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ABSTRACT

We generalize Ng’s two-variable algebraic/combinatorial zeroth framed knot contact
homology for framed oriented knots in S® to knots in S x S2, and prove that the
resulting knot invariant is the same as the framed cord algebra of knots. Actually, our
cord algebra has an extra variable, which potentially corresponds to the third variable in
Ng’s three-variable knot contact homology. Our main tool is Lin’s generalization of the
Markov theorem for braids in S® to braids in S' x S2. We conjecture that our framed
cord algebras are always finitely generated for non-local knots.
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1. Introduction

The dream of finding new higher categorical quantum invariants of smooth
4-manifolds that can distinguish smooth structures beyond Donaldson/Seiberg-
Witten/Heegaard-Floer theory is largely unrealized, despite the spectacular success
for new invariants in 3-dimensions and recent progress in higher category theory. A
potentially new quantum invariant would be to promote the relative knot contact
homology of knots in S in [9] to a (3 + 1)-TQFT-type theory (presumably the
zeroth part of the BRST cohomology of a topological string theory). One lesson
from (2 + 1)-dimensions is the emergence of powerful diagrammatical techniques
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as exemplified by the Kauffman bracket definition of the Jones polynomial, and
the subsequently elementary formulation of Turaev—Viro and Reshetikhin-Turaev
(2 + 1)-TQFTs. We see a striking parallel between the cord algebra invariant and
the Jones polynomial.

In [9], the zeroth part of the relative knot contact homology in S is interpreted
using cords and skein relations—the main ingredients of diagrammatical techniques
in (2 4+ 1)-dimensions, analogous to the reformulation of the Jones polynomial of
knots from von Neumann algebra using knot diagrams and the Kauffman bracket.
Taking the elementary framed cord algebra invariant of knots in general 3-manifolds
M as the main object of interest, we will follow the diagrammatical approach
to constructing (2 + 1)-TQFTs such as the Turaev—Viro and Reshetikhin-Turaev
TQFTs. As a first step, we generalize Ng’s two-variable combinatorial/algebraic
zeroth framed knot contact homology for framed oriented knots in S to knots in
S1 x 82, and prove that the resulting knot invariant is the same as the framed cord
algebra of knots. Actually, our cord algebra has an extra variable, which potentially
corresponds to the third variable in Ng’s three-variable knot contact homology [10].

It is conjectured in [8] that the cord algebra invariant of knots in a general
3-manifold M is the zeroth relative knot contact homology. We do not prove this
conjecture and will not use any knot contact homology theory. Instead we provide
an algebraic version of this conjectured zeroth knot contact homology for knots
in S' x S? following [9] and regard our algebraic definition of the cord algebra as
an effective method to calculate the topologically defined cord algebra invariant of
knots. Our long term goal is to understand the higher categories underlying this
algebraic formulation with an eye toward to a diagram construction of a (3 4 1)-
TQFT-type theory.

A second reason for our interest in the framed cord algebra invariant of knots
is the conjectured relation between the augmentation polynomial and the Hom-
fly polynomial of knots. A well-known question since the discovery of the Jones
polynomial is how to place the Jones polynomial within classical topology (since
knots are determined by their complements, so any knot invariant is determined by
the homeomorphism type of the knot complement). The cord algebra of a knot is
basically within classical topology, so the establishment of the conjectured relation
between the augmentation polynomial and the Homfly polynomial is one answer to
an old question.

To generalize the algebraic zeroth knot contact homology in [9] from S? to
S1 x 2, we use Lin’s generalization of the Markov theorem for braids in S to
braids in S* x S? [6] developed for defining a Jones polynomial of knots in S* x §2.2

The rest of the paper is organized as follows. In Sec. 2.1, we introduce the
Markov theorem for knots in S' x S2, which are represented by the closure of

2This generalization, eventually rendered unnecessary for the intended application by Witten’s
work, finds a similar application in our work. We dedicate our work to X.-S. Lin—an important
vanguard in quantum knot theory.
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elements in C,, the Artin group with Dynkin diagram B,,. In Sec. 2.2, we give
several actions of C,, on free algebras. We interpret these actions both algebraically
and topologically. These actions will be the key ingredients to define the invariant
HCj in Sec. 3.1. In Secs. 3.2-3.4, we compute some specific examples, demonstrate
some useful propositions, and prove the invariance of HCjy under Markov moves,
respectively. Sections 4.1-4.4 are devoted to prove several properties of the HCjy
invariant. We study two special classes of knots in S' x S?, torus knots and local
knots. Moreover, we derive a family of invariants, called augmentations, from HCj.
Finally, in Sec. 5, we prove that the HCj invariant has a nice topological interpre-
tation as the framed cord algebra defined in [9].

The first author also created a Mathematica package for computer calcula-
tions of the HC invariant and augmentation numbers. The program can be found
at [3] and is partly motivated by Ng’s computer package, which was used to
compute various invariants derived from knot contact homology for knots in S3.
To run the program, one needs to install the non-commutative algebra package
NCAlgebra/NCGB [5].

2. Markov Moves and Actions of C,, on Free Algebras

First we provide some background materials. Links and knots in this paper are
always framed and oriented.

2.1. Markov Moves in S* x S?

In this subsection, we describe a theorem on Markov moves for links in S x S2.
See [6] for a more detailed discussion.

The classical braid group with n strands, B5,,, is defined by the presentation
<O’1, e, Op—1 ‘0'1‘0'1'_0_10'1‘ = 0i+10;0i41,0;0; = 005, |Z — ]| > 2> It is the Artin
group with Dynkin diagram type A, _1, and can also be viewed as the braid group
on the 2-disk D? C R2.

Any link in S® can be represented as the closure of some braid in the classical
braid group. The Markov theorem states that two braids B, B’ give rise to the same
link if and only if B’ can be obtained from B by a finite sequence of the following
operations or their inverses:

(1) change B € B,, to one of its conjugates in By,;
(2) change B € B, to B! € Bpy1.

The Markov theorem for links in S? is generalized to links in S x S? in [6] as
follows.

Let C,, be the Artin group corresponding to the Dynkin diagram B,, generated
by ao, ..., an_1, with the following generating relations:

(1) OéiOéj = ajai, ‘Z —]| 2 2
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(2) asip10y = aiproua41,1 > 1
(3) Qo1 gl = 11 (.

A direct consequence of the presentation of C,, is that there are natural inclusions
Ci, CCyC -+ CCpy C---. Denote by e~ these natural inclusions.

It is shown in [2] that C, is isomorphic to the braid group on the annulus
[0,1] x S, or the 1-punctured disk. Specifically, the isomorphism is illustrated in
Fig. 1.

Simply treating {puncture} x [0, 1] as the first strand of the new braid, we can
regard a braid on the 1-punctured disk as a braid on the disk. Thus we have an
embedding of C,, into B,y1. Denote the generators of 5,41 by 09,01,...,0n_1.
Then the embedding from C,, to B, 11 is given by the following map:

Cn — But1, o 05, a;— o0 > 1.

We will identify C,, with its image in B, 1, which is the subgroup consisting of
the braids that fix the first puncture.

The correspondence between braids on the annulus and links in S! x S? is
obtained via open book decompositions.

Consider the standard open book decomposition of S with an unknot J as the
binding. Let K be another unknot which is a closed braid with respect to the braid
axis J. Then

M =S3\(J x D2UK x D?)

is a fibration over S whose fiber is an annulus [0,1] x S*. S! x S? is obtained by
a 0-Dehn surgery along K. Thus S' x §? = M Uy D? x S, where f is the gluing
homeomorphism which maps the meridian of the solid torus to K X zg, 29 € 0D2.
Let K* be the image of 0 x S' under f in S' x S2, where 0 x S! is the core of

Fig. 1. «p and ag,k > 1.
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the solid torus. We call K* the dual knot of K. Then the fibration on M extends
to an open book decomposition on S! x S? with the binding J U K*. Note that
St x S2\(J U K*) is homeomorphic to the product of the annulus with S!. Any
link in S x S? can be isotoped into S' x S2\(J U K*) transversal to each page,
and thus becomes a braid on the annulus.

To state the Markov theorem, we need one more lemma.

Define a map €™ : C,, — Cpi1,
+( (2.1)

e (o) =

Q1000 1= 07
Q41 ) Z 1

The map €™ has a nice geometrical interpretation if we view C,, as the braid
group on the annulus. The map simply inserts a straight strand right next to the
line {puncture} x [0,1]. See Fig. 2.

Note that the newly inserted line will be labeled by 1, and the other strands’
labels will be shifted up by 1.

Lemma 2.1 ([6]). The map €' is an injective group homomorphism.

Proof. From the geometrical interpretation of the map, it should be clear that it
is an injective group homomorphism. For a rigorous algebraic proof, see [6]. O

Remark 2.2. Now there are two embeddings of C,, into C, 41, namely the natural
inclusion €~ and the map e*. From the geometric point of view, ¢~ is to place a
strand on the far right of the braid, while €T is to insert a strand right next to the
line {puncture} x [0, 1].

Here is the statement of the Markov Theorem for links in S x S2.

Theorem 2.3 ([6]). The closures of two braids 3, 3" € |J;—, Cn give the same link
in S x S? if and only if there is a finite sequence of braids, 3 = Bo, B1,..., B3 = 3,

Fig. 2. et (a1a0).
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such that B;+1 can be obtained from (3; by one of the following operations or their
1nuverses:

(1) change B; € C,, to one of its conjugates in Cy;
(2) change B; € C,, to € (B;)at € Cpyr;
(3) change 3; € Cy, to e*(ﬂi)ali € Cnyi1-

Remark 2.4. Given a braid 3 € C,,, we can obtain the knot in S* x S? represented
by (3 as follows. Take a punctured disk D’ = D\ B(0), and let X = D’ x [0, 1]. Draw
the diagram of 3 inside X. Then S' x S? is obtained by identifying the top and
the bottom punctured disk and then gluing a solid torus to each torus boundary
component. The gluing maps are given by sending the meridian of each solid torus
to zo x S' and z; x S*, respectively, for some zy on the boundary of the puncture
and z; on the outer boundary of D’. The knot represented by 3 is the image of the
braid diagram in S! x S2. See Fig. 3 for 8 = apa;.

2.2. Actions of C,, on free algebras

Throughout the paper, R denotes the commutative ring Z[A\*, u®, TF]. Also, the
multiplication sign in an algebra is denoted by the symbol ® or simply omitted,
while the symbol * means concatenation of two curves or some analogous operation
in an algebra which will be introduced in Definition 2.13. We will always omit the
multiplication sign when writing the product of two elements in a group. We define
several free non-commutative algebras over the ring R as follows.

Al = R(af;,0 <i,j <n,x €Z)/{af; — (1+ p)[,0<i<n),

AL =R, 1<ij<n+lzeZ)/{a)—(1+pl,1<i<n+1),
An = R{aj;,1 <i,j <n,x € Z)/{a% — (1 + ), 1 <4 < n).
The algebra A, can be embedded into A;} and A, in the most natural way. We
will always identity A,, with its images in A} and A, .

Sl

1
21

Fig. 3. The closure of 8 in S x S2.
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Now we introduce an action of C,, on A,,, and extend the action to the larger
algebras A", A, . The action is first presented algebraically and then will be given
a topological interpretation.

2.2.1. Algebraic interpretation of the actions

Recall that the generators C,, are denoted by «, . .., a,_1, which satisfy the relation
given in Sec. 2.1. We define a group morphism & : C,, — /Olut(An) as follows.
Fori1<k<n-—-1,1<14,5<mn,

P () (ai;)
1 . .
—Gjq 5t Eag-u,kai,j i=kj#kk+1,
1 . .
_a£+17k+ﬁag+l7ka£7k Z:k,] :k+1,
1
ai+1,k+1 - faﬁﬂ,ka%kﬂ

1 1
0 T 0 T 0 . .
——a aj. + —=—ay NN i=k =k
T k+1,k%Ek, k+1 T2 k+1,k%Ek, Yk k+1 ] ’

By i=k+1,j#kk+1,
—ap g+ %ai,kag,k—o—l i=k+1,5=%k,
T i=k+1,j=k+1,
—0i 1+ %aikag,k—o—l i £k k+1,j=EF,
ai itk k+1,j=Fk+1,
a; i#Ekk+1,7#kk+1,
(2.2)
®(ao)(ai;)
11 i=1,j5=1,
ﬂmﬁl+%ﬁ¢{} i=1,7>2,
= L <—aﬂ'1 + lazllaf 1) i>2,5=1, (2.3)
I : Lot
s = ottt
_fa},lagl”gl + %a;lailai} i>2,5>2.

It is direct, though tedious, to check that ® is well-defined, i.e. ®(a;) satisfies
the braid relations that define C,,. Alternatively, in Sec. 2.2.2, we will describe the
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mapping class action of a braid in C,, on A, a quotient of an algebra generated by
paths in a punctured disk. Then A,, will be shown to be generated by simple paths
and isomorphic to A,,. Upon identifying these simple paths with the elements aj;,
the map determined by Eqgs. (2.2) and (2.3) is seen to agree with this action. See
Theorems 2.7 and 2.8.

We extend the action of C, to the algebra A" by furthermore defining the action

on af;, afy,0 < i,j < n. This extended action is denoted by ®*.

ag,o i=0,7=0,
1

;agjl ZZO?]:L

1 1. .
" (ag)(af;) = { —al ; + Eagjlalj i=0,j>2, (2.4)
paiy! i=1,j=0,
x 1 1 r—1

_ai,O + fai,lal,o 7> 2,] =0

For 1 <k <n—1, ®"(ay)(af;) are given by the same equation as Eq. (2.2),
except that now ¢, j are allowed to be zero when they are not k or k + 1.

Similarly, the extended action of C,, on A, is defined by Egs. (2.2) and (2.3)
except that the range of 7, j now is from 1 to n + 1. We denote this action by ®~.

Again, one can check directly ®*,®~ are both well-defined. Alternatively, see
Theorem 2.10.

A few remarks are in order.

Remark 2.5. (1) For a braid g € C,,, we will write @g,@?,@é for ®(3),®™(4),
&~ (), respectively, in subsequent sections.

(2) From the definitions of the actions mentioned above, we can see that ®g =
(@;)‘An = (®5)|4, and that ©5 = ®.—(5) if we identify A, with A, in the
obvious way.

(3) Denote by B,, the subgroup of C,, generated by {ai,...,a,—1}. Then B,
is isomorphic to the classical braid group on n strands. In Eq. (2.2), if we set
I'=—1,p=1,and x = 0, then @, acting on Z(aj;) is exactly the braid group
action given in [7]. So our braid group action is a generalization of the action in [7].

The above actions will be less mysterious after we give a topological interpreta-
tion in the following subsection.

2.2.2. Topological interpretation of the actions

Let D be the unit disk in the complex plane centered at the origin, D, be the
punctured disk with n 4 1 punctures labeled, from left to right, by p, p1, ..., p, and
let ¢; = p; —€,1 <i <n, e>0ben points in D,, each close to the corresponding
puncture. See Fig. 4.

1550067-8



J. Knot Theory Ramifications 2015.24. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 09/12/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Framed cord algebra invariant of knots in ST x S?

Let Qn = {¢,1 < i < n} and let Q, = {7 :[0,1] — D, |~ is continuous,
7(0),v(1) € Qn} ~ be the set of equivalence classes of curves in D, with end
points belonging to @,. Here the equivalence relation ~ means homotopy relative
to end points. So the curves are not allowed to pass through any of the punctures
and their end points are fixed during the homotopy.

Let A, be the free non-commutative algebra over R generated by elements of
Q,, modulo the “skein” relations shown in Fig. 5. Note that ® in Fig. 5 means the
multiplication in A,,. And the second relation, as well as other similar relations in
the context, depicts some local neighborhood of the diagrams outside of which they
all agree.

For 1 <i,j <n,z € Z, let 7} and 7; be the curves shown in Fig. 6, namely
starts from ¢;, winds around p counter clock-wise = times if x > 0, or clock-wise
—z times if < 0, and finally goes through the upper half disk to end at g;. The
curve ; starts and ends at ¢; and winds around p; counter clock-wise once.

It should be noted that the relations shown in Fig. 7 can be derived from the
ones in Fig. 5. And the second relation in Fig. 7 is equivalent to the property that
if v,7" € Qn such that v(0) = ¢; and /(1) = g;, then v; * v = py,7 * 5 = p~ '/,

(1) =(1+uT
(¢)
qi
qi 1
(2) ﬂ& + —ﬁq:o\f» = f — ﬁ — q_.i 0] ® q&

Fig. 5. Skein relations An.

Fig. 6. yfj and ;.

1550067-9
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a“ e N B . B

(1) —_oo ~ a 4 4

Fig. 7. Derived skein relations.

where * means concatenation of two curves, and +; is the curve v; with reversed
direction.

We will show below that there is an isomorphism between A, and A,, and that
7;; 1s identified with a7; under this isomorphism.

Pick a base point on the boundary of the disk D,,. To make it explicit, let us pick
some zg on the upper half of the boundary as the base point. The fundamental group
of D,, is the free group F, 1 on n+ 1 generators, which we denote by e, eq,..., e,
where e; is the loop that winds around p; counter clock-wise once and e is the loop
that winds around p counter clock-wise once. See Fig. 8.

For each 1 <i < n, let §; be the straight line from zy to ¢;, and 5; be the same
line with reversed direction. For any curve v € Q,, with v(0) = ¢;, (1) = ¢;, let
F = 6; %y * (5}, then 4 becomes an element in w1 (D, z0) = Fry1.

For 4 € (D, 20), let I(7) be the minimum number of occurrences of e', 1 <
1 < n in the words representing 4. So we do not count the occurrences of e in
computing (7).

The following proposition shows that by repeated applications of the “skein”
relations in Fig. 5, any element of A, can be reduced to a (non-commutative)
polynomial in v}’s.

Proposition 2.6. The algebra A, is generated by 51 <d,5 <nyi#j,x €L}

Proof. Since A, is generated by elements of Q,, it suffices to show that each
element of Q,, can be written as a polynomial of +;’s. We prove this statement by
induction on [(¥) for v € Q,,.

Fig. 8. e and e;.

1550067-10
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If I(§) = 0, then 7 = e® for some = € Z, and so 7 is equal to some ;.

Assume the statement is true for all v with I[(7) < m —1,m > 1. Let v € Q,
be any element such that {(§) = m. Choose a word w representing 4 such that the
fﬂ’s in w is m. Then there exists some k, 1 < k < n,
such that w = wgpepw, or w = woe,zlwl, where wy and w; are sub-words (possibly
empty).

If w = wpepwy, apply the second relation in Fig. 5 to 7 around the puncture
pr with v being the first term on the left-hand side. Then there exist vg,7v1,7’ €
Q,,, such that v = —' + %%%7 and that vy = wo,71 = wl,i’ = wowi. Since
I(wp), l(wy), l(wowy) are all less than m, by induction, g, y1 and 4’ are polynomials
of 7;5’s, and thus 7 is also a polynomial of ~’s.

The case w = woelzlwl can be proved analogously by referring to the first
relation in Fig. 7. O

number of occurrences of e

We proceed to prove {ij :1<4,j5 <n,i#j,x € Z}are actually free generators
of A,.

Define an intermediate non-commutative algebra B = R(ejﬂ7 Y1,Y2, - Yn) /L,
where 7 is the two-sided ideal generated by ee "1 —1, e te—1 and y? — I'(1+p)y;, 1 <
i < n. We define a multiplicative map from F,,;1 to B as follows.

T:Fhp1 — B,

1
fyi_l w=e¢;1<i<n,

1
e i_l = ‘_171<.< 9
T(w) = Tp? w=G o isren (2.5)
etl w:ezl:l’
1 w = 1.

It follows immediately that 7(e)7(e™') = 7(e;)7(e; ') = 1 = 7(1) in B. There-
fore, we can extend the action of 7 uniquely to arbitrary words to get a well-defined
multiplicative map on F), 1. Actually 7 extends to an algebra morphism from the
group ring R[F,, 1] to B.

For 1 <i,j < n, we define an R-linear map a;; : R(e*, y1,va, ..., yn) — An,

iy (€ €7y, - €y ) = Al ot _hjka;‘f;jjl

One can verify that a;; factors through Z using the fact that af; = (1 + u)T.
Thus o;; induces a map from B to A,,, which is still denoted by «;;.

Define a map ¢ : Q, — A, by ¥(vy) := ;;7(), where 7 is an element of Q,
such that v(0) = ¢;,7(1) = ¢j, and 5 = §; x v * §;. We extend 1 multiplicatively to
the free R-algebra generated by elements of Q,,. In Theorem 2.7, it will be proved
that this extended map factors through the “skein relations” shown in Fig. 5, thus
it induces a map, still denoted by v, from A, to A,.

1550067-11
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Theorem 2.7. The map v introduced above is a well-defined algebra isomorphism
from Ay, to A, sending v to a;

Proof. Clearly, () is independent of the choice of representatives of ~ in its
equivalence class.

We first show 1 factors through the “skein” relations in Fig 5.

It is easily seen that ¢ (v{;) = af;. In particular, 1(v;) = a; = (14 p)T, so the
first “skein” relation is preserved ¢

Let Cy, 5 denote the two curves passing above and below pg, respectively, in
the definition of the second “skein” relation in Fig. 5. They have the same initial
and end points, say ¢;, ;. Let C'3, C4 be the curves which ends at ¢ and starts at gy,
respectively. So C3 starts from ¢; and Cy ends at g;. Let w3, wy be the words in F}, 41
which represent Cs, Cy, then the words which represent Cy, Cy are wsws, wsejws.

Thus, (C1) + ¢(C2) = aij(T(ws)r(wa)) + aiy(r(ws)(Fyr — D7(ws)) =
fraij (T(wa)yeT(wa)) = frair (T(ws)) ok (T(wa)) = $4(C3)3(Ca), which says ¢ pre-
serves the second “skein” relation.

The above arguments show that v is a well-defined algebra morphism. Define
the inverse map ¢’ : A, — A, by sending each aj; to ;. Noting that ~; a
generators of A, by Proposition 2.6, we have ¢’ = Id and 1’1 = Id. Therefore, z/J
is an algebra isomorphism. O

Now we describe a natural action of C, on A,,.

Recall that the group of isotopy classes of homeomorphisms of D,, with bound-
ary fixed point-wise is the classical braid group on n + 1 strands B,,4;.? Here we
assume the generators are g, 01, . .., 0,_1, where o is the Dehn twist that switches
p with p; counter clock-wise and o; switches p; with p;11,1 < i <n—1. Also recall
that we identified C,, with the subgroup of B,, 1 which consists of the braids that fix
the first puncture. See Sec. 2.1 for the explicit embedding. Therefore, the elements
of C,, fix the puncture p and permute {p;, 1 <i < n}. We can furthermore stipulate
that the horizontal line segments p;¢; remain horizontal and of fixed length during
the isotopy, so that the elements of C, also permute the ¢;’s. It follows that the
elements of C,, act on Q,. One can also check that this action actually preserves
the “skein” relations. Therefore, we get a natural action ® of C, on A,.

Theorem 2.8. The algebra isomorphism 1 : A, — A, preserves the action of Cy,
i.e. Y®g = Py, for any [ € C,,.

Proof. It suffices to check for any g = ay, 1#&)5 = ®31) holds on the generators
7;;- We left this as an exercise. O

Remark 2.9. It is worth pointing out that when we want to find the image of
some complicated curve in A,, under 1, it is usually more efficient to use the “skein”

bNote that here D,, has n + 1 punctures.
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relations than using the definition directly. Also, instead of memorizing the action
of C, on the ajj’s, it is much easier to manipulate the “skein” relations and the
Dehn twists. This provides us another way to calculate the action of a braid § on
i
curve, and then decompose this curve into a polynomial of generators using “skein”
relations, finally replace the generators in the polynomial by the corresponding
)
ij

a;;, namely, first use a sequence of Dehn twists representing 3 to map 7;; to some

al.’s.
For example, to obtain ®,z,, (a$y), we first compute éaf(m (7)) using Dehn
twists that represent a?ag. See Fig. 9. Then we decompose the resulting curve
using “skein” relations to get the expression

~ 1 1 1 1
0 —1 ~1_0 0,1 0.0, -1 0,-1.0
‘I’afao (M2) = "2 — f’Yu M2 T f712722 - FT”712’Y21712 - ﬁ’hz’hl Y12

L 0.0.-1.0
+ ﬁ%ﬂzﬁ’n Ti2-
Replacing the 7;’s above with aj;’s, we obtain the expression for ®,2,, (afy).

There are analogous topological interpretations of the extended actions of C,
on At and A, . The procedure goes the same as above, and we will only point out
what modifications should be made at each step.

First of all, let D;” be the punctured disk with punctures p,po,p1,.-.,Dn
arranged from left to right and similarly let D, be the punctured disk with punc-
tures p,p1,...,Pn, Pnt1- Also in both cases, still choose the points ¢; = p; — €, for
some tiny € > 0. Let QF be the set of equivalence classes of curves in D;* which
start and end at the ¢;’s . Define ,Zlf to be the R-algebra generated by elements
of QF modulo the “skein” relations in Fig. 10, where ¢+ = qo in the “+” case and
G+ = Qn+1 otherwise.

q)a?ao (7?2)

Fig. 9. @2, (7)-

ajag
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(1) O =14pl I<i<norg=q+
0]

qi
(2) /\Ziojﬁ +—/(sz = % —>—‘q:O ®q:’0ﬁ¥ 1<i<n
q+
(3) -/qim = e

Fig. 10. Skein relations Af

So we added one more relation when defining Ari” namely, the curves are allowed
to pass through the new puncture py (respectively, pp41)-

The fundamental group of D is the free group F, .o generated by e, €', e;, 1 <
1 < mn, where ¢’ is the generator that corresponds to the new puncture
po (respectively, p,+1). We will use the same intermediate algebra B, and the map
7 is extended to F, o by furthermore defining 7(e¢’) = 1.

In the same way as we defined the isomorphism % from A, to A,, we can define
an isomorphism ¢* from AF to AE which sends 77 to a;.

Next, we extend the action of C,, to A.

Recall the embedding e : C,, — C,1 introduced in Sec. 2.1. For notational con-
venience, we denote the generators of C,11 by a_1, ag, ..., a,—1. Thus the embed-
ding €T sends aqg to apa_1agp and a; to a;,1 < i < n — 1. From the geometrical
point of view, €™ simply inserts a strand labeled by py right next to {p} x [0, 1].
See the first picture in Fig. 11.

Any braid in €(C,,) fixes p and pg. Thus, the action of C,, via the embedding
€T preserves all the “skein” relations defining A,*L , and therefore induces an action

dt on Af.
For the action ®~ of C,, on A, , we use the other embedding ¢~ : C,, — Cp41.
Note that here the generators of C,,+1 are v, . .., ay, and € (o) = @;,0 <7 < n—1.

The map €~ inserts a strand labeled by p,,+1 on the right of the braid. See the second
picture in Fig. 11.

Note that in Fig. 11 we use ¢ to represent p;.

Again, since elements of ¢~ (C,,) fix pn41, they preserve the “skein” relations
that define A, . We thus get an induced action ®~ of C,, on Aj.

A, can obviously be embedded as a subalgebra into A,il We have the following
theorem which relates the topological interpretations of the actions of C,, to the
algebraic interpretations.

Theorem 2.10. The maps ™ : ./Ljf — A* are algebra isomorphisms and commute
with the extended actions of Cy,, namely, for any B € Cy, ¢i<1>§ = @;}wi. Moreover,
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Fig. 11. et (a1ap) and e~ (a1ap).

((I)é[)lfin = @g, and the following diagram commutes:

Ay

~ L
[ f 26)
o

And each of the maps in the above diagram preserves the action of Cy,.

Proof. Proofs are analogous to that of Theorem 2.7. |

2.2.3. Properties of the actions

It is worth noting that the action of ® on A,, and the actions of ®* on AE can also
be visualized as follows.

For a braid 8 € C,, draw a braid diagram of [ inside D,, x [0, 1], such that the
intersections of the braid with D,, x {0,1} are exactly the punctures p;’s. Perturb
the braid diagram to get a parallel copy of it such that the intersections of the copy
with D,, x {0, 1} are the ¢;’s. For any curve v C D,, x {0} representing some element
in A,, slide ~ along the copy diagram in the complement of the braid diagram until
it reaches D,, x {1}, then the resulting curve is ®3(7).

To visualize ég, we draw a braid diagram of €*(3) inside D x I, make a
parallel copy of it, and slide any curve along the copy diagram up to D x {1}.

With the above observations, we have the following simple but important
proposition.

Proposition 2.11. Let § € C, be a braid, and let vy1,7v2 be two curves in
Q,, (respectively, QF) such that y1(1) = 72(0), then ®g(v1 * v2) = Pp(y1) *
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Ds(v2) (respectively,i);jt(’yl *yp) = i);jt(’yl) * i);it(w)), where * again means con-
catenation of two curves.

Remark 2.12. For two elements 71,2 € Q,, such that v1 (1) = v2(0), the concate-
nation 7; * s is different from the product ;2 when they are viewed as elements
of A,,. For instance, 7%, * = fyfj” # Vi € A,. Note that the product sign in
an algebra is either denoted by ® or omitted, as stated at the beginning of Sec. 2.2.

We can also define the “x” operation on some elements of A,, (respectively, A¥F).

Definition 2.13. (1) Let P,Q € Ajy(respectively, A¥) such that P = Y _,
S Praf.Q = ez Z;L:I ay;Qf, PP, QY € Ay (respectijr/ely, ALY, then PxQ €
Ay (respectively, A7) is defined to be 35, 37| Prai QY.

(2) Two elements P,Q € A, (respectively, AF) are called connectable, if they
satisfy the condition in the definition above.

The * operation defined on elements of Q, and that on elements of A, are
related by the following proposition.

Proposition 2.14. Let 71,72 € Q, (respectively, Q) such that y1(1) = v2(0),
then 1(y1 % 72) = P(71) * P(72) (respectively, (1 % 72) = = (1) * »*(72)).

Proof. We only prove the case 71,72 € Q,. The proof of the other two cases is
analogous.

Recall the construction of the isomorphism ¢ : A, — A, in Sec. 2.2.2. We
will also have the notations from Sec. 2.2.2. Assume 71(0) = ¢;,11(1) = 12(0) =
gk, Y2(1) = gj, and let V1 = &; * v * Ok, Jo = Ok * Yo * 6} Then v %72 = 172,
where 712 means the multiplication of v; with 5 in the fundamental group of the
punctured disk (but not the concatenation of the two curves). Thus ¥ (y1 * 72) =
i T(N172) = 045 (T(71)7(72)), since 7 is multiplicative.

If M,N are two monomials in B, then one can get the fact from the def-
inition of «;; that a;,(M) and ay;(N) are connectable and that a;;(MN) =
o (M) * a5 (V). Extending linearly, this equality holds for M, N two polynomials
in B.

Therefore, ¢(y1 * 72) = aij(T(71)7(72)) = @ir(T(11)) * i (T(72)) = P(71) *
¥(72). O

Proposition 2.15. If P,Q € A, (respectively, AY) are connectable, then for
any B € Cpn, ®p(P) (respectively,@E(P)),QB(Q) (respectively,@?(Q)) are also
connectable, and (P x Q) = ®g(P) * ®5(Q) (respectively, <I>§(P * Q) = @; (P) =
24(Q)).

B

Proof. Again, only the proof of the case P, Q) € A,, will be shown, as the proof of
the other two cases is similar.
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We first prove @g(affy) = ®p(afy) * Pp(ay;)-
By Theorem 2.8,

Op(af) = (7)) = vPs(vih),  Bplay;) = vPs(1;)- (2.7)
By Proposition 2.11,
Dp(v5) * Pa(vl;) = Pa(vih *7L,) = 2a(v5TY). (2.8)

By Proposition 2.14 and Eq. (2.7),

(D (Vi) * D5 (1)) = L(Ds(vR)) * Y(@s(31;)) = Pplaf) * Ds(ay,). (2.9)
Also by Theorem 2.8,
D(@p(;™)) = B (vi;™)) = Dplai;™). (2.10)
Combining Eqs. (2.8)~(2.10), we get ®5(ag;¥) = ®g(afy,) * Ps(af,).
In general, let P,@Q be as described in Definition 2.13, then for g € C,,

Ps(P) = > ez 21 Pa(PP)®p(afy), and @5(Q) = EyEZ Z?:l %(ﬁﬂ%(@?)-
Since ®5(af;) and ®g(ay;) are connectable, ®5(P) and ®5(Q) are also connectable.
Moreover,

Cs(P)x05(Q) = D D a(PF){Pslai) * Dp(af;)}s(QY)

z,y€Li,5=1

3N @s(P)Rs(al ) B(QY)

z,y€ELi,j=1

S DI LAL!

z,y€Li,j=1

= (I)Q(P*Q) O

Remark 2.16. We will identify A, with A,, A* with A*, v;; with af; via the
corresponding isomorphisms and identify @ﬁ with @3, @; with <I>§7 respectively. A
useful picture to keep in mind is as follows. a;; is the left arc diagram described in
Fig. 6. The action ®g (respectively,q)?;) of 8 on some curve is to slide that curve
along the parallel copy of the braid diagram that represents 3 (respectively, e (3))
up to D,, x {1} (respectively, DI x {1}).

3. The Framed Knot Invariant

From now on, we will assume the closure of 5 € C,, is a knot in S* x S2.

In this section, we first give the definition of the framed knot invariant. Since the
knot invariant looks complicated at first glance, we will compute some examples
after the definition. We then proceed to give some ancillary results, and finally
prove the invariance under Markov moves.
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3.1. Definition of the invariant

Here are some notations we will use to define the invariant.

Let M+ (A,,) denote the set of co x oo matrices with elements in 4,,, namely,
the rows and columns of a matrix in M (A,,) are both indexed by integers. We call
a matrix row-finite if there are only finitely many nonzero entries in each row. A
column-finite matrix is defined analogously. If M, N are two matrices in M, (A,,),
in general the multiplication of them is not well-defined. However, if M is row-finite
or N is column-finite, then M N is well-defined. And the associativity is satisfied
whenever multiplications make sense. Throughout the paper, the matrices always
satisfy the above condition when they are multiplied together, and for x,y € Z, we
will use M*¥ to refer to the (z,y)-entry of M. We will also use an element ¢ € A,
to represent the scalar matrix in Mo (A,) which has entry ¢ on the diagonal and
0 elsewhere. Let M, (M (A,)) denote the set of n x n matrices with entries in
Mo (Ay).

Recall €* : C,, — C,41 are the two embeddings, and for 3 € C,, (P
Py = ((P;)lAn :

It can be derived from either the algebraic description (Sec. 2.2.1) or the topolog-
ical interpretation (Sec. 2.2.2) of the actions that for 1 <i <n,x € Z, ®5(af,, 1)
can be written as a finite linear combination of af ,, 1,1 <k < n,z € Z with coefli-
cients in A, A similar argument holds for ®5 (a? ,, ;), @5 (af ), @5 (aff ;). For exam-
ple, (I)E(ag,i) is a finite linear combination of af ; with coefficients in A, multiplied
on the right. Explicitly, this is how we define @, @57, &%, &1 € M, (Moo (An))
below.

For each g € C,,1 <1i,7 <n,z,y € Z, define

§ : 2 z
a; n+1 1k ak,n—o—lv

k=1 z€Z

a? 2y
n+1,j n+1, k k:]’

k=1 z€Z

ZZ (I’+L )ik @00

k=1 z€Z

o} (a Zza“ oy,

k=1 z€Z

[;)IATL =

5

where (@EL)Z”,CZ is the (z, z)-entry of the co x co matrix (@EL)ik which is the (7, k)-
entry of the n x n matrix <I>§L. So we have <I>§L € Mp(Moo(Ay)). Similarly, we
have 57, &FF, @5 € M, (Mo (An)).

Define a;; € Muo(An) by (ai;)™ = aj;"” and define A € M, (M (Ay)) by
Aij = aij.
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Lemma 3.1. For 8 € C,,1 < i,j < n, (@EL)U7(<I>;L)U are row-finite and
(@ER)ij7 (CIDER)U are column-finite.

Proof. These are direct consequences of the definitions. O

Lemma 3.1 is used to validate the matrix multiplications involving
(PgL,@EL,QER and (I)ER in the rest of the paper. For instance, the product
(I’EL A(I%R is well-defined.

Remark 3.2. Actually, (@EL)”', (@gR)ij are both row-finite and column-finite.
This is due to a careful inspection of the action ‘DE. This property will not be used
though.

For 1 <p,q<n,feZ,let Ay, 4 € M,(Ms(A,)) be the diagonal matrix with
the (i,4)-th entry Aoorp=Foa 1 <i<n,.

Definition 3.3. Let 8 € C,,,1 <p,q<mn,f € Z, then HCy(0; f;p, q) is defined to
be the R-algebra A, modulo the two sided ideal Zg; ., , generated by the entries
of the entries of following matrices:

A— Af;p,q(I)_LAv A—Ady RAJTP qQ’

A—Appg®FhA, A= ADERALL

Remark 3.4. (1) For a matrix M € M,,(Mx(A,)), the phrase “the entries of the
entries of M” is really awkward. We will use “the elements of M” to stand for “the
entries of the entries of M”.

(2) Note that

(qufq) L4) Iy Zz/\é”’ﬂ Toia(O EL)Z:/@ZAZZ;

k=1 z€Z

5i Sia((Pzl
_ZZ/\ IO (BT ag ) xal

k=12€Z
— N\oiwy—f0iad— (g% Y
= ArpT 0@ (a0l ) * an gy -

: ey _ oty _ oz Y fons | ! S
Since A;/' = a;;"" = aj 1 *a,q ;, the relations in Zg, s, 4 are the same as the

following:
Ayt * Ay j— )\51'=P/1_f5i=q<1>[§ (af 1) ¥ ap iy s
af i * afLHJ — )\_5-7=Puf5-7=‘1af,n+l * Dy (afLJrlJ),
ajo*ag; — A Sip =10 q<I>+( ago) *ag ;,

ajo*ap ; — A*‘sfvpuf‘sf'qaf,o * @;(ag,j), V1<i,j<n,z,y € Z.
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For § € C,, it has a natural action by permutation on the set {1,...,n}. Our
convention here is that the braid diagram always goes upward, and if the ¢th strand
ends at the jth position, then §(i) = j.

Lemma 3.5. For § € Cpn,1 < p,q < n,f € Z, we have HCo(B; [;p,q) ~
HCo(8; f:8(p),q) ~ HCo(B; f;p,8(q)).

Proof. Define ¢ : HCo(5; f;p,q) — HCo(B; [;8(p),q) by (af;) = A%uew) x
afj)\‘s-ﬂﬁ@). We need to check that 1 sends Zg.f.p 4 t0 Zg.1.5(p).q-
Note that @ (a7 ,,1) * apyy, ; can be written as a non-commutative polynomial

. . . . xr
in which each monomial is of the form a%!.. . a72. ---a. """, thus we have
B(i),i1 11,02 ik,J

+1 Oip,,—fdi —
1/’(02 Y Ny ~S Py (af 1) *a‘%+1,j)

NG s TYNG,, Sip —FSia N85, - y 55
=\ ﬁ(p)aij A8 — )\ g ia \TOB8( )ﬁ(p)(I)ﬁ (ai,n—i-l) *an+1,jA 3.8(p)

-5, + 5 —FOia 5
=A% (T — A%ee) ! 1@ (a7 1) * p g AP € Tppop(p) -

The other three relations in Zg.f., , can be shown analogously that they are
mapped under ¥ to Zg.f.5(p),q- Thus the map 1 is well-defined. It follows directly
from the definition that 1 is a bijection.

The isomorphism HCy(5; f;p, q) ~ HCo(S; f;p, 5(q)) can be defined in a similar
way by mapping aj; to IO afju_f‘smm. O

Corollary 3.6. If the closure of 3 € Cp, is a knot in ST x S?, then HCo(B; f;p,q)
1s independent of the values of p,q.

From Definition 3.3, HCy(5; f;p,p) can be obtained from HCy(3;0;p,p) by
replacing A by A\u~/. We will use the notations HCy(8; f;p) = HCo(B; f;p,p),
HCy(B; f) = HCy(B; f;1,1) and HCy(B) = HCy(5;0;1,1). By Corollary 3.6,
HCy(B; f;p) is independent of the choice of p, so we have HCy(0; f) ~ HCo(S; f;p)
for any p.

The following theorem is our main result.

Theorem 3.7. Let B,a € C,, f € Z such that the closure of 3 in S*' x S? is a
knot, then we have the following algebra isomorphisms:

(1) HCo(B; f) ~ HCo(a ' Bas; f);
(2) HCo(B; f) ~ HCo(e™ (B)anm; f — 1) ~ HCo(e™ (B)a, b5 f + 1);
(3) HCo(B; f) ~ HCo(eT(B)ar; f — 1) ~ HCo(e* (B)ay's f + 1).

The proof of the theorem will be given in Sec. 3.4.

Endow S* x S? with the standard orientation. Let K be a framed oriented knot
in S x S? with [,m the homotopy classes of the longitude and the meridian of
K in m1(S* x S?\K). The orientations of K and S* x S? determine the meridian
class m uniquely. More precisely, let v(K) be a tubular neighborhood of K, which is
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homeomorphic to K x D?. Choose an orientation on D? so that the homeomorphism
of v(K) with K x D? is orientation preserving. Then for any z € K, the image of
z x OD? under the homeomorphism determines the meridian class. Assume K is
represented by the closure of a braid § € C,, and that [ = [B’}mf, where 3 is a

parallel push-off copy of § and ['] is the homotopy class represented by the closure
of @, then HCy(K;!) is defined to be HCy(5; f).

Corollary 3.8. HCy (K1) as an R-algebra is a framed knot invariant for knots in
St x §2.

Proof. For a braid diagram 3 € C,, let 3’ be the parallel push-off copy of 3. Then
we have [3]m*! = [(e+(B)ait)], [3lmE = [(e~(B)aiit)] and for any a € C,,, we
have [3'] = [(a=1Ba)]. O

Remark 3.9. The invariant HC((K;1) is conjectured to be the zeroth knot contact
homology of K, which is defined to be the zeroth Legendrian contact homology of
Ag in ST*(S* x S?), where ST*(S! x S?) is the unit cotangent bundle of S* x S?
and A is the unit conormal bundle of K. As this paper is not relevant to proving
this conjecture, readers should just treat HCy purely as a name.

3.2. Examples
Before proving invariance, we first look at some examples.

Example 3.10. (1) Unknot. The most simple example is the unknot represented
by the identity element e in C;. We compute HCy(e; f) for f € Z. In this case,
it is straightforward that ®}L ®F% &L d_ F are all identity matrices, thus all
the relations in Z. .11 become (1 — Au~7/)a¥;, and so HCy(e; f) ~ R{a%,,z €
Z)/((1 = M )aky).

(2) a3. Set 3 = a3, A = Ago.1.1. We first compute ®3%, &7, Direct calcula-
tions show that @} (af,) = p?af; %, @} (af;) = p~%af{?. Thus we have (}")7} =
12652y, (P51} = 1726, _2,, and therefore (ADFA)TY = Au2afy ¥ 2, (ADSH x
AN = (\p®)"tal Y. So the third and fourth relation defining Zs.o.1.1 both

are af;? — \u2afy, x € Z.
Now we compute <I>§L,<I>[§R. By definition, ®7 (af;) = af;, @7 (afy) =

—patyt + %agflaﬁl. Therefore,

- x — xr— 1 — x — —
‘I’ag (afy) = Py, (afy 1) + f‘I’aO (all)(I)ao (a121)

2 22 M oz1 1 H —22+

— xr
= payp s — fall Qo — Falla‘l

By Part (2) of Remark 3.4,
—L gy +y—2 —1_y—1 -2, 1 —1 y—1
(ARG A)TY — ATV = MpPaiy V™" — fafy afy — fafiaf)” + mafiag; af; ) —

T4y
Q1 7

1
rx —1 -1
ﬁanau g -
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Similarly,
—R A —1\2y Ty 2\ — r4y+2 1 x+1 y+1 1 x+2 z+1
(A(I’ AT = AT = (wf) ( ay —r1011 411 — Fan a11 + r2a11 X
1 .Yy z+y

ajpaiy) —aj; ’

Slnce we have a7 — Apa®,, then the above two relations can be simplified as
11>
z—1 y— 2 1 -1 _y—1
afi tal! + afyaf; — ;011017 0, and

afi el + afiaf? - 111‘13101 ‘afyaf?
And only parities of x and y will make a difference in the above two relations.
Direct calculation shows that HCy(3) ~ R[X]/{(1 — u)X, X2 — T2X\(1 + u)?).
Replacing A by Au~7, we obtain HCy(8; f).
It will be shown in Sec. 4.2 that ;g is a particular knot in a large family of
knots, namely the torus knots. Explicitly, it is the (1,2)-knot. See Sec. 4.2 for a
definition of torus knots and more examples.

3.3. Properties of ®*TL, TR

We give several propositions which will be used in proving the invariance of
HCy(K;1). A similar version of these propositions are proved in [7] where the
author defined the HCj invariant for knots in S°.

If ¢ is an algebra morphism from A,, to A,,, and M € M,, (M (A,)), we denote
by ¢(M) or M(¢) the matrix obtained from M by replacing each af; by é(a;).
Recall in last subsection, we defined the four matrices <I>EL,<I>§R7<I>;§L,<I>;R €
M, (M (Ay)) for g € C,.

Proposition 3.11. Let (51,32 € C,, be two braids, then we have

(I)gngz ((I)ﬂl)(I)ﬁILa
O = D (D),
opl =04 () RLT,
(I);l%z _ (I)+R(I,+R((I)Bl)

Proof. The proof of the four equalities are straightforward and completely analo-
gous, so we will just prove the first one.

By definition, ®, (af, 1) = > i_; > .cn(®5; byzz @, py1- Thus,

(I)Elﬂz( l’ﬂ+1> q) (I) (ln+1)

= Z Z (I)ﬁl 52 lk >(I)El (az,n+1)

k=1 z€Z
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Z Z (I)ﬂz (®5,)i) ((I)ﬂl )ka ;jn+1

k,g=1z,y€Z
:ZZ 5 (6,)251)i} al i
Jj=1y€eZ

On the other hand, by definition, <I>ﬂ [32( : n+1) = Z;’Zl Zzez(q)[;lﬂg)fgy ;jn+1‘
Therefore, we have (<I>ﬂ2 ((I)ﬁl)q)ﬂl )ocy _ ((I),BlLﬁg)ny -

Let I, € M,(Mx(A,)) be the identity matrix, i.e. (In)ij = 0;,j0z,y. Then
apparently, for a trivial braid 8 € C,, @EL,Q%R,@*'L (IJ;;R

Therefore, we have the following corollary.

are all equal to I,.

Corollary 3.12. For any braid g € C,, <I>§L7<I>ER,<I>;L,<I>;§R are all invertible.
Ezxplicitly,

(@557 =055 (@), (257! =@ N (Dp),

(@5 = @fL (@p), (5! = @15 (D).
Proof. In Proposition 3.11, set §; = 3,62 = 6~ L. O
srs — &=L A6—R _ &+L Ap+R
Proposition 3.13. For any 8 € C,,, we have ®g(A) = Py AR, =0 ADL T

Proof. By Proposition 3.11, it suffices to show the above equations hold for any
ay € Cp, which can be verified directly.
Here we provide another way to prove it.

_ + _
(I)B(Aij) = (I)g (afj V) = (I)g (af,n+1 * angH»l,j)
Proposition 2.15 _ _
= (I),B (a7 n+1) * Dy ( %+1,j)

= (Z Z(‘I)EL)flfaz,nH) * (Z Z afL/—i-l,k/((I)ER)zi?>

k=1z2€Z k'=12'€Z

= Z > (@ ap (95

k,k'=1z,2'€Z

PP LS
k,k'=12z,2'€Z

_ —L —R\zy

= (@5 A2 )]

The other equation can be proved analogously. O
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Corollary 3.14. For § € Cu,,1 < p,q < n,f € Z, the elements of A —
Af;p,qi)f;(A)AE)’q are in Lg, qu More generally, if b = azl i f;lg e fk",ikﬂ,

A(Si,p'u_f‘si-rq, then b — C“(I),B(b) ir

Cirya

C; =

is 1 1g;fip.q-

Proof. Set A = Ay, 4. Then
A—AP(A)A™! = A-AD AR AT = A- ADSFA+ AR (A— ADSFATY).
The elements of the right-hand side of the above equation are in Zg; s, 4, which
implies the first part of the corollary. The more general statement in the corollary
is then a direct consequence. O

3.4. Invariance proof

In this subsection, we prove Theorem 3.7. The three parts in the theorem correspond
to the three types of Markov moves introduced in Theorem 2.3. In the following
three subsections, we prove each part of the theorem, respectively.

3.4.1. Invariance under Markov move 1

Let 3 = a'Ba,a,3 € Cp, f € Z, and define m = a~'(1). Set A; = Ag;;. We
define an isomorphism ¢ : HCy(0; f;m) — HCy(5; f;1) by specifying the image of
the generators.

P(A) := Pa(A), Le.p(a;) := Palaj;).
We need to show ¢(Z5. ;... ) C Lpspi1,1-
First of all, by using Proposition 3.11, we have

Do (0.5 5,) = a(@50 (Bo-1)0 1) = 0 0 L (00) = 0,1 (05) 0570 L (D),

Therefore, we have

P(A = A @57 A) = o(A) = Anp(257)0(4)

= D (A) ~ An®a (@7, )Pa(A)

o
= Ba(A) = M@ 5 (D)5 DT (Bo) R AR
= O PADT — A @ (D)0 AR
= (0,7 — 0@, M (@p)AT ) AR,

+ AR @ (R) AT (A - M RGP AR

Since (&,

aL)my

£ is a non-commutative polynomial in which each monomial is

a(z) #0504, a5k, and note that 0im = da(i),1, then (25F —
T2 T

A @ E(Pg)AT )ij is a sum of polynomials of the form aa(l) PR A

(A= )oar1®5(a” @i PRSP EE aﬁ,l,j)()‘ﬂff) %1 which, by Corollary 3.14, is in
Zs:pi11-

of the form a”
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Since elements of A—A1<I>ELA are also in Zg.;11, this implies p(A —
Am(I)ELA) CIg.f1,1-

The proofs of the other three relations ga(A—AfIJERA;ll)7 ga(A—Am@gLAL
p(A— ACIJERA;}) can be done similarly.

This shciws @(Iﬁ;f;m,m) C ©(Zp; f;1,1) and thus ¢ induces a well-defined
map HCy(0; f) — H Co(B; f). In a similar way, we can define the inverse map
HCy(B; f) — HCo(B; f) by sending A to ®,-1(A) and show that it is well-defined.
Thus ¢ is an isomorphism.

3.4.2. Invariance under Markov mowve 11

For any (8 € Cn, f € Z let 3 = ¢ (3)an. We show HCo(B; f) ~ HCo(8; f + 1).

Remark 3.15. The proof of HCy(e~(B)a;,, s f + 1) ~ HCy(B; f) is completely
analogous. To save space, we omit its proof here.

Define ¢ : HCO(B;f;n—f— 1) = HCo(Bs f + 1;n),

ap., i=n+1,j=n+1,

TN /Jfa’ij Z:n+17]§na 3.1

p(ag;) = N P (3.1)
porag, 1<n,j=n+1,

x

a’.

i 1< n,j <n.

The verification that ¢ maps Z5 . 4

long calculations. we will only show @(aij — (Au’f)5i’“+1<1>g (af py2) ¥ @y s ;) €

to Zg,f4+1;n,n consists of direct but

1s,f+1;n,n- The other relations can be proven similarly.
Set e =M, T =Tg. 1.
Case l:i=n+1,5 <n.
+1 - . + -
@(ai+1{,j - C‘I)[; (apt1n42) * aZ+2,j) = uaﬁ,jy - C‘P((I)E—(f;)(armz,nJrz) * a’%+2,j)
+ —
= Mai,jy - C‘I’g (afL,n+1) * azr}H»l,j

+ — f— —
= plag;’ — A ! 1‘1)[3 (apnt1) *anyq ;) €.

Note that here we used the fact that @E,(ﬂ) (a3 nio) * a?rjz+2,j =5 (af i) *
afLHJ S An+1.

Case 2: i =mn,j <n.

z+y — (AT Y
L (I)[; (ag nt2) * Apy2 5
1
_ xty - T 0 T Y
N E—(g)(_an+1,n+2 + Ean+1,nan,n+2) *lpio
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T+y 1

=ay; — (=1 o+ Tu o (5)( 2+1,n)¢€_—(5)(aﬁ,n+2)) ¥y o

1
+ + -
an i+ :L—Q—?,j - ﬂq)e—(ﬂ) (a2+1,n)®e—(g)(ai,n+2) N a%+2,j

_zty T+y —(.0 — (AT Y
= Opy Tyl ﬁq’ﬁ (@n41,0) @5 (@7, n41) * Qg gy -

Since (@5 (al ) = pal 1 * @5 (al, ) = cal, (mod ),

w(afij - (I’E (ai,n+2) * a%+2,j)

=1+ pa, gHy —c(1+ )5 (ay, ;1) * apy1,;(mod )

Tw
= (L4 )t — AT (A%, ) * alyy ) (mod ) = O(mod 7).

Case 3: i <n—1,5 <n.

+ - : + -
‘P(a:f,j Y- (@i pt2) * aZ+2,j) = (a I,] O N (0 tnt2) * a%+2,j)
8 8)
+ —
= <P( M (I’;z (a7 py1) * a%ﬂ,j)

. m+y —( T
= i, (I)ﬁ (ai,n+1) n+1 ,J €1

Case 4: j = n + 1. The proof is the same as the above three cases except each
expression is multiplied by an overall scalar p~*.

This finishes the verification. One can also define a map 6 : HCy(53; f + 1;n) —
HCy(B; f;n + 1) sending aj; to af;, and show that it is well-defined. Clearly we
have o8 = Id. To show A = Id, we need to prove in HC’O(B; fin+1), we have the
equalities af,, = paf,, i a5 ;= p tah,, jfor 1 <i,j<n+1.

In HCO(B;f;n—f— 1), we have, for 1 <i,5 <n+1,

x R —r 0 -1 _ =z — 0 —1
Aipt1 = Ay pyo * ‘I)[; (an+2,n+1)c = Qi pyo * (I)E—(g)(anw,n)c

=i, * Py (a2+1,n)c_1a Upi1j = ‘I’E (a2+1,n+2) * Uy o iC
- -0
= (I)e—(g)(a%,mrz) * ai+2,jc = (I)ﬁ (an,n+1) * afwl,jc-
In the above two equalities, set i = j = n+ 1,2 = 0, then we get ®; (ap 1 ,,) =
0241 = (1+ T and B3 (a0, 1) = (1+ p)Te .
Then,

R —7.0
a’i,n - ai,n+2 * (I)B (an+2,n)
T x«d~ (_ 0 4 l 0 0 )
ai,n+2 e—(ﬁ) an+2,n+1 Fan+2,nan,n+1
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T Lo —
= Qi pyo * <_a2+2,n+1 + fq)e—(ﬁ)(a%+2,n)¢e—(ﬁ)(a%,n+l)>

1 _
= _aiI,n—i-l + faim-l * (I),B (a(r)z+1,n)q),(3 (a(r)L,n+1)

1
_ x x -1 _ x
e fcai,n+1(1 +u)le™" = pai, 1,
and similarly,
amv:Q)T(ao EXY
n,j B n,n+2 n+2,j

1
- 0 0 0 T
=5 <_an+1,n+2 + T Ot tntnnt2 | * Gnta s

Lo — T
<_G9L+1,n+2 + ﬁq)e—(g) (a2+1,n)(1)5—(;3) (agmwz)) *Apto

= —ap41;+ E‘I’E(aﬂﬂ,n)% (ag,m-l) * Ay i

@ 1 e
— —an+1’j + ﬁ(l + N)FCC 1an+1’j

=ptag
Therefore, we showed 6 = Id. Together with the fact that 08 = Id, we know ¢
is an isomorphism.

3.4.3. Invariance under Markov mowve 111

Recall that D,, is the unit disk with n + 1 punctures p, p1,...,p, centered at the
origin of the complex plane. To be more precise, let p be the origin and the coor-
dinate of p; be #ﬂ We define a map r : D,, — D, by r(z) = 7 — - Namely,
r is a reflection about the z-axis followed by another reflection about the circle
centered at the origin with radius % Note that 2 = Id. Also r x Id defines a map
on X = D, x [0, 1], which will still be denoted by r.

Since C,, is the braid group on the punctured disk D,, inside X, the map r on
X induces a group isomorphism from C,, to itself. Explicitly, the isomorphism, also

z

denoted by r, is given by:

(@1 arapaq - ap_1)"t i =0,

r(a;) = { (3.2)

Qi 1<:1<n-—1.

Lemma 3.16. The map r defined above from C,, to C,, is a group isomorphism and
r? =1d.

Proof. This can be verified purely algebraically. |

1550067-27



J. Knot Theory Ramifications 2015.24. Downloaded from www.worldscientific.com
by PURDUE UNIVERSITY on 09/12/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

S. X. Cui & Z. Wang

Also recall that ¢1,...,q, are n points with the coordinate n+r1 — ¢ for
some tiny € > 0. And Q, = {¢,1 < i < n}, Q, = {yv : [0,1] —
D, |vis continuous, v(0),v(1) € Qn} ~. Let ¢/, ;_; = r(g;), which has the coor-
dinate ":{}rfl +e and let Q) = {q},1 < i < n}. It should be clear that in the
definition of A, if we replace ¢; by ¢}, insist that the curves start and end at ¢,
and change the “skein” relations accordingly, then we get the same algebra.

For a curve v € Q,, from g; to g;, r(7) is a curve from ¢q;, 1, _; to ;. ; ;. The

map 7 also preserves the “skein” relations in Fig. 5 that defines A,,. Thus 7 induces
an algebra isomorphism from A,, to 4,,.
Explicitly, the map r: A,, — A, is given by Fig. 12.

Remark 3.17. r also extends to a bijection from Q;F to Q. by furthermore requir-
ing that po is mapped to p,+1. And r maps the “skein” relations that define A} to
the corresponding “skein” relations that define A, . Consequently, we get an iso-
morphism r : AT — A~. Note that the inverse map is also induced by 7 that maps
Q,, to Q. For this reason, we will denote the inverse map also by 7. In summary,
r is an isomorphism between A" and A, , which restricts to an isomorphism on A,
and which has square Id.

Lemma 3.18. If P,Q € AX are connectable, then r(P), r(Q) are connectable, and
r(PxQ)=r(P)x*rQ).

Proof. This follows from the geometrical interpretation of af; and the map r. O

Lemma 3.19. If 8 is a braid in Cy, then we have ro®z = ®,.g)or. More generally,
we have ro ®; = @j(ﬁ) or.

Proof. It is possible, though tedious, to prove it algebraically. For example, it
suffices to prove the case for § = a,fl acting on ag;. Here we give another geometric
proof which makes the statement in the lemma almost trivial. Recall that the
isomorphism r : C,, — C,, is induced by the homeomorphism rxId : D, xI — D, xI.
By Remark 2.16, ®5(v{;) can be obtained as the curve by sliding ~f; in D,, x {0}

/ . / ’
Qnt1—j  Quyi—i  dy
ce

Fig. 12. r(af)).
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along the parallel copy diagram 3" up to D;, x {1}. The map 7 x Id maps 7y to r(7{;),
5(7y5) to ro®p(vf;), and B to r(B). Thus 7o ®g(vy;) is obtained by sliding 7(+;;)
along the parallel copy braid diagram r(3)’, and therefore ®,.(5)0r(7{;) = ro®s(7;).

The more general equation can be proved analogously by using Remark 2.16
and Lemma 3.21. 0

Proposition 3.20. For 3 € C,, f € Z the map r : A, — A, induces an isomor-
phism from HCo(B3; f;1) to HCo(r(B); f;n).

Proof. It suffices to show r maps Ig, ;1.1 t0 L(g), fn,n- Set ¢ = A7,

T((Af;l,l(I’ELA)Zy) = 7‘(651‘1‘1’5 (air,'rH»l) * aiﬂ,j)

d; —
=c(ro P (@i nt1)) * T(aiﬂ,j)

671 —i,n
= Ontioh (@:'(5) or(af 1)) *r(ag,y ;)

The first identity in the above equation is by the argument in Part (2) of Remark
3.4, the second identity is by Lemma 3.18, and the third by Lemma 3.19.

Assume 7(af,, 1) = > Piajg.r(a)., ;) = S ag,, Q% where P, Q7 are ele-
ments in A,,. Then

r((A=Apaa®57A))
= ST PR Q) — e, o (PR (k) * ai @)
= Z(sz _ Cénﬂfi,nq)r(ﬁ)(Plfz)cfﬁk,n)aﬁl@zl

P, ) (B)e O (s — P (aho) * a3 ) QF

Note that Pf is a sum of monomials of the form ay',, ;. ai*; ---a;™
501 71,2 Tm—1,

Pz — C‘S"“*i»"@r(m(P,j)c*‘g’f-r" is in I,.(g),fin,n Dy Corollary 3.14.

Then it follows that r((A — Af;LlfI)ELA)fj:y) is in 1, (g); fin,n-

The other relations are proved basically in the same way. And thus we showed
r is well-defined. The fact that r is an isomorphism is direct to check. O

o then

Now we prove HCy(3; f) is invariant under Markov move III. A key observation
is the following commuting diagram.

et
Cn > Cn+1

lr 7 l (3.3)

Cn _c o Crit
Lemma 3.21. The above diagram commutes, namely roet =e¢~or:C, — Cpi1.
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Proof. We only need to check the above equation on generators.

ret(ao) = r(arooon) = an(om - arapon - on) Loy
= (1 oqapar - an_1) "t = e 7(ag).
For i > 1, ret(a;) = r(@it1) = an_; = € r(a;). O

Let 3 € Cy, f € Z, then r(et(B)af!) = r(et(8))r(ai!) = e (r(8))ait!. There-
fore,
HCy(e*(B)oy™s f) = HCo(r(e" (Do) f) = HCo(e™ (r(9)ay s f)
~ HCo(r(B); f £1) ~ HCo(B; f +1).
The first and last isomorphisms above are due to Proposition 3.20 and the

second isomorphism is the invariance isomorphism under Markov move II.
Now we finished showing HCy(0; f) is invariant under Markov move III.

4. Properties of the Invariant
4.1. Symmetries of the invariant

In Proposition 3.20, it was proved that for a braid § € C,,, we have HCy(5; f) ~
HCy(r(B); f). Here we show the relation between HCy(S3; f) and HCo(B37; f).

Proposition 4.1. Let f € C,,f € 7, then HCo(B7; f) is isomorphic to
HCo(B; —f) with X replaced by A\~ 1.

Proof. Let HC{(3;—f) be the algebra obtained from HCy(3; —f) by replacing
A by A~ We define the isomorphism HCo(871; f) — HC}H(B; —f) to be the one
induced by ®5. We need to check ®g maps Zg-1.¢.1,1 to Zg,_f,;1,1 with A replaced
by A71. Set A = Ag,;11, and note that A™! is exactly the matrix A_z; 1 with A
replaced by A~ L.
D(ARTL A — A) = ADLE (05)Dp(A) — Bp(A)

= ADLE (0p) AR — @f T AD L

— +R_ ytL gpt+R

= ANAD" — P AD,

= AA-ATOfR AL

The second equality is by Proposition 3.13 and the third one is by Corollary 3.12.

The other three relations can be proved analogously that they are mapped to 0
in HC{(3; — ). Therefore, @5 induces a well-defined algebra map from HCo(57!; f)
to HCH(B; —f).

In a similar way, one can check that ®g-1 induces an algebra map from
HC}(B; —f) to HCo(B371; f). Therefore, we have HCo(371; f) ~ HC)(3;—f). O
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4.2. Torus Knots

In this subsection, we study some properties of the torus knots in S* x S2.

Let C be the equator of S%, then S x C is a torus which bounds two solid tori
in S' x S2, with zg x C being the meridian and S* x z; the longitude, for some
20 € SY, 21 € C. In [1], a knot in S* x S? is called a torus knot if it can be isotoped
to a knot in S* x C. Fix a meridian M and a longitude L in S' x C, and let p,q
be two relatively prime integers. A (p, ¢)-knot in S* x S? is a knot which can be
isotoped to pM + gL in S* x C. In general, for a knot K and a framing I, HCy(K;1)
may not be finitely generated as an R-algebra. However, we show below that for
torus knots, the invariant indeed is always finitely generated.

Theorem 4.2. Let K be a (p,q)-knot in S x S? with framing | where p,q are
relatively prime integers, then HCo(K;l) is finitely generated as an R-algebra.
Moreover, the minimum number of algebra generators is no more than g — 1.

Proof. By Remark 2.4, a (p,q)-knot is represented by the braid [(p,q) =
(oo -+ - ap—1)7. See Fig. 13 for a picture of (3,2)-knot. For simplicity, we still use 3
to denote 3(p, q). Also for reasons that will become clear below, we use the notation
by, = afyy j11- Assume HCo(K;1) = HCo(B; f) = Ap/Zp.pa.1, and set ¢ = Au~ 7.
One can check that the following equation holds:

aiy10 1<i<p-1,

Q’Z(p,l)(afo):{ o (4.1)

x _
paiy i =p.

izltq| p—|i=lEd)
Then we have <I>ﬁ(p q)( ) = ,ul g Qi 110 (modp)+1.0° I
ita | w—| ]
a1 j+1, we get a simpler expression <I>ﬂ(p pbi 1) =pt? Jb(l+q) (mod p),—1°
Thus by Remark 3.4(2), the third relation that defines Zg. ¢, 1 is

Using b7; to replace

w e i, =2 -
by — pl v Oqu Tmodp) 0 Shi<p—1lz €l (4.2)

N

N~ 12 3/
Fig. 13. (3,2)-knot.
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Similarly, the fourth relation that defines Zg. .11 is
+| 7+QJ

m _LJ+<1J 75
bi; — 0By ) (mod )’

0<i,j<p—1,z € Z. (4.3)

Define g(i, k) := Y1y CHLCRRE | Ri k) i= S0 6i4rg) (mod £).0:0 <
i <p—1,k>1, and define ¢(¢,0) := 0, h(i,0) := 0.

It is elementary to verify that g(i,k) = L%jq + g(i, kmodp) and h(i, k) =
L%J + h(i,kmodp), and in HCo(B; f;1,1), we have the equalities bf; =
190k ch(i k)b? «jc(ql)k(znodp) ; }Mfg(j,k) c—h, k)b%%f%)(modp) Vk > 0. Especially, we
have bj; = ,ug(l ) h(“p)bfj 9Gp) _ ,uqcbfj*ﬂ so bj; is periodic, up to a scalar, in x
with period equal to q.

Let k1, ke be any numbers that satisfy kjq (modp) = 4, kaq (modp) = j, then
blz _ 'ug(O k2)—9(0,k1) h(0,k2)—h(0, kl)baﬂ‘g(ovkl)*.‘1(07162)7 and bg(—)i'q = p9chg,. Thus all
the b7;’s are completely determined by b3y = (1+u)T, bgs - - - bgal and the condition
that bga'q = plchbf,. So HCy(B; f) is finitely generated and {b%,,1 < x < q—1}is
a set of generators. O

At the end of this subsection, let us compute some examples of torus knots.

Example 4.3. (1) (p,1)-knot. The (p,1)-knot is represented by the braid
o - - - ap—1. By Markov II in Theorem 2.3, this braid has the same closure as that of
ag. Set § = ag € C1, A = Ag;1,1, f = 0. By the proof of Theorem 4.2, am'H Apaiy.
Since af; = (1 + p)T, we have a¥; = (1 + p)['(Au)®.

By definition, ®j(af,) = —paty '+ fafjar,, thus (A<I>_LA AT =
—dpal T+ 2adyaly T — af Y. The second relation can be calculated analogously.

By using the fact that a¥; = (1 + p)I'(Au)®, we see that HCo(ap) ~ R/{(u? — 1).

(2) (p,2)-knot. By [1, Proposition 2.2], all the (p, 2)-knots are equivalent to each
other with p odd. This can also be seen directly by Markov moves. Thus, we only
need to compute the (1,2)-knot, which is represented by 3 = o2. It was shown in
the second example in Sec. 3.2 that HCy(ad) ~ R[X]/{(1—p)X, X2 —T2\(1+4p)?).

(3) (p,3)-knot. Again by [1, Proposition 2.2], there are two classes of knots of
this type. A representative of each class could be chosen as (1, 3)-knot and (2, 3)-
knot. Here we only compute HCp(3). Since the calculations are not difficult but
tedious, we just present the result obtained by computer packages. HCp(aj) ~
RX, V) (Y2 TN (144X, X2 —T(1+p~2)Y, (1 + p®) (XY - Y X), —p2XY +
YX + D2t (p? - 1)).

4.3. Local knots

Throughout this subsection, I' is set to be —1. A knot is called local if it is contained
in a 3-ball. Thus a knot in S' x S? is local if and only if it can be represented as
the closure of a braid which does not contain ag or agl, i.e. a braid in B, =
(a1, ..., an—1) CCy, for some n > 1.
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Let 8 € B,, C Cp, and let heg() denote the zeroth framed knot contact homol-
ogy of [ defined in [9]. Then we have the following decompositions for the HC
invariant of local knots, which relates our invariant to hcg.

Theorem 4.4. Let § € B, be a braid such that its closure is a local knot in
S x S2) then there exists a strictly ascending sequence of subalgebras of HCo(f3),
Hy G H\ G Hy G ..., such that HCo(B) = U, >0 Hm, and that Ho ~ hco(B3) if
we make the change of variable i — p="' in heo(B). In particular, HCo(fB) is an
infinitely generated algebra.

Proof. Set A = Ag.1,1.

Since § € B,, does not contain «g or ao_l, the actions <I>_ and <I>;§ are determined
by Eq. 2.2. It can be derived from Eq. 2.2 that ®; (a; n+1) Dy (a9 1) %G5 s
and that <I>+( o) = P5(ai, 1) * agiio = (I)B( 9 1) * i 0. Therefore,
((I)JFLA)W = (I)+( afo)*ag; = P (a Tna1)xag g ;= ( LA)ZIJy» Le. (I)+LA Dy L.
Similarly, we have A<I>+R A<I> R . So to compute HCy(3), we only need to con81der
the relations A — A(I’ELA and A - A(I’ERA_l

(A(I)ELA)Z:;/ = )‘di I(I)_( Zjn+l) gL—‘rlj - )‘6l l(b ( 'Ln+1) * aii?{,j = )\5i’1®§
(a?,nJrl)*a?LHJ *aj;' - (A<I> LA)OO*a;H]'y. i )

T};ls, AT — (/E:D A} = (A%0 — (A7 A)Y) * afY. Similarly, A7) —
(A®; A‘l)f =aj ¥ x (AO0 (ADg A‘l)%o).

For each non-negative integer m, let

E,, =Z{a

and let H,, = E,,/J;, where J,, is the idea of E,, generated by the following
elements:

(AY — (AD; LA xaf

ag;, 1 < 4,5 <n, |z[ <m),

5 af e (AY) — (A TATN), 1 <4 i <n, 2| <m.

For each m, one can define the algebra morphism ¢, : H,, — HCy(f3), such
that v (af;) = a”, |x] < m, and the algebra morphism m, : HCy(8) — H,,, such
that 7, (af;) = af; if [x| < m, and that m,,(af;) = 0 otherwise. The maps ¢, and
T, are clearly both well-defined, and 7y, = I d. Thus, ¢, is injective. Identifying
H,, with its image ¢, (Hy,) in HCo(3), we get HCo(5) = U, >0 Hm-

Next, we show H,, is a proper subalgebra of H,,1. -

The map T, restricting on H,, 1, sends a"j”'l to 0, and for |z| < m sends each

; to aj;. Thus a"ﬁ'l € H,, if and only if a"frl = 0. However, by Proposition 4.6
Wthh is to be proved in Sec. 4.4, if one sets A\ = p = 1, then there is a Z-algebra
morphism from HCy () to Z mapping each a;; to —2. ¢ This implies none of the
a;;’s is 0 in HCy(B) when A, u are set to 1, Wthh furthermore implies the aj;’s are
not 0 in the original HCy(3). Therefore, af’ﬁ'l is not contained in H,,, and Hm is
a proper subalgebra of H,, ;1.

“Note that in this subsection we have set I' = —1.
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Lastly we show that Hy ~ hcj(5), where hej(8) is heo(8) with u replaced
by p~ 1.

By Eq. (2.2), the action of ®3 on Ej is exactly the same as the braid action
given in [9] if we set T' = —1, and make the change of variables as follows: a; = jia;;
if i > j and af; = a;; otherwise. The readers should be warned that here a;; is the
symbol used in [9], but not the oo x oo matrix we defined before. In the language
of [9], af; is the same as paj; in that paper. Moreover,

g (@9 1) ¥ ap 1 = @5 (aint1) * Ay = Z((‘I’é)ikak,nﬂ) xap
= Z(((I)é)ik’ag,n+l) * a9L+1,j = Z(‘I’é)ikag,f

Then we have AY) — (A®;7A)Y = af — Nurdg(a), ) *ad,, ; = af —
A%t Z(@g)ika%j7 which is exactly p times the (i, j)-entry of A — A<I>§A defined
in [9]. Similarly, A} — (A@ERA’l)?jO = ad; = A\"%ral, ) x D (ah 4y ;) is p times
the (7,j)-entry of A — A@gAfl. Therefore, there is a well-defined isomorphism
Hy — hep(B) sending a?j to pasj if 1 > j and a;; otherwise. O

We just showed that HC) is infinitely generated for local knots. On the other
hand, by Theorem 4.2, HCj is always finitely generated for torus knots. Some
computer calculations indicate that HCjy might be finitely generated for non-local
knots. This motivates us to come up with following conjecture.

Conjecture 4.1. Let K be a knot in S* x S? with framing [, then HCo(K;1) is
finitely generated as an R-algebra if and only if K is not local.

4.4. Augmentations

The presentation for the invariant HCj could be very complicated for general knots,
especially when the number of crossings is large. It is thus very difficult to analyze
the algebraic properties of HCj from its presentation. We will deduce a family of
invariants, called augmentation numbers, from HCj. These invariants output a fam-
ily of integers and could be calculated by computers. The concept of augmentation
numbers are introduced in [4, 7] for basically the same reason.

Let d > 2 be an integer and let Z, = Z/dZ. Pick three invertible num-
bers Ao, po,I'o € Zg. Then Z,; can be treated as an R-module, with A, pu, ' act-
ing by multiplication by Ao, o, o, respectively. Then H(G; f;d; o, o, o) =
HCy(B; f) ®r Zq is a Zg-algebra. Assume HCy(F; f) is finitely generated, then

dIn [9], aj;

! in the definition of a;j, uagj is seen to coincide with a?j. Also note that the matrix A in that

was defined to be pa;; if i < j, a;; if i > j, and —1 — p if ¢ = j. After replacing p by
paper has entries a;j, but not a;;.
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H(B; f;d; Mo, o, Lo) is a finitely generated Zg-algebra, and thus has finitely many
algebra morphisms into Z,.

Definition 4.5. Let 8 € C,, f € Z,2 < d € Z such that HCy(8; f) is
finitely generated as an R-algebra, and let Ao, puo,['g € Zg4 be invertible, then
Aug(B; f;d; Mo, po, To) is defined to be the number of algebra morphisms from
H(B; f;d; Mo, po, To) to Za.

For example, denote the braid (ag---ap—1)? representing the (p,q)-torus
knot by T(p,q), then Aug(T(1,4);0;3;1,1,2) = 4, Aug(7(1,5);0;3;1,1,2) =
2, Aug(7'(1,6);0;3;1,1,2) = 4, Aug(7'(1,4);0;5;1,1,3) = 6, Aug(7T'(1,5);0;5;
1,1,3) = 3.

Proposition 4.6. Set A\ = u = 1, then for any ( € C,, there is a Z[['*']-algebra
morphism from HCo(f3; f) to Z[L'F!] sending each aj; to 2T,

Proof. Define ¢t : A, — Z[Fil]j(afj) = 2T". We first show for 3 € C,, t®g = t.
It suffices to prove t®,, = ¢,0 < k < n — 1. This can be checked directly from
Egs. (2.2) and (2.3).

Similarly, one can prove th>;§ = th>[§ =t.

We need to show ¢ factors through Zg, r,1,1. Note that now Ag,r.1,1 is the identity
matrix.

AT — (D5 A)Y) = 20 — (@ (af, ) % alfyy ;) = 20 — 1P (a?,, ) = 2T —
t(af’nJrl) =0.

In the same way, one can show t factors through the other three relations, and
thus ¢ induces an algebra morphism from HCy(; f) to Z[['*!] mapping aj; to 2.

O

Corollary 4.7. Let 8 € C,,f € Z let Ty € Zg be invertible, then Aug(B; f;
d; 1,1,F0) Z 1.

Proof. The map ¢ defined in Proposition 4.6 naturally induces a map from
H(B; f;d;1,1,Tg) to Zq. -

5. A Topological Interpretation of the Knot Invariant

In this section, we show that the framed knot invariant HC{ actually has a rather
simple interpretation as the framed cord algebra given in [9, Definition 2.2]. The
framed cord algebra is defined for an oriented framed knot K in an oriented
3-manifold M. In the same paper, the author also gave a cord interpretation of
the framed cord algebra for knots in S® with 0 framing. In the following, we modify
the cord interpretation so that it adapts to knots with any framing in any oriented
3-manifold, and prove that the modified version is equivalent to the framed cord
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algebra. Then we show that the knot invariant HCy coincides with the framed cord
algebra.

Definition 5.1. Suppose M is an oriented 3-manifold and K is an oriented framed
knot in M. Pick a base point zo € M\ K for the fundamental group of M\ K. Let
[ be the homotopy class of the longitude, determined by the framing of K, in
m1(M\K, z9). Choose a representative curve in the homotopy class [. By abusing
the notation, we still denote the representative by [. Fix a point * on .

(1) A cord in M relative to (K1) is a continuous map + : [0,1] — M\K, such
that v(0),7(1) € I and y~!(*) = 0. Two cords 71,72 are said to be equivalent if
they are homotopic relative to [\{*}. Informally speaking, one can slide a cord =y
along [, so long as not to pass through the point x.

(2) The framed cord algebra, A(K,[; M), is defined as the algebra over R freely
generated by the equivalence classes of cords, modulo the ideal generated by the
relations given in Fig. 14.

In Fig. 14, the dashed line stands for the curve representing [, and the cord is
represented by the solid line transversal to [ while the knot is drawn as the solid
line parallel to [. The algebra A(K,[; M) is independent of the choice of the base
point zg, the representative curve of the longitude [, and the fixed point *.

Now we prove that the framed cord algebra is isomorphic to the one defined in
[9]. For the readers’ convenience, we first recall the definition of framed cord algebra
there.

Definition 5.2 ([9]). Let K C M be an oriented framed knot in an oriented
3-manifold M. Pick a base point zyp € M\K for the fundamental group of M\ K.

D= L pr

(2) *0 = )\ *o 7 , */o\ :)\—1 *o i

<3>—j++—+ -t = ® -
1 e | | |

Fig. 14. Skein relations A(K,1; M).
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Let [,m denote the homotopy classes of the longitude and meridian of K in
71 (M\K, z9). The framed cord algebra, A(K,l; M), of K is the algebra over R
freely generated by the elements of 1 (M\K), modulo the ideal generated by the
following relations:

(1) [e] = (1 + p)T;

(2) [vl] = [Iv] = A[] for
(3) [1172) + [1imae] = &

v e 71—1(]\4-\.[{7 Zo),
[(il[y2], for v1,72 € m (M\K, z),

where for an element y € 71 (M\K, 2), [y] means the image of  in A(K,; M).

Remark 5.3. (1) A(K,l; M) does not depend on the choice of the base point z
in defining m (M\K).

(2) The meridian m is oriented as the boundary of a meridian disk, which is
oriented so that it, with the orientation on K, is positive.

(3) If we set y1 = v,792 = e, then from the first and the third relation, we can
derive the relation [ym] = p[y]. Similarly, we have [m~y] = u[y].

(4) If ' = Imf in m (M\K,z), then A(K,I’; M) can be obtained from
A(K,1; M) by replacing X by Au~/.

Theorem 5.4. The framed cord algebras defined in Definitions 5.1 and 5.2
coincide, namely, A(K,l; M) ~ A(K,l; M) for an oriented knot K with framing
(longitude) given by 1 in the manifold M.

Proof. Assume the base point zg is on the curve [, different from the point *. For
a point z € [, let 7, be the sub-arc of [ connecting zy to z not passing the point
. Then an element of w1 (M\K, zp) is automatically an equivalence class of cords.
Moreover, the three relations in defining A(K,[; M) turn into the three relations
defining A(K, [; M), respectively. Conversely, for a cord v, let 7 = 7o) * 7 * Ty(1)-
Then 4 is an element of 71 (M\K, 2p), and this map also preserves the defining
relations of A(K,l; M). It is direct to check these two maps defined above are
inverse to each other. |

Theorem 5.5. Let 3 € C, be a braid whose closure is a knot in S* x S2, and
let I, m be the homotopy classes of the longitude and the meridian of B, such that
= [B')mf, where 3 is a parallel copy diagram of 3, and f € Z is an integer. Then
we have HCo(B;1) ~ A(B,1; S* x §2).

Proof. We have HCy(3;1) = HCo(3; f) by definition. By Remark 5.3(4) and the
definition of HCy(8; f), it suffices to prove the theorem for f = 0, namely [ = [3'].

Set A = Aﬁ;O;l,l-
Let X = D, x [0,1]/{(z,0) ~ (x,1),x € D,}. Present 3 as a braid diagram
inside X, and assume ( intersects D,, in pi,...,p,. Take a parallel copy diagram

B of 3, such that 8’ intersects D,, in the points ¢, ..., q,. Choose some point on
(" right above ¢ as the point x. Also we pick two points qo, ¢,+1 such that qg is
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Fig. 15. A picture of X.

near the central puncture p and ¢,1 is on the right of the puncture p,, near the
boundary of D,,. See Fig. 15.

Any cord in S' x S? relative to (B, B’) can be homotoped so that it sits inside
X. See Remark 2.4 for the relation between X and S* x S2. Then we slide the cord
~ along B’ and whenever the cord passes the point *, we will multiply by A or A~!
according to the second relation in Fig. 14. Finally the cord is slide into D,, x {0}.
We denote the resulting curve by 4, which is an element in Q,,.

Define the map ¢ : A(ﬂA,l;S1 x S?) — HCy(3;0) by sending any cord 7 to
A%y, where A° is the scalar gathered on the way to transit v into 7, as stated in
the above paragraph. There are several points where we need to check the map is
well-defined.

Step 1: The projection of v to D,, x {0} is not unique, and different projections
differ by actions of ®3. So we need to show for any ¥ € Q,, from ¢; to ¢;, we have
7 = N1 ds(7)A"% 1 in HCy(3;0). Since 7 can be written as a sum of monomials
of the form af} af?, ---a* ., by Corollary 3.14, 5 — A1 ®5(5) A% is contained
in Zg,0,1,1 and thus 0 in HCy(;0).

Step 2: In S x S2, the cords have more flexibilities to be homotoped than in X.
Precisely, there are two more types of flexibilities. Let 71,72 be two curves in D,,
such that 71 (1) = 72(0) = ¢n+1,71(0) = ¢, 72(1) = ¢;, for some 1 < 4,5 < n, and
let § be the 1oop {gn+1} x S1, then 41 %72, 71 % § * 7o are equivalent cords in S* x S?
but not in X. If we project 1 * 6 * v2 to D,, X {0}, then we get /\51\1@)5 (71) * ¥ or
QIR (72)A~%:1. These are guaranteed by the relations A—A<I>ELA7 A—A@ERA*.
See Remark 3.4(2).

Similarly, in the above argument, if we replace “q,+1” by “qo”, then we get the
relations A — A@ELA A— A@;RA’l.

Step 3: The first and the third relation in Fig. 14 that define A(B,l; St x §2)
are apparently mapped to the two “skein” relations in Fig. 5 that define A,. Let
71, Y2 be the two cords shown in Part (1) of the second relation in Fig. 14 (1 being
the one on the left-hand side). To compute (1), we can first slide ; through the
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point * to match ~9, then project v to D,, x {0}, thus by the design of ¢ we have
©(71) = Ap(72). So ¢ preserves Part (1) of the second relation. In the same way
one can show ¢ also preserves Part (2) of the second relation.

The above three steps showed that ¢ is well-defined.

Since elements of @, can each be considered as a cord, we can define a map
0 : HCo(3;0) — A(B,1;S* x S?) such that 0(+;) = 7%. One can check that 6 is a
well-defined morphism.

Because any cord can be slide into D,, x {0}, by an argument similar to the proof
of Proposition 2.6, the cord algebra A(B, I;S' x S?) is generated by the cords V'S
Since Op(7};) = 7{;, we have fp = Id on the algebra A(B3,1; 81 x §2). That @0 = Id
follows directly from the definitions of ¢ and 6. Therefore, ¢ is an isomorphism.
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