ

±. Moreover,
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Fig. 11. ε+(α1α0) and ε−(α1α0).

(Φ̃±
β )|Ãn

= Φ̃β , and the following diagram commutes:

Ãn

ψ ��
� �

��

An� �

��
Ã±
n

ψ±
�� A±

n

(2.6)

And each of the maps in the above diagram preserves the action of Cn.

Proof. Proofs are analogous to that of Theorem 2.7.

2.2.3. Properties of the actions

It is worth noting that the action of Φ̃ on Ãn and the actions of Φ̃± on Ã±
n can also

be visualized as follows.
For a braid β ∈ Cn, draw a braid diagram of β inside Dn × [0, 1], such that the

intersections of the braid with Dn × {0, 1} are exactly the punctures pi’s. Perturb
the braid diagram to get a parallel copy of it such that the intersections of the copy
with Dn×{0, 1} are the qi’s. For any curve γ ⊂ Dn×{0} representing some element
in Ãn, slide γ along the copy diagram in the complement of the braid diagram until
it reaches Dn × {1}, then the resulting curve is Φ̃β(γ).

To visualize Φ̃±
β , we draw a braid diagram of ε±(β) inside D±

n × I, make a
parallel copy of it, and slide any curve along the copy diagram up to D±

n × {1}.
With the above observations, we have the following simple but important

proposition.

Proposition 2.11. Let β ∈ Cn be a braid, and let γ1, γ2 be two curves in
Qn (respectively,Q±

n ) such that γ1(1) = γ2(0), then Φ̃β(γ1 ∗ γ2) = Φ̃β(γ1) ∗
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Φ̃β(γ2) (respectively, Φ̃±
β (γ1 ∗ γ2) = Φ̃±

β (γ1) ∗ Φ̃±
β (γ2)), where ∗ again means con-

catenation of two curves.

Remark 2.12. For two elements γ1, γ2 ∈ Qn such that γ1(1) = γ2(0), the concate-
nation γ1 ∗ γ2 is different from the product γ1γ2 when they are viewed as elements
of Ãn. For instance, γxik ∗ γykj = γx+yij = γxikγ

y
kj ∈ Ãn. Note that the product sign in

an algebra is either denoted by ⊗ or omitted, as stated at the beginning of Sec. 2.2.

We can also define the “∗” operation on some elements of An (respectively, A±
n ).

Definition 2.13. (1) Let P,Q ∈ An(respectively,A±
n ) such that P =

∑
x∈Z∑n

i=1 P
x
i a

x
ik, Q =

∑
y∈Z

∑n
j=1 a

y
kjQ

y
j , P

x
i , Q

y
j ∈ An (respectively,A±

n ), then P ∗Q ∈
An (respectively,A±

n ) is defined to be
∑

x,y∈Z

∑n
i,j=1 P

x
i a

x+y
ij Qyj .

(2) Two elements P,Q ∈ An (respectively,A±
n ) are called connectable, if they

satisfy the condition in the definition above.

The ∗ operation defined on elements of Qn and that on elements of An are
related by the following proposition.

Proposition 2.14. Let γ1, γ2 ∈ Qn (respectively,Q±
n ) such that γ1(1) = γ2(0),

then ψ(γ1 ∗ γ2) = ψ(γ1) ∗ ψ(γ2) (respectively, ψ±(γ1 ∗ γ2) = ψ±(γ1) ∗ ψ±(γ2)).

Proof. We only prove the case γ1, γ2 ∈ Qn. The proof of the other two cases is
analogous.

Recall the construction of the isomorphism ψ : Ãn → An in Sec. 2.2.2. We
will also have the notations from Sec. 2.2.2. Assume γ1(0) = qi, γ1(1) = γ2(0) =
qk, γ2(1) = qj , and let γ̃1 = δi ∗ γ1 ∗ δ̄k, γ̃2 = δk ∗ γ2 ∗ δ̄j . Then γ̃1 ∗ γ2 = γ̃1γ̃2,
where γ̃1γ̃2 means the multiplication of γ̃1 with γ̃2 in the fundamental group of the
punctured disk (but not the concatenation of the two curves). Thus ψ(γ1 ∗ γ2) =
αijτ(γ̃1γ̃2) = αij(τ(γ̃1)τ(γ̃2)), since τ is multiplicative.

If M,N are two monomials in B, then one can get the fact from the def-
inition of αij that αik(M) and αkj(N) are connectable and that αij(MN) =
αik(M) ∗αkj(N). Extending linearly, this equality holds for M,N two polynomials
in B.

Therefore, ψ(γ1 ∗ γ2) = αij(τ(γ̃1)τ(γ̃2)) = αik(τ(γ̃1)) ∗ αkj(τ(γ̃2)) = ψ(γ1) ∗
ψ(γ2).

Proposition 2.15. If P,Q ∈ An (respectively,A±
n ) are connectable, then for

any β ∈ Cn, Φβ(P ) (respectively,Φ±
β (P )),Φβ(Q) (respectively,Φ±

β (Q)) are also
connectable, and Φβ(P ∗Q) = Φβ(P ) ∗ Φβ(Q) (respectively,Φ±

β (P ∗Q) = Φ±
β (P ) ∗

Φ±
β (Q)).

Proof. Again, only the proof of the case P,Q ∈ An will be shown, as the proof of
the other two cases is similar.
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We first prove Φβ(a
x+y
ij ) = Φβ(axik) ∗ Φβ(a

y
kj).

By Theorem 2.8,

Φβ(axik) = Φβ(ψ(γxik)) = ψΦ̃β(γxik), Φβ(a
y
kj) = ψΦ̃β(γ

y
kj). (2.7)

By Proposition 2.11,

Φ̃β(γxik) ∗ Φ̃β(γ
y
kj) = Φ̃β(γxik ∗ γykj) = Φ̃β(γ

x+y
ij ). (2.8)

By Proposition 2.14 and Eq. (2.7),

ψ(Φ̃β(γxik) ∗ Φ̃β(γ
y
kj)) = ψ(Φ̃β(γxik)) ∗ ψ(Φ̃β(γykj)) = Φβ(axik) ∗ Φβ(a

y
kj). (2.9)

Also by Theorem 2.8,

ψ(Φ̃β(γ
x+y
ij )) = Φβ(ψ(γx+yij )) = Φβ(a

x+y
ij ). (2.10)

Combining Eqs. (2.8)–(2.10), we get Φβ(a
x+y
ij ) = Φβ(axik) ∗ Φβ(a

y
kj).

In general, let P,Q be as described in Definition 2.13, then for β ∈ Cn,
Φβ(P ) =

∑
x∈Z

∑n
i=1 Φβ(P xi )Φβ(axik), and Φβ(Q) =

∑
y∈Z

∑n
j=1 Φβ(a

y
kj)Φβ(Q

y
j ).

Since Φβ(axik) and Φβ(a
y
kj) are connectable, Φβ(P ) and Φβ(Q) are also connectable.

Moreover,

Φβ(P ) ∗ Φβ(Q) =
∑
x,y∈Z

n∑
i,j=1

Φβ(P xi ){Φβ(axik) ∗ Φβ(a
y
kj)}Φβ(Qyj )

=
∑
x,y∈Z

n∑
i,j=1

Φβ(P xi )Φβ(a
x+y
ij )Φβ(Q

y
j )

= Φβ

∑
x,y∈Z

n∑
i,j=1

P xi a
x+y
ij Qyj


= Φβ(P ∗Q).

Remark 2.16. We will identify Ãn with An, Ã±
n with A±

n , γxij with axij via the
corresponding isomorphisms and identify Φ̃β with Φβ , Φ̃±

β with Φ±
β , respectively. A

useful picture to keep in mind is as follows. axij is the left arc diagram described in
Fig. 6. The action Φβ (respectively,Φ±

β ) of β on some curve is to slide that curve
along the parallel copy of the braid diagram that represents β (respectively, ε±(β))
up to Dn × {1} (respectively,D±

n × {1}).

3. The Framed Knot Invariant

From now on, we will assume the closure of β ∈ Cn is a knot in S1 × S2.
In this section, we first give the definition of the framed knot invariant. Since the

knot invariant looks complicated at first glance, we will compute some examples
after the definition. We then proceed to give some ancillary results, and finally
prove the invariance under Markov moves.
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3.1. Definition of the invariant

Here are some notations we will use to define the invariant.
Let M∞(An) denote the set of ∞×∞ matrices with elements in An, namely,

the rows and columns of a matrix in M∞(An) are both indexed by integers. We call
a matrix row-finite if there are only finitely many nonzero entries in each row. A
column-finite matrix is defined analogously. If M,N are two matrices in M∞(An),
in general the multiplication of them is not well-defined. However, if M is row-finite
or N is column-finite, then MN is well-defined. And the associativity is satisfied
whenever multiplications make sense. Throughout the paper, the matrices always
satisfy the above condition when they are multiplied together, and for x, y ∈ Z, we
will use Mxy to refer to the (x, y)-entry of M . We will also use an element c ∈ An
to represent the scalar matrix in M∞(An) which has entry c on the diagonal and
0 elsewhere. Let Mn(M∞(An)) denote the set of n × n matrices with entries in
M∞(An).

Recall ε± : Cn → Cn+1 are the two embeddings, and for β ∈ Cn, (Φ−
β )|An

=
Φβ = (Φ+

β )|An
.

It can be derived from either the algebraic description (Sec. 2.2.1) or the topolog-
ical interpretation (Sec. 2.2.2) of the actions that for 1 ≤ i ≤ n, x ∈ Z, Φ−

β (axi,n+1)
can be written as a finite linear combination of azk,n+1, 1 ≤ k ≤ n, z ∈ Z with coeffi-
cients in An. A similar argument holds for Φ−

β (axn+1,i),Φ
+
β (axi,0),Φ

+
β (ax0,i). For exam-

ple, Φ+
β (ax0,i) is a finite linear combination of az0,k with coefficients in An multiplied

on the right. Explicitly, this is how we define Φ−L
β ,Φ−R

β ,Φ+L
β ,Φ+R

β ∈Mn(M∞(An))
below.

For each β ∈ Cn, 1 ≤ i, j ≤ n, x, y ∈ Z, define

Φ−
β (axi,n+1) =

n∑
k=1

∑
z∈Z

(Φ−L
β )xzik a

z
k,n+1,

Φ−
β (ayn+1,j) =

n∑
k=1

∑
z∈Z

azn+1,k(Φ
−R
β )zykj ,

Φ+
β (axi,0) =

n∑
k=1

∑
z∈Z

(Φ+L
β )xzik a

z
k,0,

Φ+
β (ay0,j) =

n∑
k=1

∑
z∈Z

az0,k(Φ
+R
β )zykj ,

where (Φ−L
β )xzik is the (x, z)-entry of the ∞×∞ matrix (Φ−L

β )ik which is the (i, k)-
entry of the n × n matrix Φ−L

β . So we have Φ−L
β ∈ Mn(M∞(An)). Similarly, we

have Φ−R
β ,Φ+L

β ,Φ+R
β ∈Mn(M∞(An)).

Define aij ∈ M∞(An) by (aij)xy = ax+yij and define A ∈ Mn(M∞(An)) by
Aij = aij .
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Lemma 3.1. For β ∈ Cn, 1 ≤ i, j ≤ n, (Φ−L
β )ij , (Φ+L

β )ij are row-finite and
(Φ−R

β )ij , (Φ+R
β )ij are column-finite.

Proof. These are direct consequences of the definitions.

Lemma 3.1 is used to validate the matrix multiplications involving
Φ−L
β ,Φ+L

β ,Φ−R
β and Φ+R

β in the rest of the paper. For instance, the product
Φ−L
β AΦ−R

β is well-defined.

Remark 3.2. Actually, (Φ+L
β )ij , (Φ+R

β )ij are both row-finite and column-finite.
This is due to a careful inspection of the action Φ+

β . This property will not be used
though.

For 1 ≤ p, q ≤ n, f ∈ Z, let Λf ;p,q ∈Mn(M∞(An)) be the diagonal matrix with
the (i, i)-th entry λδi,pµ−fδi,q , 1 ≤ i ≤ n.

Definition 3.3. Let β ∈ Cn, 1 ≤ p, q ≤ n, f ∈ Z, then HC0(β; f ; p, q) is defined to
be the R-algebra An modulo the two sided ideal Iβ;f ;p,q generated by the entries
of the entries of following matrices:

A− Λf ;p,qΦ−L
β A, A−AΦ−R

β Λ−1
f ;p,q,

A− Λf ;p,qΦ+L
β A, A−AΦ+R

β Λ−1
f ;p,q.

Remark 3.4. (1) For a matrix M ∈Mn(M∞(An)), the phrase “the entries of the
entries of M” is really awkward. We will use “the elements of M” to stand for “the
entries of the entries of M”.

(2) Note that

(Λp,q;fΦ−L
β A)xyij =

n∑
k=1

∑
z∈Z

λδi,pµ−fδi,q (Φ−L
β )xzikA

zy
kj

=
n∑
k=1

∑
z∈Z

λδi,pµ−fδi,q ((Φ−L
β )xzik a

z
k,n+1) ∗ ayn+1,j

= λδi,pµ−fδi,qΦ−
β (axi,n+1) ∗ ayn+1,j.

Since Axyij = ax+yij = axi,n+1 ∗ ayn+1,j, the relations in Iβ;f ;p,q are the same as the
following:

axi,n+1 ∗ ayn+1,j − λδi,pµ−fδi,qΦ−
β (axi,n+1) ∗ ayn+1,j,

axi,n+1 ∗ ayn+1,j − λ−δj,pµfδj,qaxi,n+1 ∗ Φ−
β (ayn+1,j),

axi,0 ∗ ay0,j − λδi,pµ−fδi,qΦ+
β (axi,0) ∗ ay0,j ,

axi,0 ∗ ay0,j − λ−δj,pµfδj,qaxi,0 ∗ Φ+
β (ay0,j), ∀1 ≤ i, j ≤ n, x, y ∈ Z.
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For β ∈ Cn, it has a natural action by permutation on the set {1, . . . , n}. Our
convention here is that the braid diagram always goes upward, and if the ith strand
ends at the jth position, then β(i) = j.

Lemma 3.5. For β ∈ Cn, 1 ≤ p, q ≤ n, f ∈ Z, we have HC0(β; f ; p, q) �
HC0(β; f ;β(p), q) � HC0(β; f ; p, β(q)).

Proof. Define ψ : HC0(β; f ; p, q) → HC0(β; f ;β(p), q) by ψ(axij) = λ−δi,β(p) ×
axijλ

δj,β(p) . We need to check that ψ sends Iβ;f ;p,q to Iβ;f ;β(p),q.
Note that Φ−

β (axi,n+1) ∗ ayn+1,j can be written as a non-commutative polynomial
in which each monomial is of the form ax1

β(i),i1
ax2
i1,i2

· · · axk+1
ik,j

, thus we have

ψ(ax+yij − λδi,pµ−fδi,q Φ−
β (axi,n+1) ∗ ayn+1,j)

= λ−δi,β(p)ax+yij λδj,β(p) − λδi,pµ−fδi,qλ−δβ(i),β(p)Φ−
β (axi,n+1) ∗ ayn+1,jλ

δj,β(p)

= λ−δi,β(p)(ax+yij − λδi,β(p)µ−fδi,q Φ−
β (axi,n+1) ∗ ayn+1,j)λ

δj,β(p) ∈ Iβ;f ;β(p),q.

The other three relations in Iβ;f ;p,q can be shown analogously that they are
mapped under ψ to Iβ;f ;β(p),q. Thus the map ψ is well-defined. It follows directly
from the definition that ψ is a bijection.

The isomorphismHC0(β; f ; p, q) � HC0(β; f ; p, β(q)) can be defined in a similar
way by mapping axij to µfδi,β(p)axijµ

−fδj,β(p) .

Corollary 3.6. If the closure of β ∈ Cn is a knot in S1 × S2, then HC0(β; f ; p, q)
is independent of the values of p, q.

From Definition 3.3, HC0(β; f ; p, p) can be obtained from HC0(β; 0; p, p) by
replacing λ by λµ−f . We will use the notations HC0(β; f ; p) = HC0(β; f ; p, p),
HC0(β; f) = HC0(β; f ; 1, 1) and HC0(β) = HC0(β; 0; 1, 1). By Corollary 3.6,
HC0(β; f ; p) is independent of the choice of p, so we haveHC0(β; f) � HC0(β; f ; p)
for any p.

The following theorem is our main result.

Theorem 3.7. Let β, α ∈ Cn, f ∈ Z such that the closure of β in S1 × S2 is a
knot, then we have the following algebra isomorphisms:

(1) HC0(β; f) � HC0(α−1βα; f);
(2) HC0(β; f) � HC0(ε−(β)αn; f − 1) � HC0(ε−(β)α−1

n ; f + 1);
(3) HC0(β; f) � HC0(ε+(β)α1; f − 1) � HC0(ε+(β)α−1

1 ; f + 1).

The proof of the theorem will be given in Sec. 3.4.
Endow S1×S2 with the standard orientation. Let K be a framed oriented knot

in S1 × S2 with l,m the homotopy classes of the longitude and the meridian of
K in π1(S1 × S2\K). The orientations of K and S1 × S2 determine the meridian
class m uniquely. More precisely, let ν(K) be a tubular neighborhood of K, which is
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homeomorphic to K×D2. Choose an orientation on D2 so that the homeomorphism
of ν(K) with K ×D2 is orientation preserving. Then for any z ∈ K, the image of
z × ∂D2 under the homeomorphism determines the meridian class. Assume K is
represented by the closure of a braid β ∈ Cn, and that l = [β̂′]mf , where β′ is a
parallel push-off copy of β and [β̂′] is the homotopy class represented by the closure
of β′, then HC0(K; l) is defined to be HC0(β; f).

Corollary 3.8. HC0(K; l) as an R-algebra is a framed knot invariant for knots in
S1 × S2.

Proof. For a braid diagram β ∈ Cn, let β′ be the parallel push-off copy of β. Then

we have [β̂′]m±1 = [ ̂(ε+(β)α±1
n )′], [β̂′]m±1 = [ ̂(ε−(β)α±1

n )′] and for any α ∈ Cn, we
have [β̂′] = [ ̂(α−1βα)′].

Remark 3.9. The invariantHC0(K; l) is conjectured to be the zeroth knot contact
homology of K, which is defined to be the zeroth Legendrian contact homology of
ΛK in ST ∗(S1 × S2), where ST ∗(S1 × S2) is the unit cotangent bundle of S1 × S2

and ΛK is the unit conormal bundle of K. As this paper is not relevant to proving
this conjecture, readers should just treat HC0 purely as a name.

3.2. Examples

Before proving invariance, we first look at some examples.

Example 3.10. (1) Unknot. The most simple example is the unknot represented
by the identity element e in C1. We compute HC0(e; f) for f ∈ Z. In this case,
it is straightforward that Φ+L

e ,Φ+R
e ,Φ−L

e ,Φ−R
e are all identity matrices, thus all

the relations in Ie;f ;1,1 become (1 − λµ−f )ax11, and so HC0(e; f) � R〈ax11, x ∈
Z〉/〈(1 − λµ−f )ax11〉.

(2) α̂2
0. Set β = α2

0,Λ = Λβ;0;1,1. We first compute Φ+L
β ,Φ+R

β . Direct calcula-
tions show that Φ+

β (ax10) = µ2ax−2
10 ,Φ+

β (ay01) = µ−2ay+2
01 . Thus we have (Φ+L

β )xy11 =
µ2δx−2,y, (Φ+R

β )xy11 = µ−2δx−2,y, and therefore (ΛΦ+L
β A)xy11 = λµ2ax+y−2

11 , (AΦ+R
β ×

Λ−1)xy11 = (λµ2)−1ax+y+2
11 . So the third and fourth relation defining Iβ;0;1,1 both

are ax+2
11 − λµ2ax11, x ∈ Z.

Now we compute Φ−L
β ,Φ−R

β . By definition, Φ−
α0

(ax11) = ax11,Φ
−
α0

(ax12) =
−µax−1

12 + 1
Γa

x
11a

−1
12 . Therefore,

Φ−
α2

0
(ax12) = −µΦ−

α0
(ax−1

12 ) +
1
Γ

Φ−
α0

(ax11)Φ
−
α0

(a−1
12 )

= µ2ax−2
12 − µ

Γ
ax−1
11 a−1

12 − µ

Γ
ax11a

−2
12 +

1
Γ2
ax11a

−1
11 a

−1
12 .

By Part (2) of Remark 3.4,
(ΛΦ−L

β A)xy11 −Axy11 = λ(µ2ax+y−2
11 − µ

Γa
x−1
11 ay−1

11 − µ
Γa

x
11a

y−2
11 + 1

Γ2 a
x
11a

−1
11 a

y−1
11 )−

ax+y11 .
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Similarly,
(AΦ−R

β Λ−1)xy11 − Axy11 = (λµ2)−1(ax+y+2
11 − 1

Γa
x+1
11 ay+1

11 − 1
Γa

x+2
11 ay11 + 1

Γ2 a
x+1
11 ×

a1
11a

y
11) − ax+y11 .

Since we have ax+2
11 − λµ2ax11, then the above two relations can be simplified as

ax−1
11 ay−1

11 + ax11a
y−2
11 − 1

Γµa
x
11a

−1
11 a

y−1
11 and

ax−1
11 ay−1

11 + ax11a
y−2
11 − 1

Γ
ax−1
11 a1

11a
y−2
11 .

And only parities of x and y will make a difference in the above two relations.
Direct calculation shows that HC0(β) � R[X ]/〈(1 − µ)X,X2 − Γ2λ(1 + µ)2〉.

Replacing λ by λµ−f , we obtain HC0(β; f).
It will be shown in Sec. 4.2 that α̂2

0 is a particular knot in a large family of
knots, namely the torus knots. Explicitly, it is the (1, 2)-knot. See Sec. 4.2 for a
definition of torus knots and more examples.

3.3. Properties of Φ±L, Φ±R

We give several propositions which will be used in proving the invariance of
HC0(K; l). A similar version of these propositions are proved in [7] where the
author defined the HC0 invariant for knots in S3.

If φ is an algebra morphism from An to An, and M ∈Mn(M∞(An)), we denote
by φ(M) or M(φ) the matrix obtained from M by replacing each axij by φ(axij).
Recall in last subsection, we defined the four matrices Φ−L

β ,Φ−R
β ,Φ+L

β ,Φ+R
β ∈

Mn(M∞(An)) for β ∈ Cn.

Proposition 3.11. Let β1, β2 ∈ Cn be two braids, then we have

Φ−L
β1β2

= Φ−L
β2

(Φβ1)Φ
−L
β1
,

Φ−R
β1β2

= Φ−R
β1

Φ−R
β2

(Φβ1),

Φ+L
β1β2

= Φ+L
β2

(Φβ1)Φ
+L
β1
,

Φ+R
β1β2

= Φ+R
β1

Φ+R
β2

(Φβ1).

Proof. The proof of the four equalities are straightforward and completely analo-
gous, so we will just prove the first one.

By definition, Φ−
β2

(axi,n+1) =
∑n
k=1

∑
z∈Z

(Φ−L
β2

)xzik a
z
k,n+1. Thus,

Φ−
β1β2

(axi,n+1) = Φ−
β1

Φ−
β2

(axi,n+1)

=
n∑
k=1

∑
z∈Z

Φ−
β1

((Φ−L
β2

)xzik )Φ−
β1

(azk,n+1)
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=
n∑

k,j=1

∑
z,y∈Z

Φ−L
β2

(Φβ1)
xz
ik (Φ−L

β1
)zykja

y
j,n+1

=
n∑
j=1

∑
y∈Z

(Φ−L
β2

(Φβ1)Φ
−L
β1

)xyij a
y
j,n+1

On the other hand, by definition, Φ−
β1β2

(axi,n+1) =
∑n

j=1

∑
z∈Z

(Φ−L
β1β2

)xyij a
y
j,n+1.

Therefore, we have (Φ−L
β2

(Φβ1)Φ
−L
β1

)xyij = (Φ−L
β1β2

)xyij .

Let In ∈ Mn(M∞(An)) be the identity matrix, i.e. (In)xyij = δi,jδx,y. Then
apparently, for a trivial braid β ∈ Cn, Φ−L

β ,Φ−R
β ,Φ+L

β ,Φ+R
β are all equal to In.

Therefore, we have the following corollary.

Corollary 3.12. For any braid β ∈ Cn, Φ−L
β ,Φ−R

β ,Φ+L
β ,Φ+R

β are all invertible.
Explicitly,

(Φ−L
β )−1 = Φ−L

β−1(Φβ), (Φ−R
β )−1 = Φ−R

β−1(Φβ),

(Φ+L
β )−1 = Φ+L

β−1(Φβ), (Φ+R
β )−1 = Φ+R

β−1(Φβ).

Proof. In Proposition 3.11, set β1 = β, β2 = β−1.

Proposition 3.13. For any β ∈ Cn, we have Φβ(A) = Φ−L
β AΦ−R

β = Φ+L
β AΦ+R

β .

Proof. By Proposition 3.11, it suffices to show the above equations hold for any
αk ∈ Cn, which can be verified directly.

Here we provide another way to prove it.

Φβ(A
xy
ij ) = Φ−

β (ax+yij ) = Φ−
β (axi,n+1 ∗ ayn+1,j)

Proposition 2.15
= Φ−

β (axi,n+1) ∗ Φ−
β (ayn+1,j)

=

(
n∑
k=1

∑
z∈Z

(Φ−L
β )xzik a

z
k,n+1

)
∗
(

n∑
k′=1

∑
z′∈Z

az
′
n+1,k′(Φ

−R
β )z

′y
k′j

)

=
n∑

k,k′=1

∑
z,z′∈Z

(Φ−L
β )xzik a

z+z′
kk′ (Φ−R

β )z
′y
k′j

=
n∑

k,k′=1

∑
z,z′∈Z

(Φ−L
β )xzikA

zz′
kk′ (Φ

−R
β )z

′y
k′j

= (Φ−L
β AΦ−R

β )xyij

The other equation can be proved analogously.
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Corollary 3.14. For β ∈ Cn, 1 ≤ p, q ≤ n, f ∈ Z, the elements of A −
Λf ;p,qΦβ(A)Λ−1

f ;p,q are in Iβ;f ;p,q. More generally, if b = ax1
i1,i2

ax2
i2,i3

· · · axk

ik,ik+1
, ci =

λδi,pµ− fδi,q , then b− ci1Φβ(b)c
−1
ik+1

is in Iβ;f ;p,q.

Proof. Set Λ = Λf ;p,q. Then
A−ΛΦβ(A)Λ−1 = A−ΛΦ−L

β AΦ−R
β Λ−1 = A−ΛΦ−L

β A+ΛΦ−L
β (A−AΦ−R

β Λ−1).
The elements of the right-hand side of the above equation are in Iβ;f ;p,q, which

implies the first part of the corollary. The more general statement in the corollary
is then a direct consequence.

3.4. Invariance proof

In this subsection, we prove Theorem 3.7. The three parts in the theorem correspond
to the three types of Markov moves introduced in Theorem 2.3. In the following
three subsections, we prove each part of the theorem, respectively.

3.4.1. Invariance under Markov move I

Let β̃ = α−1βα, α, β ∈ Cn, f ∈ Z, and define m = α−1(1). Set Λi = Λf ;i,i. We
define an isomorphism ϕ : HC0(β̃; f ;m) → HC0(β; f ; 1) by specifying the image of
the generators.

ϕ(A) := Φα(A), i.e.ϕ(axij) := Φα(axij).

We need to show ϕ(Iβ̃;f ;m,m) ⊂ Iβ;f ;1,1.
First of all, by using Proposition 3.11, we have

Φα(Φ−L
α−1βα) = Φα(Φ−L

βα (Φα−1)Φ−L
α−1) = Φ−L

βαΦ−L
α−1(Φα) = Φ−L

α (Φβ)Φ−L
β Φ−L

α−1(Φα),

Therefore, we have

ϕ(A− ΛmΦ−L
β̃
A) = ϕ(A) − Λmϕ(Φ−L

β̃
)ϕ(A)

= Φα(A) − ΛmΦα(Φ−L
α−1βα)Φα(A)

= Φα(A) − ΛmΦ−L
α (Φβ)Φ−L

β Φ−L
α−1(Φα)Φ−L

α AΦ−R
α

= Φ−L
α AΦ−R

α − ΛmΦ−L
α (Φβ)Φ−L

β AΦ−R
α

= (Φ−L
α − ΛmΦ−L

α (Φβ)Λ−1
1 )AΦ−R

α

+ ΛmΦ−L
α (Φβ)Λ−1

1 (A− Λ1Φ−L
β A)Φ−R

α .

Since (Φ−L
α )xyij is a non-commutative polynomial in which each monomial is

of the form ax1
α(i),j1

ax2
j1,j2

· · · axk
jk−1,j

, and note that δi,m = δα(i),1, then (Φ−L
α −

ΛmΦ−L
α (Φβ)Λ−1

1 )xyij is a sum of polynomials of the form ax1
α(i),j1

ax2
j1,j2

· · · axk

jk−1,j
−

(λµ−f )δα(i),1Φβ(ax1
α(i),j1

ax2
j1,j2

· · · axk
jk−1,j

)(λµ−f )−δj,1 , which, by Corollary 3.14, is in
Iβ;f ;1,1.
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Since elements of A−Λ1Φ−L
β A are also in Iβ;f ;1,1, this implies ϕ(A −

ΛmΦ−L
β̃
A) ⊂ Iβ;f ;1,1.

The proofs of the other three relations ϕ(A−AΦ−R
β̃

Λ−1
m ), ϕ(A−ΛmΦ+L

β̃
A),

ϕ(A−AΦ+R

β̃
Λ−1
m ) can be done similarly.

This shows ϕ(Iβ̃ ; f ;m,m) ⊂ ϕ(Iβ ; f ; 1, 1) and thus ϕ induces a well-defined
map HC0(β̃; f) → HC0(β; f). In a similar way, we can define the inverse map
HC0(β; f) → HC0(β̃; f) by sending A to Φα−1(A) and show that it is well-defined.
Thus ϕ is an isomorphism.

3.4.2. Invariance under Markov move II

For any β ∈ Cn, f ∈ Z let β̃ = ε−(β)αn. We show HC0(β̃; f) � HC0(β; f + 1).

Remark 3.15. The proof of HC0(ε−(β)α−1
n ; f + 1) � HC0(β; f) is completely

analogous. To save space, we omit its proof here.

Define ϕ : HC0(β̃; f ;n+ 1) → HC0(β; f + 1;n),

ϕ(axij) =


axnn i = n+ 1, j = n+ 1,

µaxnj i = n+ 1, j ≤ n,

µ−1axin i ≤ n, j = n+ 1,

axij i ≤ n, j ≤ n.

(3.1)

The verification that ϕ maps Iβ̃;f ;n+1,n+1 to Iβ;f+1;n,n consists of direct but
long calculations. we will only show ϕ(ax+yi,j − (λµ−f )δi,n+1Φ−

β̃
(axi,n+2) ∗ ayn+2,j) ∈

Iβ;f+1;n,n. The other relations can be proven similarly.
Set c = λµ−f , I = Iβ;f+1;n,n.

Case 1: i = n+ 1, j ≤ n.

ϕ(ax+yn+1,j − cΦ−
β̃

(axn+1,n+2) ∗ ayn+2,j) = µax+yn,j − cϕ(Φ−
ε−(β)(a

x
n,n+2) ∗ ayn+2,j)

= µax+yn,j − cΦ−
β (axn,n+1) ∗ ayn+1,j

= µ(ax+yn,j − λµ−f−1Φ−
β (axn,n+1) ∗ ayn+1,j) ∈ I.

Note that here we used the fact that Φ−
ε−(β)(a

x
n,n+2) ∗ ayn+2,j = Φ−

β (axn,n+1) ∗
ayn+1,j ∈ An+1.

Case 2: i = n, j ≤ n.

ax+yn,j − Φ−
β̃

(axn,n+2) ∗ ayn+2,j

= ax+yn,j − Φ−
ε−(β)(−axn+1,n+2 +

1
Γµ

a0
n+1,na

x
n,n+2) ∗ ayn+2,j
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= ax+yn,j − (−axn+1,n+2 +
1

Γµ
Φ−
ε−(β)(a

0
n+1,n)Φ

−
ε−(β)(a

x
n,n+2)) ∗ ayn+2,j

= ax+yn,j + ax+yn+1,j −
1

Γµ
Φε−(β)(a0

n+1,n)Φ
−
ε−(β)(a

x
n,n+2) ∗ ayn+2,j

= ax+yn,j + ax+yn+1,j −
1

Γµ
Φ−
β (a0

n+1,n)Φ
−
β (axn,n+1) ∗ ayn+1,j .

Since ϕ(Φ−
β (a0

n+1,n)) = µa0
n,n+1 ∗ Φ−

β (a0
n+1,n) = ca0

nn (mod I),

ϕ(ax+yn,j − Φ−
β̃

(axn,n+2) ∗ ayn+2,j)

= (1 + µ)ax+ynj − 1
Γµ

c(1 + µ)ΓΦ−
β (axn,n+1) ∗ ayn+1,j(mod I)

= (1 + µ)(ax+ynj − λµ−f−1Φ−
β (axn,n+1) ∗ ayn+1,j)(mod I) = 0(mod I).

Case 3: i ≤ n− 1, j ≤ n.

ϕ(ax+yi,j − Φ−
β̃

(axi,n+2) ∗ ayn+2,j) = ϕ(ax+yi,j − Φ−
ε−(β)(a

x
i,n+2) ∗ ayn+2,j)

= ϕ(ax+yi,j − Φ−
β (axi,n+1) ∗ ayn+1,j)

= ax+yi,j − Φ−
β (axi,n+1) ∗ ayn+1,j ∈ I.

Case 4: j = n + 1. The proof is the same as the above three cases except each
expression is multiplied by an overall scalar µ−1.

This finishes the verification. One can also define a map θ : HC0(β; f + 1;n) →
HC0(β̃; f ;n + 1) sending axij to axij , and show that it is well-defined. Clearly we
have ϕθ = Id. To show θϕ = Id, we need to prove in HC0(β̃; f ;n+ 1), we have the
equalities axi,n = µaxi,n+1, a

x
n,j = µ−1axn+1,j for 1 ≤ i, j ≤ n+ 1.

In HC0(β̃; f ;n+ 1), we have, for 1 ≤ i, j ≤ n+ 1,

axi,n+1 = axi,n+2 ∗ Φ−
β̃

(a0
n+2,n+1)c

−1 = axi,n+2 ∗ Φ−
ε−(β)(a

0
n+2,n)c

−1

= axi,n+1 ∗ Φ−
β (a0

n+1,n)c
−1, axn+1,j = Φ−

β̃
(a0
n+1,n+2) ∗ axn+2,jc

= Φ−
ε−(β)(a

0
n,n+2) ∗ axn+2,jc = Φ−

β (a0
n,n+1) ∗ axn+1,jc.

In the above two equalities, set i = j = n+ 1, x = 0, then we get Φ−
β (a0

n+1,n) =
a0
n+1,n+1λc = (1 + µ)Γc and Φ−

β (a0
n,n+1) = (1 + µ)Γc−1.

Then,

axi,n = axi,n+2 ∗ Φ−
β̃

(a0
n+2,n)

= axi,n+2 ∗ Φ−
ε−(β)(−a0

n+2,n+1 +
1
Γ
a0
n+2,na

0
n,n+1)
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= axi,n+2 ∗
(
−a0

n+2,n+1 +
1
Γ

Φ−
ε−(β)(a

0
n+2,n)Φ

−
ε−(β)(a

0
n,n+1)

)
= −axi,n+1 +

1
Γ
axi,n+1 ∗ Φ−

β (a0
n+1,n)Φ

−
β (a0

n,n+1)

= −axi,n+1 +
1
Γ
caxi,n+1(1 + µ)Γc−1 = µaxi,n+1,

and similarly,

axn,j = Φ−
β̃

(a0
n,n+2) ∗ axn+2,j

= Φ−
ε−(β)

(
−a0

n+1,n+2 +
1

Γµ
a0
n+1,na

0
n,n+2

)
∗ axn+2,j

=
(
−a0

n+1,n+2 +
1

Γµ
Φ−
ε−(β)(a

0
n+1,n)Φ

−
ε−(β)(a

0
n,n+2)

)
∗ axn+2,j

= −axn+1,j +
1

Γµ
Φ−
β (a0

n+1,n)Φ
−
β (a0

n,n+1) ∗ axn+1,j

= −axn+1,j +
1

Γµ
(1 + µ)Γcc−1axn+1,j

= µ−1axn+1,j.

Therefore, we showed θϕ = Id. Together with the fact that ϕθ = Id, we know ϕ

is an isomorphism.

3.4.3. Invariance under Markov move III

Recall that Dn is the unit disk with n + 1 punctures p, p1, . . . , pn centered at the
origin of the complex plane. To be more precise, let p be the origin and the coor-
dinate of pi be i

n+1 . We define a map r : Dn → Dn by r(z) = z̄
|z| − z̄. Namely,

r is a reflection about the x-axis followed by another reflection about the circle
centered at the origin with radius 1

2 . Note that r2 = Id. Also r × Id defines a map
on X = Dn × [0, 1], which will still be denoted by r.

Since Cn is the braid group on the punctured disk Dn inside X , the map r on
X induces a group isomorphism from Cn to itself. Explicitly, the isomorphism, also
denoted by r, is given by:

r(αi) =

{
(αn−1 · · ·α1α0α1 · · ·αn−1)−1 i = 0,

αn−i 1 ≤ i ≤ n− 1.
(3.2)

Lemma 3.16. The map r defined above from Cn to Cn is a group isomorphism and
r2 = Id.

Proof. This can be verified purely algebraically.
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Also recall that q1, . . . , qn are n points with the coordinate i
n+1 − ε for

some tiny ε > 0. And Qn = {qi, 1 ≤ i ≤ n}, Qn = {γ : [0, 1] →
Dn| γ is continuous, γ(0), γ(1) ∈ Qn} ∼. Let q′n+1−i = r(qi), which has the coor-
dinate n+1−i

n+1 + ε, and let Q′
n = {q′i, 1 ≤ i ≤ n}. It should be clear that in the

definition of Ãn, if we replace qi by q′i, insist that the curves start and end at q′i,
and change the “skein” relations accordingly, then we get the same algebra.

For a curve γ ∈ Qn from qi to qj , r(γ) is a curve from q′n+1−i to q′n+1−j . The
map r also preserves the “skein” relations in Fig. 5 that defines Ãn. Thus r induces
an algebra isomorphism from Ãn to Ãn.

Explicitly, the map r : Ãn → Ãn is given by Fig. 12.

Remark 3.17. r also extends to a bijection from Q+
n to Q−

n by furthermore requir-
ing that p0 is mapped to pn+1. And r maps the “skein” relations that define A+

n to
the corresponding “skein” relations that define A−

n . Consequently, we get an iso-
morphism r : A+

n → A−
n . Note that the inverse map is also induced by r that maps

Q−
n to Q+

n . For this reason, we will denote the inverse map also by r. In summary,
r is an isomorphism between A+

n and A−
n , which restricts to an isomorphism on An

and which has square Id.

Lemma 3.18. If P,Q ∈ A±
n are connectable, then r(P ), r(Q) are connectable, and

r(P ∗Q) = r(P ) ∗ r(Q).

Proof. This follows from the geometrical interpretation of axij and the map r.

Lemma 3.19. If β is a braid in Cn, then we have r◦Φβ = Φr(β)◦r. More generally,
we have r ◦ Φ−

β = Φ+
r(β) ◦ r.

Proof. It is possible, though tedious, to prove it algebraically. For example, it
suffices to prove the case for β = α±1

k acting on axij . Here we give another geometric
proof which makes the statement in the lemma almost trivial. Recall that the
isomorphism r : Cn → Cn is induced by the homeomorphism r×Id : Dn×I → Dn×I.
By Remark 2.16, Φβ(γxij) can be obtained as the curve by sliding γxij in Dn × {0}

Fig. 12. r(ax
ij).
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along the parallel copy diagram β′ up to Dn×{1}. The map r×Id maps γxij to r(γxij),
Φβ(γxij) to r ◦Φβ(γxij), and β to r(β). Thus r ◦Φβ(γxij) is obtained by sliding r(γxij)
along the parallel copy braid diagram r(β)′, and therefore Φr(β)◦r(γxij) = r◦Φβ(γxij).

The more general equation can be proved analogously by using Remark 2.16
and Lemma 3.21.

Proposition 3.20. For β ∈ Cn, f ∈ Z the map r : An → An induces an isomor-
phism from HC0(β; f ; 1) to HC0(r(β); f ;n).

Proof. It suffices to show r maps Iβ;f ;1,1 to Ir(β);f ;n,n. Set c = λµ−f .

r((Λf ;1,1Φ−L
β A)xyij ) = r(cδi,1Φ−

β (axi,n+1) ∗ ayn+1,j)

= cδi,1(r ◦ Φ−
β (axi,n+1)) ∗ r(ayn+1,j)

= cδn+1−i,n(Φ+
r(β) ◦ r(axi,n+1)) ∗ r(ayn+1,j).

The first identity in the above equation is by the argument in Part (2) of Remark
3.4, the second identity is by Lemma 3.18, and the third by Lemma 3.19.

Assume r(axi,n+1) =
∑
P zk a

z
k0, r(a

y
n+1,j) =

∑
az

′
0k′Q

z′
k′ , where P zk , Q

z′
k′ are ele-

ments in An. Then

r((A − Λf ;1,1Φ−L
β A)xyij )

=
∑

P zk a
zz′
kk′Q

z′
k′ − cδn+1−i,nΦr(β)(P zk )Φ+

r(β)(a
z
k0) ∗ az

′
0k′Q

z′
k′

=
∑

(P zk − cδn+1−i,nΦr(β)(P zk )c−δk,n)azz
′

kk′Q
z′
k′

+ cδn+1−i,nΦr(β)(P zk )c−δk,n(azz
′

kk′ − cδk,nΦ+
r(β)(a

z
k0) ∗ az

′
0k′ )Q

z′
k′ .

Note that P zk is a sum of monomials of the form ax1
n+1−i,i1a

x2
i1,i2

· · ·axm

im−1,k
, then

P zk − cδn+1−i,nΦr(β)(P zk )c−δk,n is in Ir(β);f ;n,n by Corollary 3.14.
Then it follows that r((A − Λf ;1,1Φ−L

β A)xyij ) is in Ir(β);f ;n,n.
The other relations are proved basically in the same way. And thus we showed

r is well-defined. The fact that r is an isomorphism is direct to check.

Now we prove HC0(β; f) is invariant under Markov move III. A key observation
is the following commuting diagram.

Cn ε+ ��

r

��

Cn+1

r

��
Cn ε− �� Cn+1

(3.3)

Lemma 3.21. The above diagram commutes, namely r ◦ ε+ = ε− ◦ r : Cn → Cn+1.
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Proof. We only need to check the above equation on generators.

rε+(α0) = r(α1α0α1) = αn(αn · · ·α1α0α1 · · ·αn)−1αn

= (αn−1 · · ·α1α0α1 · · ·αn−1)−1 = ε−r(α0).

For i ≥ 1, rε+(αi) = r(αi+1) = αn−i = ε−r(αi).

Let β ∈ Cn, f ∈ Z, then r(ε+(β)α±1
1 ) = r(ε+(β))r(α±1

1 ) = ε−(r(β))α±1
n . There-

fore,

HC0(ε+(β)α±1
1 ; f) � HC0(r(ε+(β)α±1

1 ); f) = HC0(ε−(r(β))α±1
n ; f)

� HC0(r(β); f ± 1) � HC0(β; f ± 1).

The first and last isomorphisms above are due to Proposition 3.20 and the
second isomorphism is the invariance isomorphism under Markov move II.

Now we finished showing HC0(β; f) is invariant under Markov move III.

4. Properties of the Invariant

4.1. Symmetries of the invariant

In Proposition 3.20, it was proved that for a braid β ∈ Cn, we have HC0(β; f) �
HC0(r(β); f). Here we show the relation between HC0(β; f) and HC0(β−1; f).

Proposition 4.1. Let β ∈ Cn, f ∈ Z, then HC0(β−1; f) is isomorphic to
HC0(β;−f) with λ replaced by λ−1.

Proof. Let HC′
0(β;−f) be the algebra obtained from HC0(β;−f) by replacing

λ by λ−1. We define the isomorphism HC0(β−1; f) → HC′
0(β;−f) to be the one

induced by Φβ . We need to check Φβ maps Iβ−1;f ;1,1 to Iβ;−f ;1,1 with λ replaced
by λ−1. Set Λ = Λf ;1,1, and note that Λ−1 is exactly the matrix Λ−f ;1,1 with λ

replaced by λ−1.

Φβ(ΛΦ+L
β−1A−A) = ΛΦ+L

β−1(Φβ)Φβ(A) − Φβ(A)

= ΛΦ+L
β−1(Φβ)Φ+L

β AΦ+R
β − Φ+L

β AΦ+R
β

= ΛAΦ+R
β − Φ+L

β AΦ+R
β

= Λ(A− Λ−1Φ+L
β A)Φ+R

β

The second equality is by Proposition 3.13 and the third one is by Corollary 3.12.
The other three relations can be proved analogously that they are mapped to 0

inHC′
0(β;−f). Therefore, Φβ induces a well-defined algebra map fromHC0(β−1; f)

to HC′
0(β;−f).

In a similar way, one can check that Φβ−1 induces an algebra map from
HC′

0(β;−f) to HC0(β−1; f). Therefore, we have HC0(β−1; f) � HC′
0(β;−f).
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4.2. Torus Knots

In this subsection, we study some properties of the torus knots in S1 × S2.
Let C be the equator of S2, then S1 ×C is a torus which bounds two solid tori

in S1 × S2, with z0 × C being the meridian and S1 × z1 the longitude, for some
z0 ∈ S1, z1 ∈ C. In [1], a knot in S1 ×S2 is called a torus knot if it can be isotoped
to a knot in S1 × C. Fix a meridian M and a longitude L in S1 × C, and let p, q
be two relatively prime integers. A (p, q)-knot in S1 × S2 is a knot which can be
isotoped to pM+qL in S1×C. In general, for a knot K and a framing l, HC0(K; l)
may not be finitely generated as an R-algebra. However, we show below that for
torus knots, the invariant indeed is always finitely generated.

Theorem 4.2. Let K be a (p, q)-knot in S1 × S2 with framing l where p, q are
relatively prime integers, then HC0(K; l) is finitely generated as an R-algebra.
Moreover, the minimum number of algebra generators is no more than q − 1.

Proof. By Remark 2.4, a (p, q)-knot is represented by the braid β(p, q) =
(α0 · · ·αp−1)q. See Fig. 13 for a picture of (3, 2)-knot. For simplicity, we still use β
to denote β(p, q). Also for reasons that will become clear below, we use the notation
bxij = axi+1,j+1. Assume HC0(K; l) = HC0(β; f) = Ap/Iβ;f ;1,1, and set c = λµ−f .
One can check that the following equation holds:

Φ+
β(p,1)(a

x
i0) =

{
axi+1,0 1 ≤ i ≤ p− 1,

µax−1
1,0 i = p.

(4.1)

Then we have Φ+
β(p,q)(a

x
i0) = µ� i−1+q

p �a
x−� i−1+q

p �
(i−1+q) (mod p)+1,0. Using bxij to replace

axi+1,j+1, we get a simpler expression Φ+
β(p,q)(b

x
i,−1) = µ� i+q

p �b
x−� i+q

p �
(i+q) (mod p),−1.

Thus by Remark 3.4(2), the third relation that defines Iβ;f ;1,1 is

bxij − µ� i+q
p �cδi,0b

x−� i+q
p �

(i+q) (mod p),j , 0 ≤ i, j ≤ p− 1, x ∈ Z. (4.2)

1 2 3

Fig. 13. (3, 2)-knot.

1550067-31

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

5.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
U

R
D

U
E

 U
N

IV
E

R
SI

T
Y

 o
n 

09
/1

2/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 20, 2015 13:38 WSPC/S0218-2165 134-JKTR 1550067

S. X. Cui & Z. Wang

Similarly, the fourth relation that defines Iβ;f ;1,1 is

bxij − µ−� j+q
p �c−δj,0b

x+� j+q
p �

i,(j+q) (mod p), 0 ≤ i, j ≤ p− 1, x ∈ Z. (4.3)

Define g(i, k) :=
∑k−1
r=0� (i+rq) (mod p)+q

p �, h(i, k) :=
∑k−1
r=0 δ(i+rq) (mod p),0, 0 ≤

i ≤ p− 1, k ≥ 1, and define g(i, 0) := 0, h(i, 0) := 0.
It is elementary to verify that g(i, k) = �kp�q + g(i, kmod p) and h(i, k) =

�kp � + h(i, kmod p), and in HC0(β; f ; 1, 1), we have the equalities bxij =

µg(i,k)ch(i,k)b
x−g(i,k)
(i+kq) (mod p),j = µ−g(j,k)c−h(j,k)b

x+g(j,k)
i,(j+kq) (mod p), ∀k ≥ 0. Especially, we

have bxij = µg(i,p)ch(i,p)b
x−g(i,p)
ij = µqcbx−qij , so bxij is periodic, up to a scalar, in x

with period equal to q.
Let k1, k2 be any numbers that satisfy k1q (mod p) = i, k2q (mod p) = j, then

bxij = µg(0,k2)−g(0,k1)ch(0,k2)−h(0,k1)b
x+g(0,k1)−g(0,k2)
00 , and bx+q00 = µqcbx00. Thus all

the bxij ’s are completely determined by b000 = (1+µ)Γ, b100, . . . , b
q−1
00 and the condition

that bx+q00 = µqcbx00. So HC0(β; f) is finitely generated and {bx00, 1 ≤ x ≤ q − 1} is
a set of generators.

At the end of this subsection, let us compute some examples of torus knots.

Example 4.3. (1) (p,1)-knot. The (p, 1)-knot is represented by the braid
α0 · · ·αp−1. By Markov II in Theorem 2.3, this braid has the same closure as that of
α0. Set β = α0 ∈ C1,Λ = Λ0;1,1, f = 0. By the proof of Theorem 4.2, ax+1

11 = λµax11.
Since a0

11 = (1 + µ)Γ, we have ax11 = (1 + µ)Γ(λµ)x.
By definition, Φ−

β (ax12) = −µax−1
12 + 1

Γa
x
11a

−1
12 , thus (ΛΦ−L

β A − A)xy11 =
−λµax+y−1

11 + λ
Γa

x
11a

y−1
12 − ax+y11 . The second relation can be calculated analogously.

By using the fact that ax11 = (1 + µ)Γ(λµ)x, we see that HC0(α0) � R/〈µ2 − 1〉.
(2) (p,2)-knot. By [1, Proposition 2.2], all the (p, 2)-knots are equivalent to each

other with p odd. This can also be seen directly by Markov moves. Thus, we only
need to compute the (1, 2)-knot, which is represented by β = α2

0. It was shown in
the second example in Sec. 3.2 that HC0(α2

0) � R[X ]/〈(1−µ)X,X2−Γ2λ(1+µ)2〉.
(3) (p,3)-knot. Again by [1, Proposition 2.2], there are two classes of knots of

this type. A representative of each class could be chosen as (1, 3)-knot and (2, 3)-
knot. Here we only compute HC0(α3

0). Since the calculations are not difficult but
tedious, we just present the result obtained by computer packages. HC0(α3

0) �
R〈X,Y 〉/〈Y 2 −Γλµ4(1 +µ2)X,X2 −Γ(1 + µ−2)Y, (1 + µ2)(XY −Y X),−µ2XY +
Y X + Γ2λµ4(µ2 − 1)〉.

4.3. Local knots

Throughout this subsection, Γ is set to be −1. A knot is called local if it is contained
in a 3-ball. Thus a knot in S1 × S2 is local if and only if it can be represented as
the closure of a braid which does not contain α0 or α−1

0 , i.e. a braid in Bn =
〈α1, . . . , αn−1〉 ⊂ Cn for some n ≥ 1.
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Let β ∈ Bn ⊂ Cn, and let hc0(β) denote the zeroth framed knot contact homol-
ogy of β defined in [9]. Then we have the following decompositions for the HC0

invariant of local knots, which relates our invariant to hc0.

Theorem 4.4. Let β ∈ Bn be a braid such that its closure is a local knot in
S1 × S2, then there exists a strictly ascending sequence of subalgebras of HC0(β),
H0 � H1 � H2 � . . . , such that HC0(β) =

⋃
m≥0Hm, and that H0 � hc0(β) if

we make the change of variable µ → µ−1 in hc0(β). In particular, HC0(β) is an
infinitely generated algebra.

Proof. Set Λ = Λ0;1,1.
Since β ∈ Bn does not contain α0 or α−1

0 , the actions Φ−
β and Φ+

β are determined
by Eq. 2.2. It can be derived from Eq. 2.2 that Φ−

β (axi,n+1) = Φ−
β (a0

i,n+1) ∗ axn+1,n+1

and that Φ+
β (axi,0) = Φ−

β (axi,n+1) ∗ a0
n+1,0 = Φ−

β (a0
i,n+1) ∗ axn+1,0. Therefore,

(Φ+L
β A)xyij = Φ+

β (axi,0)∗ay0,j = Φ−
β (axi,n+1)∗ayn+1,j = (Φ−L

β A)xyij , i.e. Φ+L
β A = Φ−L

β A.
Similarly, we haveAΦ+R

β = AΦ−R
β . So to computeHC0(β), we only need to consider

the relations A− ΛΦ−L
β A and A−AΦ−R

β Λ−1.

(ΛΦ−L
β A)xyij = λδi,1Φ−

β (axi,n+1) ∗ ayn+1,j = λδi,1Φ−
β (a0

i,n+1) ∗ ax+yn+1,j = λδi,1Φ−
β

(a0
i,n+1) ∗ a0

n+1,j ∗ ax+yj,j = (ΛΦ−L
β A)00ij ∗ ax+yj,j .

Thus, Axyij − (ΛΦ−L
β A)xyij = (A00

ij − (ΛΦ−L
β A)00ij ) ∗ ax+yjj . Similarly, Axyij −

(AΦ−R
β Λ−1)xyij = ax+yii ∗ (A00

ij − (AΦ−R
β Λ−1)00ij ).

For each non-negative integer m, let

Em = Z〈axij , 1 ≤ i, j ≤ n, |x| ≤ m〉,
and let Hm = Em/Jm, where Jm is the idea of Em generated by the following
elements:

(A00
ij − (ΛΦ−L

β A)00ij ) ∗ axjj , axii ∗ (A00
ij − (AΦ−R

β Λ−1)00ij ), 1 ≤ i, j ≤ n, |x| ≤ m.

For each m, one can define the algebra morphism ιm : Hm → HC0(β), such
that ιm(axij) = axij , |x| ≤ m, and the algebra morphism πm : HC0(β) → Hm, such
that πm(axij) = axij if |x| ≤ m, and that πm(axij) = 0 otherwise. The maps ιm and
πm are clearly both well-defined, and πmιm = Id. Thus, ιm is injective. Identifying
Hm with its image ιm(Hm) in HC0(β), we get HC0(β) =

⋃
m≥0Hm.

Next, we show Hm is a proper subalgebra of Hm+1.
The map πm, restricting on Hm+1, sends am+1

ij to 0, and for |x| ≤ m sends each
axij to axij . Thus am+1

ij ∈ Hm if and only if am+1
ij = 0. However, by Proposition 4.6

which is to be proved in Sec. 4.4, if one sets λ = µ = 1, then there is a Z-algebra
morphism from HC0(β) to Z mapping each axij to −2. c This implies none of the
axij ’s is 0 in HC0(β) when λ, µ are set to 1, which furthermore implies the axij ’s are
not 0 in the original HC0(β). Therefore, am+1

ij is not contained in Hm, and Hm is
a proper subalgebra of Hm+1.

cNote that in this subsection we have set Γ = −1.
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Lastly we show that H0 � hc′0(β), where hc′0(β) is hc0(β) with µ replaced
by µ−1.

By Eq. (2.2), the action of Φβ on E0 is exactly the same as the braid action
given in [9] if we set Γ = −1, and make the change of variables as follows: a0

ij = µaij
if i > j and a0

ij = aij otherwise. The readers should be warned that here aij is the
symbol used in [9], but not the ∞×∞ matrix we defined before. In the language
of [9], a0

ij is the same as µa′ij in that paper.d Moreover,

Φ−
β (a0

i,n+1) ∗ a0
n+1,j = Φ−

β (ai,n+1) ∗ a0
n+1,j =

∑
((ΦLβ )ikak,n+1) ∗ a0

n+1,j

=
∑

((ΦLβ )ika0
k,n+1) ∗ a0

n+1,j =
∑

(ΦLβ )ika0
k,j .

Then we have A00
ij − (ΛΦ−L

β A)00ij = a0
ij − λδi,1Φ−

β (a0
i,n+1) ∗ a0

n+1,j = a0
ij −

λδi,1
∑

(ΦLβ )ika0
k,j , which is exactly µ times the (i, j)-entry of A − ΛΦLβA defined

in [9]. Similarly, A00
ij − (AΦ−R

β Λ−1)00ij = a0
ij − λ−δj,1a0

i,n+1 ∗ Φ−
β (a0

n+1,j) is µ times
the (i, j)-entry of A − AΦRβΛ−1. Therefore, there is a well-defined isomorphism
H0 → hc′0(β) sending a0

ij to µaij if i > j and aij otherwise.

We just showed that HC0 is infinitely generated for local knots. On the other
hand, by Theorem 4.2, HC0 is always finitely generated for torus knots. Some
computer calculations indicate that HC0 might be finitely generated for non-local
knots. This motivates us to come up with following conjecture.

Conjecture 4.1. Let K be a knot in S1 × S2 with framing l, then HC0(K; l) is
finitely generated as an R-algebra if and only if K is not local.

4.4. Augmentations

The presentation for the invariantHC0 could be very complicated for general knots,
especially when the number of crossings is large. It is thus very difficult to analyze
the algebraic properties of HC0 from its presentation. We will deduce a family of
invariants, called augmentation numbers, fromHC0. These invariants output a fam-
ily of integers and could be calculated by computers. The concept of augmentation
numbers are introduced in [4, 7] for basically the same reason.

Let d ≥ 2 be an integer and let Zd = Z/dZ. Pick three invertible num-
bers λ0, µ0,Γ0 ∈ Zd. Then Zd can be treated as an R-module, with λ, µ,Γ act-
ing by multiplication by λ0, µ0,Γ0, respectively. Then H(β; f ; d;λ0, µ0,Γ0) :=
HC0(β; f) ⊗R Zd is a Zd-algebra. Assume HC0(β; f) is finitely generated, then

dIn [9], a′
ij was defined to be µaij if i < j, aij if i > j, and −1 − µ if i = j. After replacing µ by

µ−1 in the definition of a′
ij , µa′

ij is seen to coincide with a0
ij . Also note that the matrix A in that

paper has entries a′
ij , but not aij .
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H(β; f ; d;λ0, µ0,Γ0) is a finitely generated Zd-algebra, and thus has finitely many
algebra morphisms into Zd.

Definition 4.5. Let β ∈ Cn, f ∈ Z, 2 ≤ d ∈ Z such that HC0(β; f) is
finitely generated as an R-algebra, and let λ0, µ0,Γ0 ∈ Zd be invertible, then
Aug(β; f ; d;λ0, µ0,Γ0) is defined to be the number of algebra morphisms from
H(β; f ; d;λ0, µ0,Γ0) to Zd.

For example, denote the braid (α0 · · ·αp−1)q representing the (p, q)-torus
knot by T (p, q), then Aug(T (1, 4); 0; 3; 1, 1, 2) = 4, Aug(T (1, 5); 0; 3; 1, 1, 2) =
2, Aug(T (1, 6); 0; 3; 1, 1, 2) = 4, Aug(T (1, 4); 0; 5; 1, 1, 3) = 6, Aug(T (1, 5); 0; 5;
1, 1, 3) = 3.

Proposition 4.6. Set λ = µ = 1, then for any β ∈ Cn, there is a Z[Γ±1]-algebra
morphism from HC0(β; f) to Z[Γ±1] sending each axij to 2Γ.

Proof. Define t : An → Z[Γ±1], t(axij) = 2Γ. We first show for β ∈ Cn, tΦβ = t.
It suffices to prove tΦαk

= t, 0 ≤ k ≤ n − 1. This can be checked directly from
Eqs. (2.2) and (2.3).

Similarly, one can prove tΦ+
β = tΦ−

β = t.

We need to show t factors through Iβ;f ;1,1. Note that now Λβ;f ;1,1 is the identity
matrix.

t(Axyij − (Φ−L
β A)xyij ) = 2Γ − t(Φ−

β (axi,n+1) ∗ ayn+1,j) = 2Γ − tΦ−
β (axi,n+1) = 2Γ −

t(axi,n+1) = 0.
In the same way, one can show t factors through the other three relations, and

thus t induces an algebra morphism from HC0(β; f) to Z[Γ±1] mapping axij to 2Γ.

Corollary 4.7. Let β ∈ Cn, f ∈ Z let Γ0 ∈ Zd be invertible, then Aug(β; f ;
d; 1, 1,Γ0) ≥ 1.

Proof. The map t defined in Proposition 4.6 naturally induces a map from
H(β; f ; d; 1, 1,Γ0) to Zd.

5. A Topological Interpretation of the Knot Invariant

In this section, we show that the framed knot invariant HC0 actually has a rather
simple interpretation as the framed cord algebra given in [9, Definition 2.2]. The
framed cord algebra is defined for an oriented framed knot K in an oriented
3-manifold M . In the same paper, the author also gave a cord interpretation of
the framed cord algebra for knots in S3 with 0 framing. In the following, we modify
the cord interpretation so that it adapts to knots with any framing in any oriented
3-manifold, and prove that the modified version is equivalent to the framed cord
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algebra. Then we show that the knot invariant HC0 coincides with the framed cord
algebra.

Definition 5.1. Suppose M is an oriented 3-manifold and K is an oriented framed
knot in M . Pick a base point z0 ∈ M\K for the fundamental group of M\K. Let
l be the homotopy class of the longitude, determined by the framing of K, in
π1(M\K, z0). Choose a representative curve in the homotopy class l. By abusing
the notation, we still denote the representative by l. Fix a point ∗ on l.

(1) A cord in M relative to (K, l) is a continuous map γ : [0, 1] → M\K, such
that γ(0), γ(1) ∈ l and γ−1(∗) = ∅. Two cords γ1, γ2 are said to be equivalent if
they are homotopic relative to l\{∗}. Informally speaking, one can slide a cord γ

along l, so long as not to pass through the point ∗.
(2) The framed cord algebra, A(K, l;M), is defined as the algebra over R freely

generated by the equivalence classes of cords, modulo the ideal generated by the
relations given in Fig. 14.

In Fig. 14, the dashed line stands for the curve representing l, and the cord is
represented by the solid line transversal to l while the knot is drawn as the solid
line parallel to l. The algebra A(K, l;M) is independent of the choice of the base
point z0, the representative curve of the longitude l, and the fixed point ∗.

Now we prove that the framed cord algebra is isomorphic to the one defined in
[9]. For the readers’ convenience, we first recall the definition of framed cord algebra
there.

Definition 5.2 ([9]). Let K ⊂ M be an oriented framed knot in an oriented
3-manifold M . Pick a base point z0 ∈ M\K for the fundamental group of M\K.

=

= =

+ =

(1)

(2)

(3)

* * * *

Fig. 14. Skein relations A(K, l;M).
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Let l,m denote the homotopy classes of the longitude and meridian of K in
π1(M\K, z0). The framed cord algebra, Ã(K, l;M), of K is the algebra over R
freely generated by the elements of π1(M\K), modulo the ideal generated by the
following relations:

(1) [e] = (1 + µ)Γ;
(2) [γl] = [lγ] = λ[γ] for γ ∈ π1(M\K, z0);
(3) [γ1γ2] + [γ1mγ2] = 1

Γ [γ1][γ2], for γ1, γ2 ∈ π1(M\K, z0),
where for an element γ ∈ π1(M\K, z0), [γ] means the image of γ in Ã(K, l;M).

Remark 5.3. (1) Ã(K, l;M) does not depend on the choice of the base point z0
in defining π1(M\K).

(2) The meridian m is oriented as the boundary of a meridian disk, which is
oriented so that it, with the orientation on K, is positive.

(3) If we set γ1 = γ, γ2 = e, then from the first and the third relation, we can
derive the relation [γm] = µ[γ]. Similarly, we have [mγ] = µ[γ].

(4) If l′ = lmf in π1(M\K, z0), then Ã(K, l′;M) can be obtained from
Ã(K, l;M) by replacing λ by λµ−f .

Theorem 5.4. The framed cord algebras defined in Definitions 5.1 and 5.2
coincide, namely, A(K, l;M) � Ã(K, l;M) for an oriented knot K with framing
(longitude) given by l in the manifold M .

Proof. Assume the base point z0 is on the curve l, different from the point ∗. For
a point z ∈ l, let τz be the sub-arc of l connecting z0 to z not passing the point
∗. Then an element of π1(M\K, z0) is automatically an equivalence class of cords.
Moreover, the three relations in defining Ã(K, l;M) turn into the three relations
defining A(K, l;M), respectively. Conversely, for a cord γ, let γ̃ = τγ(0) ∗ γ ∗ τ̄γ(1).
Then γ̃ is an element of π1(M\K, z0), and this map also preserves the defining
relations of A(K, l;M). It is direct to check these two maps defined above are
inverse to each other.

Theorem 5.5. Let β ∈ Cn be a braid whose closure is a knot in S1 × S2, and
let l,m be the homotopy classes of the longitude and the meridian of β̂, such that
l = [β̂′]mf , where β̂′ is a parallel copy diagram of β̂, and f ∈ Z is an integer. Then
we have HC0(β̂; l) � A(β̂, l;S1 × S2).

Proof. We have HC0(β̂; l) = HC0(β; f) by definition. By Remark 5.3(4) and the
definition of HC0(β; f), it suffices to prove the theorem for f = 0, namely l = [β̂′].
Set Λ = Λβ;0;1,1.

Let X = Dn × [0, 1]/{(x, 0) ∼ (x, 1), x ∈ Dn}. Present β as a braid diagram
inside X , and assume β intersects Dn in p1, . . . , pn. Take a parallel copy diagram
β′ of β, such that β′ intersects Dn in the points q1, . . . , qn. Choose some point on
β̂′ right above q1 as the point ∗. Also we pick two points q0, qn+1 such that q0 is
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Fig. 15. A picture of X.

near the central puncture p and qn+1 is on the right of the puncture pn near the
boundary of Dn. See Fig. 15.

Any cord in S1 × S2 relative to (β̂, β̂′) can be homotoped so that it sits inside
X . See Remark 2.4 for the relation between X and S1×S2. Then we slide the cord
γ along β̂′ and whenever the cord passes the point ∗, we will multiply by λ or λ−1

according to the second relation in Fig. 14. Finally the cord is slide into Dn × {0}.
We denote the resulting curve by γ̃, which is an element in Qn.

Define the map ϕ : A(β̂, l;S1 × S2) → HC0(β; 0) by sending any cord γ to
λsγ̃, where λs is the scalar gathered on the way to transit γ into γ̃, as stated in
the above paragraph. There are several points where we need to check the map is
well-defined.

Step 1: The projection of γ to Dn×{0} is not unique, and different projections
differ by actions of Φβ. So we need to show for any γ̃ ∈ Qn from qi to qj , we have
γ̃ = λδi,1Φβ(γ̃)λ−δj,1 in HC0(β; 0). Since γ̃ can be written as a sum of monomials
of the form ax1

i,i1
ax2
i1,i2

· · ·axk
ik−1,j

, by Corollary 3.14, γ̃−λδi,1Φβ(γ̃)λ−δj,1 is contained
in Iβ;0;1,1 and thus 0 in HC0(β; 0).

Step 2: In S1×S2, the cords have more flexibilities to be homotoped than in X .
Precisely, there are two more types of flexibilities. Let γ1, γ2 be two curves in Dn

such that γ1(1) = γ2(0) = qn+1, γ1(0) = qi, γ2(1) = qj , for some 1 ≤ i, j ≤ n, and
let δ be the loop {qn+1}×S1, then γ1 ∗γ2, γ1 ∗ δ ∗γ2 are equivalent cords in S1×S2

but not in X . If we project γ1 ∗ δ ∗ γ2 to Dn × {0}, then we get λδi,1Φ−
β (γ1) ∗ γ2 or

γ1∗Φ−
β (γ2)λ−δj,1 . These are guaranteed by the relations A−ΛΦ−L

β A,A−AΦ−R
β Λ−1.

See Remark 3.4(2).
Similarly, in the above argument, if we replace “qn+1” by “q0”, then we get the

relations A− ΛΦ+L
β A,A−AΦ+R

β Λ−1.
Step 3: The first and the third relation in Fig. 14 that define A(β̂, l;S1 × S2)

are apparently mapped to the two “skein” relations in Fig. 5 that define Ãn. Let
γ1, γ2 be the two cords shown in Part (1) of the second relation in Fig. 14 (γ1 being
the one on the left-hand side). To compute ϕ(γ1), we can first slide γ1 through the
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point ∗ to match γ2, then project γ2 to Dn × {0}, thus by the design of ϕ we have
ϕ(γ1) = λϕ(γ2). So ϕ preserves Part (1) of the second relation. In the same way
one can show ϕ also preserves Part (2) of the second relation.

The above three steps showed that ϕ is well-defined.
Since elements of Qn can each be considered as a cord, we can define a map

θ : HC0(β; 0) → A(β̂, l;S1 × S2) such that θ(γxij) = γxij . One can check that θ is a
well-defined morphism.

Because any cord can be slide into Dn×{0}, by an argument similar to the proof
of Proposition 2.6, the cord algebra A(β̂, l;S1 ×S2) is generated by the cords γxij ’s.
Since θϕ(γxij) = γxij , we have θϕ = Id on the algebra A(β̂, l;S1×S2). That ϕθ = Id

follows directly from the definitions of ϕ and θ. Therefore, ϕ is an isomorphism.
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