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Abstract
Symmetry protected (SPT) and symmetry enriched topological (SET) phases
of matter are of great interest in condensed matter physics due to new materials
such as topological insulators. The Levin–Wen (LW) model for spin/boson
systems is an important rigorously solvable model for studying 2D topological
phases. The input data for the LW model is a unitary fusion category, but the
same model also works for unitary multi-fusion categories. In this paper, we
provide the details for this extension of the LW model, and show that the
extended LW model is a natural playground for the theoretical study of SPT
and SET phases of matter.
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1. Introduction

Symmetry protected (SPT) and symmetry enriched topological (SET) phases of matter are of
great interest in condensed matter physics due to new materials such as topological insulators
(see [BBCW, CGLW] and references therein). The Levin–Wen (LW) model for spin/boson
systems is an important rigorously solvable model for studying 2D topological phases [LW].
The required input data for the LW model is a unitary fusion category (UFC), but the same
model works for unitary multi-fusion categories. In this paper, we provide several results for
this extension of the LW model, and show that the extended LW model is a natural play-
ground for the theoretical study of symmetry protected and symmetry enriched topological
phases of matter in two spatial dimensions.

The LW model is a Hamiltonian formulation of Turaev–Viro +(2 1)-TQFTs. Three
mathematical theorems underlie this beautiful model: (1) given a UFC  , we can construct a
Turaev–Viro unitary +(2 1)-TQFT [BW], (2) the Drinfeld center  ( ) or quantum double

D ( ) of a UFC  is always modular [Mü], and (3) the Turaev–Viro +(2 1)-TQFT based on
 is equivalent to the Reshetikhin–Turaev +(2 1)-TQFT based on the center  ( ) [BK, TV].
The algebraic model of anyons in the LW model with input  is encoded by the modular
category  ( ).

We conjecture that all three theorems above have appropriate extensions to unitary multi-
fusion categories. Indeed the Drinfeld center  ( ) of an indecomposable multi-fusion cate-
gory  is modular, and a direct sum of modular categories if  is decomposable. Thus, we
expect the Hilbert space V S( )2 of the two-sphere S2 associated to a decomposable multi-
fusion category  has dimension >1.

There are several generalizations of the LW model, including to 3D and fermion systems
[GWW, WW]. The first appearance of a LW model using a unitary multi-fusion category as
input is in example H of section III in [LWYW]. While the extension of the LW model to
unitary multi-fusion categories as input is straightforward, the application of this extension to
symmetry protected and SPT phases of matter is new.

In 2D, the anyon model of a topological phase of quantum matter is algebraically
modeled by a unitary modular category . An exciting new direction is the interplay between
symmetry and topological order [BBCW]. But a microscopic physical theory based on local
Hamiltonians is still lacking. For topological phases such that  is a quantum double

= D ( ), the LW model could provide such a microscopic theory. Specifically, given an
input  for the LW model, if the symmetry G could be realized as unitary on-site symmetries
of the LW Hamiltonians, then the topological symmetry on D ( ) should emerge from the G
symmetry of the Hamiltonians. But even for the electric–magnetic duality ↔e m of the toric
code, a Hamiltonian realization is not in the literature10. Current realizations of the ↔e m
duality need the dual lattice and lattice translation.

In the case of a multi-fusion category, group symmetries sometimes appear in a natural
way. For such a category it is natural to consider labels consisting of two indices. We may
then endow the half-labels with a group structure G. The pentagon equations are closely
related to G-equivariant three-cocycles. This shows, as we demonstrate below, that the LW
Hamiltonians naturally come with a G-symmetry. This leads to an application of the LW
model to symmetry protected and SPT phases.

To develop a microscopic theory of symmetry enriched and symmetry protected topo-
logical phases of matter, we enlarge the local Hilbert spaces that realize the topological order.

10 Cheng found an on-site realization of the electric–magnetic duality in the toric code, but the details have not been
published.
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In the LW model case, the input is a numerical description of a UFC  . To add the extra local
degrees of freedom, we embed  into a unitary multi-fusion category ⩽ ⩽( )ij i j n1 , for some n as
a diagonal sub-category ii for some ⩽ ⩽i n1 . Since any finite group G is a subgroup of a
permutation group Sn for some n, we will seek a Hamiltonian which is invariant under the
action G via Sn on the half index set ⩽ ⩽i( ) i n1 and/or ⩽ ⩽j( ) j n1 . Then, when the tetrahedral
symbols of  (which are closely related to the j6 symbols) possess some desired symmetries,
the Hamiltonian based on the unitary multi-fusion category ⩽ ⩽( )ij i j n1 , will be G-invariant,
and thus realizes a G-SPT order encoded by D ( ). The most serious constraint on this
procedure is finding tetrahedral symbols with the desired symmetries as solving for j6
symbols without any symmetry requirement is already a difficult computational problem. In
this paper we obtain some symmetry protected topological phases by implementing this
strategy for the simplest nontrivial case: n = 2 with  the trivial UFC.

One potential application of this work is to connect our models to more physically
realistic Hamiltonians, such as the =S 1

2
anti-ferromagnetic Heisenberg −J J1 2-model on the

kagome lattice. The kagome Heisenberg −J J1 2-model has an SU (2) symmetry and realizes
the D Z( )2 topological order for certain values of J J,1 2 [JWB]. For any finite subgroup G of
SU (2), the kagome Heisenberg model is G-invariant. Since the kagome Heisenberg −J J1 2

-model and the LW model with Z2 input are in the same universality class, how to deform one
into the other is an open problem of great interest.

The contents of the paper are as follows: in section 2, we provide some background
material on multi-fusion categories. In section 3, we give the detail of the extension of the LW
model to multi-fusion category inputs and prove that the extended LW models with input n

all realize the trivial +(2 1)-TQFT. In section 4, we introduce group structures onto the half-
label set of a multi-fusion category and use such group structures to enrich the LW model
with symmetries. Finally, we de-equivariantize our G-symmetric LW models with a non-local
transformation that leads to traditional LW models coupled with a local group action.

2. Multi-fusion categories and their doubles

All multi-fusion and modular categories in this paper are unitary over the complex numbers
.

2.1. Multi-fusion category

The tensor unit is required to be a simple object in a fusion category. If we allow the tensor
unit to be not necessarily simple, we obtain multi-fusion categories. Therefore, a multi-fusion
category is a finite semi-simple rigid monoidal -linear category. They arise naturally in
mathematics and physics. For example, given a finite depth type Π1 sub-factor ⊂N M in the
study of von Neummann algebras, the −N N , −N M , −M N , and −M M bi-modules form
a Morita context, and can be regarded as a multi-fusion category. Much of the fusion category
theory naturally generalizes to the multi-fusion case.

Given a multi-fusion category  with a tensor unit 1, the tensor unit 1 decomposes into
the sum of simple objects ≅ ⊕ =1 1i

n
i1 for some n. For a simple object X of  , there exists a

unique pair ⩽ ⩽i j n1 , such that ⊗ ≅ ≅ ⊗X X X1 1i j. Given this pair, we say that X is in
the (i, j)th component of  . Let ij be the abelian

11 sub-category of  generated by direct sums
of all simple objects in the (i, j)th component. We will call ij the (i, j)th component of  . The
11 Here we mean ‘abelian’ as in the sense it is used in category theory and homology theory, not as in abelian
Anyons.
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diagonal components ii are fusion categories and the off-diagonal components ≠ i j, ,ij are
ii- jj-bimodules. We will call such a multi-fusion category an n × n multi-fusion category. A
1 × 1 multi-fusion category is just a fusion category. A multi-fusion category is inde-
composable if it is not the direct sum of two non-zero multi-fusion categories.

Definition 2.1. An n × n two-matrix is an n × n multi-fusion category for which each
component i j, is equivalent to ec, and the fusion rule is δ⊗ =E E Eij kl jk il, where

⩽ ⩽E{ }ij i j n1 , is a complete set of isomorphism classes of all simple objects. We will call
⩽ ⩽i{ } i n1 the half-label set.

Example 2.2. The n × n two-matrix n.
The multi-fusion category n is the semi-simple category with simple objects

⩽ ⩽E i j n{ }, 1 , ,ij and fusion rule δ⊗ =E E E .ij kl jk il The tensor product is given by
matrix multiplication, which is strictly associative, and the tensor unit is = ⊕ = E1 i

n
ii1 . n

can be regarded as a categorification of the matrix algebra Mn by replacing  with ec.
A general object in n is of the form = ⊕ ∈= X x E x,i j

n
ij ij ij, 1 . The multiplicities xij will

be assembled into an ×n n matrix, denoted also as X. So an object X is given by an ×n n
matrix = ⩽ ⩽X x( )ij i j n1 , with non-negative integral entries, and Eij is represented by the matrix
as the notation indicates: all entries are zero except the (i, j)-entry, which is 1. Then the tensor
product of two objects X Y, is just the matrix multiplication XY. For = =X x Y y( ), ( ),ij ij a
morphism from X to Y is of the form =f f( ),ij where ⟶f x E y E:ij ij ij ij ij can be represented
by a linear map from ⟶ x yij ij, or simply a ×y xij ij matrix. Hence, a morphism in n is
simply a matrix of matrices. Then compositions of morphisms are given by entry-wise matrix
multiplication.

Example 2.3. Morita contexts as multi-fusion categories.
Suppose  is a fusion category and  an indecomposable module category over  . Let
=   Fun ( , )* be the dual of  with respect to . Then  

 
*

*

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ is a 2 × 2 multi-

fusion category.

2.1.1. Quantum doubles. Suppose  is a multi-fusion category, then its quantum double
D ( ) in physics or Drinfeld center  ( ) in mathematics is also a multi-fusion category. Note

that ⊕ ≅ ⊕   D D D( ) ( ) ( )1 2 1 2 for two multi-fusion categories = i, 1, 2i . Therefore,
we will mainly focus on indecomposable multi-fusion categories.

Theorem 2.4. Let = ⩽ ⩽ ( )ij i j n1 , be an n × n indecomposable multi-fusion category. Then
the quantum double D ( ) of  is equivalent to D ( )ii for any ⩽ ⩽i n1 . It follows that all ii

are categorically Morita equivalent to each other.

Proof. If  is an indecomposable module category over an indecomposable multi-fusion
category  , then = D D( ) ( )* , where * is the dual of  with respect to  (Corollary
3.35 [EO]). For a fixed i, let = ⊕ = i k

n
ik1 . Then i is an indecomposable -module

category. The dual category of  with respect to i is ≅  ii
* op

i
, where  ii

op is the opposite

category of  . The theorem now follows from ≅ ≅ ≅   D D D D( ) ( ) ( ) ( )ii ii
* op

i
. □
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2.1.2. Doubles of n × n two-matrices n. It follows from theorem 2.4 that ≅ D ec( )n .
To keep our presentation elementary, we provide an explicit proof that D ( )n is ec in this
subsection.

Suppose = = ⊕X x x E( )ij ij ij is an object ofn, and −X c( , , )X an object of D ( )n . Then
for any E ,ij ⊗ ⟶ ⊗c X E E X:X E ij ij, ij is an isomorphism. Since ⊗ = ⊕ =X E x E ,ij k

n
ki kj1 and

⊗ = ⊕ =E X x Eij k
n

jk ik1 , we have = ≠x k i0, ,ki and =x xii jj for any pair i j, . Write =x mii ,
then ⊗ = = ⊗X E mE E Xij ij ij , and cX E, ij

is an ×n n matrix whose (i, j)-entry is an
isomorphism ⟶mE mEij ij, i.e. a matrix in GL m( , ), and whose other entries are all 0. Thus an
object of D ( )n is determined by the set ⩽ ⩽m c i j n{( , )}, 1 , ,ij where m is a positive integer,
and ∈ c GL m( , )ij . Explicitly, =X mIn, and the half braiding between X and Eij is

⟶c mE mE:ij ij ij.
To find the constraints from the hexagon equations as illustrated by figure 1, we see that

the left-hand side of the equation in figure 1 is given by δ ⟶c mE mE: ,jk il il il and the right-
hand side is given by δ c cjk jl ij. Thus we obtain

= ∀ ⩽ ⩽c c c i j k n, 1 , , . (2.1)ij kj ik

Since every cij is invertible, it follows that =c Iii m, and = −c cij ji
1. Hence the cijʼs are

completely determined by ⩽ ⩽c i n, 2i1 through the formula = −c c cij j i1
1

1. The matrices
⋯ ∈ c c GL m, , ( , )n21 1 can be chosen arbitrarily, and =c Im11 . Thus, an object of D ( )n is

determined by a positive integer m and −n( 1) matrices ⋯ ∈ c c GL m, , ( , )n21 1 .
To understand the morphisms in the doubles, we consider two objects ′ ′X c X c( , ), ( , ),ij ij

where = ′ = ′X mI X m I,n n. Then a morphism φ → ′ ′X c X c: ( , ) ( , )ij ij is given by δ φ( ),ij ii
where φ ⟶ ′mE m E:ii ii ii is a linear map. This morphism should commute with the half
braiding, shown in figure 2.

Figure 2 leads to the following equations for the morphism φ to satisfy:

φ φ= ′c c .jj ij ij ii

Figure 1. Hexagon equations.

Figure 2. DMorphisms in ( )n .
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Now assume = ′m m , and φii is an isomorphism. The equations above can be rewritten as

φ φ′ = −c cij jj ij ii
1. By equation (2.1), it suffices to satisfy φ φ′ = −c ci i ii1 11 1

1 for = ⋯i n2, . Using
the freedom for choosing φii, we choose them so that ′ =c Ii m1 for all i, and thus

′ = ∀ ⩽ ⩽c I i j n, 1 ,ij m . Therefore, two objects of D ( )n are isomorphic if and only if their
diagonal entries m and m′ are the same, i.e. an isomorphism class is uniquely determined by a
positive integer m. For each m, we choose a representative =X c mI I( , ) ( , ),ij n m which is
denoted as m( ).

Note that ⊕ ′ = + ′m m m m( ) ( ) ( ). Hence, D ( )n is generated by the single object
= I(1) ( , 1)n . Note that = Hom ((1), (1)) , so (1) is the only simple object in the category.

Thus, = D ec( )n as expected.

3. LW model for multi-fusion categories

Fix an integer ⩾d 2, and a cellulation γ of an oriented closed surface Y. We often also refer to
γ as a graph in Y by thinking about the one-skeleton of γ. Let γ γV E( ), ( ), and γF ( ) be the set
of vertices (sites), edges (bonds), and faces (plaquettes) of γ, respectively. Then γL Y( ) will be

the local Hilbert space ⊗ γ∈ e E
d

( ) , i.e. we attach a qudit d to each edge. The orthonormal
basis of γL Y( ) consists of all colors of the edges by a basis of d. In this section, d will be the
rank of the input UFC  , i.e., the number of labels.

Definition 3.1. A Hamiltonian H is a commuting local projector (CLP) Hamiltonian if
= ∑α αH P , where αP is a collection of pair-wise commuting local orthogonal projectors.

In general, we are not really interested in a single CLP Hamiltonian, rather a prescription
for writing down a family of CLP Hamiltonians on all local Hilbert spaces γL Y( ) associated
to cellulations γ of Y. Such a prescription will be called a Hamiltonian schema. Since we are
interested in thermodynamical physics, we need to study limits when the size of cellulations
measured by the mesh goes to 0. We can use Pachner’s theorem to organize all triangulations
of a surface into a directed set. Then local Hilbert spaces and their ground state manifolds
form inverse systems of finite dimensional Hilbert spaces.

The numerical data to specify the local Hilbert space and Hamiltonian of a LW model is a
description of a UFC in terms of j6 -symbols. In order to implement unitarity and symmetries,
we demand some symmetries of the j6 symbols [Wan]. There are subtleties when the input
UFC has multiplicities in the fusion rules, as defined below, and non-trivial Frobenius–Schur
indicators. In the following, we will assume that all UFCs are multiplicity free and their
modified j6 -symbols, called tetrahedral symbols, have the full tetrahedral symmetry, as
defined below. Not all UFCs have tetrahedral symbols that have the full tetrahedra sym-
metry [Ho].

3.1. LW Hamiltonian schema for unitary fusion categories

A label set L is a finite set with a distinguished element 0 and with an involution →L L*:
such that =0* 0. Elements of L are called labels, 0 is called the trivial label, and ∈j L* is
called the dual of ∈j L.

A fusion rule on L is a map × × → N L L L: such that for ∈a b c d L, , ,

δ= =N N , (3.1)a
b

a
b

ab0 0
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δ=N , (3.2)*ab ab
0

∑ ∑=
∈ ∈

N N N N . (3.3)
x L

ab
x

xc
d

x L
ax
d

cd
x

A fusion rule is multiplicity-free if ∈N {0, 1}ab
c for all ∈a b c L, , . Set δ = N: *

abc ab
c , then

δ δ=abc bca and δ δ= * * *abc c b a . A triple a b c( , , ) is admissible if δ = 1abc .
Given a fusion rule on L, a loop weight is a map → ⧹w L: {0} such that =w w*a a and

∑ δ =
∈

w w w . (3.4)*
c L

c abc a b

In particular, =w 10 . For unitary modular categories, the quantum dimensions—quantum
traces of the identity morphisms—satisfy ⩾d 1j for all ∈j L. Quantum dimensions might

differ from loop weights w{ }i . We let α = = ±1i
d

w
i

i
for each label, and require:

α α α δ= =1, if 1. (3.5)i j k ijk

A symmetrized tetrahedral symbol is a map → T L: 6 satisfying the following condi-
tions:

α α= = =T T T Ttetrahedral symmetry: , (3.6)
* * *

*
* *
* * *

kln
ijm

nk l
mij

ijn
klm

m n
l k n
j i m

∑ =w T T T T Tpentagon identity: , (3.7)
* * *

*
* * *

*

n

n
kp n
mlq

mns
jip

lkr
js n

q kr
jip

mls
riq

∑
δ

δ δ=w T Torthogonality condition:
w

. (3.8)
*

* * *
* *

n

n
kp n
mlq l m i

pk n
iq

i
mlq k ip

For convenience, we consider LW models defined on trivalent graphs in a closed oriented
surface. Initially, we choose an arrow of each edge to assign a label, but the Hilbert space
does not depend on these arrows, by using the following identification: for any state

Figure 3. A configuration of string types on a directed trivalent graph. The
configuration (b) is treated the same as (a), with some of the directions of some
edges reversed and the corresponding labels j conjugated j*.
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ψ∣ 〉 ∈ γL Y( ), if we reverse the direction of an edge e and replace its label je by its dual je
*,

then the resulting state is identified with the initial state ψ∣ 〉. See figure 3.
There are two types of local operators, Qv which are defined at vertices v and Bp

s which
are defined at a plaquette for an ∈s L. Let us first define the operatorQv. On a trivalent graph,
Qv acts on the labels of three edges incoming to the vertex v. We define the action ofQv on the
basis vector with j j j, ,1 2 3 by

ð3:9Þ

where the tensor δ j j j1 2 3
equals either 1 or 0, which determines whether the triple j j j( , , )1 2 3 is

‘allowed’ to meet at the vertex. Since δ δ=j j j j j j1 2 3 2 3 1
, the ordering in the three labels is not

important. To be compatible with the conjugation structure of labels, the branching rule must
satisfy δ δ= = 1* *jj j j0 0 , δ = 0*ij0 if ≠i j, and δ δ= * * *j j j j j j1 2 3 3 2 1

.
One important property of the tetrahedral symbols is that

δ δ δ δ= = = = =T 0 unless 1. (3.10)* * *kln
ijm

ijm klm lin nk j

This is a consequence of the orthogonality condition and the tetrahedral symmetry.
For convenience, we take the square root of the loop weight as follows. We define

=v
T

:
1

. (3.11)
*

j

j
j j

0 0
0

We can verify =v wj j
2 from the orthogonality condition. In particular, =v 10 .

The operator Bp
s acts on the boundary edges of the plaquette p, and has the matrix

elements on a triangle plaquette

ð3:12Þ

The same rule applies when the plaquette p is a quadrangle, a pentagon, or a hexagon and so
on. Note that the matrix is nondiagonal only on the labels of the boundary edges (i.e., j1, j2,
and j3 on the above graph).

The operators Bp
s have the properties

=B B , (3.13)*
p
s

p
s†

∑δ=B B B . (3.14)*p
r

p
s

t
rst p

t

The Hamiltonian of the model is

∑ ∑ ∑= − − =H Q B B
D

w B,
1

, (3.15)
v

v

p

p p

s

s p
s

where = ∑D dj j
2, and the sum runs over all vertices v and all plaquettes p of the trivalent

graph.
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The main property of the interactions Qv and Bp is that they are mutually commuting,
orthogonal projection: (1) = = =′ ′Q Q B B Q B[ , ] 0 [ , ], [ , ] 0v v p p v p ; (2) = =Q Q Qv v v

2 * and

= =B B Bp p p
2 *. Thus the Hamiltonian is exactly soluble. The elementary energy eigenstates

are given by common eigenvectors of all these projections. The ground states have eigen-
values = =Q B 1v p for all v and p, while each excited state violates these constraints for some
subset of the plaquettes and vertices.

3.2. Multi-fusion category extension of the LW model

The input data for LW models can be extended to the multi-fusion case. The extension is to
replace the trivial label 0 by a subset L0 of L, in order to numerically specify the (not
necessarily simple) tensor unit of the category.

We start with a label set L with an involution →L L* : that is equipped with a trivial set
L0, where L0 is determined by the decomposition of the tensor unit into simple objects as in
section 2.1. A fusion rule on L is a map × × → ∈N L L L: satisfying that for all

∈a b c d L, , ,

∑ ∑ δ= =
α

α
α

α
∈ ∈

N N , (3.16)
L

a
b

L
a
b

ab

0 0

∑ δ=
α

α

∈

N , (3.17)*
L

ab ab

0

∑ ∑=
∈ ∈

N N N N . (3.18)
x L

ab
x

xc
d

x L
ax
d

cd
x

These three equations are obtained by formally replacing 0 by α∑α∈L0
in equations (3.1)–

(3.3). Since ∈α Na
b , the first equality implies that for each label ∈a L, there exists a unique

pair α β ∈ ×L L( , ) 0 0 such that δ δ=α α α′ ′N a
b

ab and δ δ=β β β′ ′Na
b

ab for α β∈ ′ ′ ∈b L L, , 0.
We say a has the grading α β( , ). Obviously, each α ∈ L0 has the grading α α( , ).

Therefore L is graded by ×L L0 0: = ⊔
α β

α β
∈

L L
L, 0

, and we can denote the labels in α βL by

α βa to specify their gradings α β( , ). Equations (3.16) and (3.18) imply

α ϵ β γ δ ζ= = = =
α β γ δ
ϵ ζN 0 unless , , . (3.19)a b
c

,

Together with equation (3.17), it implies

α α α= ∈ L* for , (3.20)0

∈ ∈α β β α α β α βa L a Lfor . (3.21)*

Given a fusion rule on L L{ , }0 , the loop weight satisfies

∑ δ =
∈α γ α γ

α β β γ α γ α γ α β β γw w w . (3.22)*
c L

a b c c a b, ,( )

The symmetrized tetrahedral symbols are defined in the same way as those in the previous
section, and so are the LW models. This leads to the following conclusion:

Proposition 3.2. Using the modified label set L with trivial set L0, the LW Hamitonian
schemas extend to multi-fusion categories, and all resulting Hamiltonians are CLPs.
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3.3. The n × n two-matrix n as input

Consider the multi-fusion category n from example 2.2. This example gives the following
data. The label set is =L E{ }ij , the trivial set is =L E{ }ii0 , and the fusion rule is

δ δ δ δ= . (3.23)E E E jk lm ni, ,ij kl mn

The set = ⊔L L
i j

i j
,

is graded by i j, where each Li j has only one element, Eij. The duals are

=E Eij ji
* .

Let us set the loop weights to be =w 1Eij for all i j, . The simplest normalized j6 -symbol
is to take

δ δ δ δ
=

= = = =
T

1 if 1,

0 otherwise,
(3.24)* * *

def
abc abc dec eaf fd b

⎧⎨⎩
for ∈a b c d e f L, , , , , .

The local Hilbert space is spanned by labels on all edges. In our example, labels are the
gradings (i, j). Graphically, we use a double line to represent the gradings as illustrated below.

We do not draw arrows in the graph as a label on each arrowed edge is identified with its dual
on the same edge with the arrow reversed. For example, the labels on the three vertical edges
illustrated above read as Eij, Ekl and Emn upwards, and as Eji, Elk and Enm downwards.

Consider the eigenspace =Q 1 of Qv = 1 for all vertices. The fusion rule in equation (3.23)
has a double line representation near each vertex of the form

which presents an admissible triple E E E( , , )ij jk kl on the three edges incoming into the vertex,
and for which all other combinations are not allowed. If two lines are connected, then they
carry the same label i.

Therefore the basis vectors in = ⊗= Q
p

n1 have a double line representation as below.

To each plaquette p, there is a loop labeled by jp. The basis is denoted in terms of the loop
labels jp and given by ∣ 〉j j{ , ,... }1 2 . This statement holds for the model on any closed surface.

The operator Bp is now = ∑αβ
αβB Bp n p

E1 , where αβBp
E is defined in equation (3.12). In the

subspace =Q 1, αβBp
E is a map
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δ α↦ β
αβB j j j j j: , ,..., ,... , ,..., ,... . (3.25)p

E
p j1 2 , 1 2p

Therefore there is only one ground state, with common eigenvalues Qv = 1 and Bp = 1 for
all v p, :

∑Φ α α α=
α α

, ,..., ,... , (3.26)p

, ,...

1 2

1 2

up to a constant normalization factor. The discussion can be summarized by the following
proposition.

Proposition 3.3. The LW Hamiltonian schemas with input n for all ⩾n 1 realize the
trivial +(2 1)-TQFT.

Consider now the example n = 2, for which it is easy to give an explicit description of the
ground state. In this case the operator Bp is the matrix σ+1( )x1

2
in the local basis ∣ 〉ip , where

σ = 0 1
1 0

x ⎜ ⎟
⎛
⎝

⎞
⎠ is a Pauli matrix. Dropping the constant terms, we can write the Hamiltonian in

the subspace =Q 1 as

∑σ= −=H
1

2
. (3.27)Q

p
p
x

1

It is convenient to use the dual graph picture. Namely, by taking the dual graph of a spatial
trivalent graph, we obtain a triangulation of the surface. Then the ground state is simply a
tensor product σ⊗ ∣ = 〉1p p

x of all local eigenstates of σ = 1x at the vertices of the dual
triangulation.

3.4. Degeneracy on a disk

Consider the disk with a smooth loop boundary. On the graph in figure 4(a), the Hamiltonian
takes the form in equation (3.15), with the first summation over all vertices of the graph and
over all internal plaquettes inside the disk.

The double line representation for =Q 1 is illustrated in figure 4(b). A basis vector in
=Q 1 is denoted by α α α α∣ 〉∂; , ,..., ,...p1 2 , specified by a loop value αp associated to each

plaquette p inside the disk, and a loop value α∂ associated to the boundary.

Figure 4. (a) Disk with a loop boundary. (b) Double line representation for =Q 1.
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The second term −∑ Bp p in the Hamiltonian does not affect α∂. Therefore, the ground
states are degenerate and paramterized by α∂. For the input data n, the ground state
degeneracy is n.

Similar to the formula in equation (3.26), the degenerate ground states for all α∂ are

∑Φ α α α α α=
α α

∂ ∂( ) ; , ,..., ,... . (3.28)p

, ,...

1 2

1 2

3.5. Topological entanglement entropy

Consider the extended LW model with n as input. We divide a trivalent graph into two
subsystems A and B, where their boundary intersects some edges, denoted by a dashed curve
as illustrated in figure 5.

Denote the edges across the boundary by ∈j j j L, ,..., l1 2 , or simply j{ }i for short. The
number l will be called the length of the boundary curve.

The reduced density matrix for the ground state Φ in equation (3.26) is defined by

ρ ρ= ⊕ { }
A j A

j
{ }i

i , where

ρ Φ Φ= { } { }{ } j jtr ( ) . (3.29)A
j

B i i
i

⎡
⎣⎢

⎤
⎦⎥

Here trB is the partial trace over all labels in the subsystem B.

Figure 5. Partition into subsystems A and B with the boundary along a dashed curve.

Figure 6. Nonzero contributions to the entanglement spectrum are specified by the loop
labels α α α, ,..., l1 2 on the boundary.
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By definition, the entanglement entropy is

ρ ρ= − ( )S tr log , (3.30)E A A A

where we calculate the entanglement entropy on the two-sphere.
The double line representation provides a clear picture of the spectrum of ρA: nonzero

contributions to the entanglement spectrum are specified by the loop labels α α α, ,..., l1 2 on the
boundary, see figure 6. Specifically, in terms of the new basis of the subspace =Q 1, the

boundary is specified by the loop labels α α α, ,..., l1 2 . ρ{ }
A

ji has exactly one nonzero eigenvalue
λ if and only if the boundary configuration j{ }i has the following form:

By symmetry, ρA has nl equal eigenvalues, which are normalized to λ = n1 l by the trace
condition ρ =tr ( ) 1A A . It follows that

=S n llog ( ) . (3.31)E

Since there is not any sub-leading correction term in SE—it is exactly proportional to the
length l of the boundary curve—the topological entanglement entropy is 0 [KP, LW2]. A
similar calculation on the torus also leads to zero topological entanglement entropy.

4. Symmetry enriching the LW model

We are interested in enriching the LW model with on-site unitary symmetries. A good
example is the toric code Hamiltonian = −∑ − ∑H A Bv v p p on the square lattice, where a
qubit is one each edge. As usual, the vertex operator Av is the tensor product of σ x and the
identity, while the plaquette term is a tensor product of σ z and the identity. A moment’s
thought shows that the tensor product of σ x (or σ z) over all edges is an on-site unitary
symmetry of the toric code Hamiltonian. Of course this 2 symmetry is very trivial because it
will not permute anyon types. But even if a 2 symmetry of the toric code does not permute
anyon types, there are still four different ways to fractionalize a 2 symmetry in a one-to-one
correspondence to classes in =  H ( ; )2

2 2
2

2
2 [BBCW]. In this section, we will describe

analogous symmetries of the LW Hamiltonians. It will be interesting to understand their role
in a microscopic theory of symmetry fractionalization, symmetry defects, and gauging using
fixed-point rigorously solvable Hamiltonians.

4.1. Classification of n × n two-matrices

The half-label set can be endowed with a group structure. In this subsection, we classify all
n × n two-matrices whose half-label set has the structure of an abelian group G.

By the fusion rule, there are four independent variables in the j6 -symbols. Denote them
by

ϕ α β γ δ =
γδ δα βδ
αβ βγ γδ

βδT( , , , ): w . (4.1)E E E
E E E

E4

In this notation the pentagon identity can be written as

ϕ α β γ δ ϕ α β δ ϵ ϕ β γ δ ϵ ϕ α γ δ ϵ ϕ α β γ ϵ=( , , , ) ( , , , ) ( , , , ) ( , , , ) ( , , , ), (4.2)4 4 4 4 4

for α β γ δ = n, , , 1, 2 ,..., .
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Suppose the half labels α β, ,... form a finite group G with ∣ ∣ =G n, e.g. = G n. Recall
that a homogeneous n-cochain taking values in  is a map ϕ → ⧹+

+ G: {0}n
n

1
1 such that

ϕ ϕ=+ + + +g g g gg gg· ( ,... ) ( ,..., )n n n n1 1 1 1 1 1 . We will usually consider the trivial G-action on

⧹ {0}. Hence, ϕ → ⧹G: {0}4
4 is a homogeneous three-cochain on G, equipped with an

action:

ϕ α β γ δ ϕ α β γ δ=g g g g g· ( , , , ) ( , , , ), (4.3)4 4

where we regard ⧹ {0} as a trivial G-module. The pentagon identity (4.2) can then identified
with the three-cocycle condition δϕ = 14 , where the coboundary δ is defined by

∏δϕ α α α ϕ α α α α α=
⩽ ⩽

− +
−( , ,..., ) ( , ,..., , ,..., ) . (4.4)

i

i i4 0 1 4

0 4
4 0 1 1 1 4

( 1)i

Therefore, the j6 -symbols are classified by the third group cohomology classes in
H G U( , (1))3 . Note that not all three-cocycles satisfy the tetrahedral symmetry in
equation (3.6). We call three-cocycles ϕ4 defined as above G-invariant.

Definition 4.1. Given a finite group G and a homogeneous three-cocycle ϕ4, ϕ4 is called G-
invariant if ϕ α β γ δ ϕ α β γ δ= g g g g( , , , ) ( , , , )4 4 for all α β γ δ = ⋯ n, , , 1, , , and ∈g G.
That is the action of G on ϕ4 given by equation (4.3) is trivial if ⧹ {0} is regarded as a trivial
G-module.

Consider the case where n = 2. Then the group is = {0, 1}2 . There are two equiva-
lence classes, with the three-cocycle representatives:

(1) =αβw 1E , and ϕ = 14 is constant, as in section 3.3;

(2)
α β
α β

=
=

− ≠αβw
1 if

1 ifE

⎧⎨⎩ , and

ϕ α β γ δ π α β γ δ= − + + + − βδw( , , , ) exp
i

2
(2 2 ) E4 .

⎡
⎣⎢

⎤
⎦⎥

The two representatives are chosen to satisfy the tetrahedral symmetry in equation (3.6). The
G-actions in equation (4.3) on both three-cocycles are trivial, hence both three-cocycles are
2-invariant.

Similar to equation (3.27), the Hamiltonian for the second class can be written as

∑τ= −H
1

2
. (4.5)

p
p
x

In the dual triangulation, τ x is

∏τ π σ σ π σ σ σ= − + +
∈∂

( ) ( )1 1exp i
4

i
2

, (4.6)x

ij p
i
z

j
z

i
z

j
z

p
x

⎪ ⎪
⎪ ⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

with the product over nearest neighbor vertex pairs on the boundary of p, for example, over
〈 〉 〈 〉 〈 〉12 , 23 ,..., 61 in the example below:
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Here only the relevant triangles of the dual graph are shown, assuming the remaining part of
the graph is not affected.

4.2. G-symmetric Hamiltonian schema

Given a homogeneous three-cocycle ϕ4, not necessarily G-invariant, we have a multi-fusion
category ϕ( , )n 4 with j6 -symbols given by equation (4.1). This in turn allows us to define a
LW Hamiltonian schema with this multi-fusion category as input.

Definition 4.2. Given a finite group G and a LW Hamiltonian schema, the LW Hamiltonian
schema is G-symmetric if each ∈g G acts on the qudit d as a unitary matrix Ug, such that it
is a symmetry of all resulting LW Hamiltonians.

Theorem 4.3. If the homogeneous three-cocycle ϕ4 for an n × n two-matrix is G-invariant,
then the LW Hamiltonian schema with the n × n two-matrix ϕ( , )n 4 input is G-symmetric,
and realizes a G-symmetry protected topological phase (SPT).

Using proposition 3.3, we just need to check the G-invariance of LW Hamiltonians,
which is a straightforward check. But it is not clear if we have realized any non-trivial SPTs,
which will be addressed in the next section.

We conjecture that this result can be extended in the following way.

Conjecture 4.4. The LW Hamiltonian schema with an n × n multi-fusion  input realizes a
SPT phase D ( ) with some on-site unitary symmetry G, which does not permute anyon
types.

4.3. De-equivariantizing the G-symmetric LW model

To understand if the SPTs realized in theorem 4.3 are non-trivial, we study the gauging of the
symmetry G [BBCW, LG]. First we give a proof of the following proposition.

Proposition 4.5. There is a non-local transformation from G-symmetric LW models to
traditional LW models coupled to a local action.

Given a finite group G, a homogeneous three-cocycle ϕ4 of G can be de-equivariantized
to obtain an inhomogeneous three-cocycle φ3 by setting

φ ϕ=x y z x xy xyz( , , ) (1, , , ), (4.7)3 4

for ∈x y z G, , and 1 is the identity element of G. The three-cocycle φ3 has a group action

φ ϕ=g x y z g gx gxy gxyz· ( , , ) ( , , , ). (4.8)3 4

The inhomogeneous three-cocycles φ3 and homogeneous three-cocycles ϕ4 are in one–one
correspondence because ϕ4 can be recovered from φ3 by
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ϕ α β γ δ α φ α β β γ γ δ= − − −( )( , , , ) · , , . (4.9)4 3
1 1 1

This de-equivariantization reduces the G-symmetric data from a multi-fusion category to
input data from an abelian modular category φecG

3 with a nontrivial action of G on φ3.
The correspondence between ϕ4 and φ3 can be adapted to the local Hilbert spaces and

their Hamiltonians, therefore, the correspondence establishes a non-local duality transfor-
mation. In the following, we will work with the dual triangulations and consider only the two-
sphere S2 for simplicity.

For the local Hilbert spaces, the subspaces =Q 1 are spanned by the group elements α{ }p

at vertices p of the dual triangulations. Choose an arbitrary vertex p0, and designate it as the
origin.

On the two-sphere, the set of group elements α α α{ , , ,...}0 1 2 assigned to vertices cor-
responds to the set of group elements g g{ , ,...}1 2 assigned to edges satisfying the following
condition: around any triangle, the holonomy (the product of the three group elements around
the triangle) is equal to the identity 1. In fact, the group element ge on each edge e can be
written as α α= −ge 2 1

1, so it is determined by α1 (α2) at the starting (ending) point of e.
Conversely, given α0 at the origin vertex p0, αp can be determined as follows: choose an
arbitrary path from p0 to p, multiply the group elements on the edges along the path and α0.
The two constructions above give rise to an isomorphism

α α α α≅{ } { }g g, , ,... ; , ,... , (4.10)0 1 2
vertex colors

0 1 2 trivial holonomy

where ‘trivial holonomy’ means that the group elements g around each triangle have a product
equal to the identity 1. Therefore, the Hilbert space =Q 1 has a basis

α{ }g g; , ,... . (4.11)0 1 2 trivial holonomy

If the G-action is trivial, then the G-symmetric Hamiltonian can be de-equivariantized as
follows. First, φ3 produces new input data δw T{ ˜ , ˜, ˜}, where ∈g g g g G, , ,1 2 3 , by defining

=w w˜ , (4.12)g E g1

δ δ=˜ , (4.13)g g g g g g, , ,11 2 3 1 2 3

φ=−

−
T g g g w˜ ( , , ) . (4.14)

g g g g g g
g g g g

g g,( ) ,
, ,( )

3 1 2 3
3 1 2 3

1
2 3

1 2 1 2
1

2 3

Then, the Hamiltonian in terms of δw T{ ˜ , ˜, ˜} is

∑ ∑= − −H Q B˜ ˜ , (4.15)
v

v

p

p

where = ∑B B˜ w ˜p n g g p
g1 for all plaquettes except for p0, and B̃p

g
is defined as in equation (3.12)

in terms of φ3, which acts on the degrees of freedom g g, ,...1 2 in the basis (4.11).

At p0, = ∑B B T˜ w ˜p n g g p
g

p
g1

0 0 0
, where

α α↦T g g g g g: ; , ,... ; , ,... . (4.16)p
g

0 1 2 0 1 20

Therefore, the non-local transformation defines a one-to-one correspondence between the
G-symmetric LW models and the modified traditional LW models with input data from φecG

3

and B̃p0
coupled to the local group action Tp

g
0
. The local group action Tp

g
0
corresponds to a

global action in the G-symmetric LW model:
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α α α α α α↦T g g g: , ,..., ,... , ,..., ,... . (4.17)g
p p0 1 0 1

Let us apply the non-local transformation on the ground state Φ on the two-sphere. In the
transformed traditional LW model, the ground state is the common eigenstate of =B̃ 1p

g
, for

≠p p0, and =B T˜ 1p
g

p
g

0 0
, for all ∈g G. The global constraint in the traditional LW model

enforces =B̃ 1p
g

0
and hence =T 1p

g
0

. By the non-local transformation, =T 1p
g
0

means that the

ground state is invariant under the global symmetry T{ }g in the G-symmetric LW model.
Physical theorem12: The G-symmetric LW model with input n realizes a G-SPT with

the three-cocycle φ ∈ H G U( ; (1))3
3 when φ3 is G-invariant.

We did not prove this theorem mathematically because we did not define universality
classes of SPT phases mathematically. But physically we summarize the argument above as
follows. Each G-invariant three-cocycle φ3 leads to an SPT because the LW model realizes
the trivial TQFT. To understand the local term Tp

g
0
, we map the SPT model to a nontrivial

TQFT coupled to a gauge field with a gauge coupling term, where the half-labels represent the
gauge field. If we eliminate the gauge coupling term, all half-labels are eliminated as well
except the one at the base point. This leaves behind the local term at the base point.

Remark 4.6. The input j6 -symbols in equations (4.12)–(4.14) are well-defined only when
the G-action on φ3 is trivial. So de-equivariantization works only for trivial G-actions. If the
G-action on φ3 is nontrivial, then the j6 -symbols are equipped with a G-action, which leads to
a LW model with a gauge group action.

4.4. On a disk

Consider further a disk with a smooth boundary, e.g., with the graph in figure 4(a). The non-
local transformation leads to the same form of the Hamiltonian as in equation (4.15), but with
the second summation over all plaquettes p inside the disk. The degenerate ground states
Φ α∂( ) in the G-symmetric LW model are parameterized by the half-label α∂. Now let us
reexamine the ground states in the traditional LW model under the non-local transformation.

Take an arbitrary plaquette inside the disk as the origin, denoted by p0. The ground states
are the common eigenstates of =B̃ 1p

g
, for ≠p p0 inside the disk, and =B T˜ 1p

g
p
g

0 0
, for all

∈g G. Due to the presence of the boundary, the global constraint on B̃p
g

0
is released. If B̃p

g

0

transforms under a non-trivial irreducible representation ρ of G, we say there is an elementary
quasiparticle (or a topological defect) at p0 identified by its topological charge ρ. This
topological charge is always coupled to a charge which transforms under the dual repre-
sentation ρ* of the local group action.

Table 1. Non-local transformation on a disk.

G-symmetric LW model Traditional LW model coupled to a local action

Global symmetry A local action on Hamiltonians
Boundary condition Bulk local quasiparticle
Specified by ρ With topological charge ρ
Global charge ρ* A local charge ρ* coupled to the quasiparticle

12 By a physical theorem, we mean that the argument is only rigorous physically. Therefore, physical theorems
should be regarded as mathematical conjectures.
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The degenerate ground states Φρ are thus parametrized by the charge ρ. Under the non-
local transformation, they correspond to the ground states in the G-symmetric LW model,
carrying a global charge ρ* under the global symmetry T{ }g . Meanwhile, the topological
charge ρ of the local quasiparticle in the traditional LW model is mapped to the boundary
condition specified by ρ in the G-symmetric LW model. This relation between G-symmetric
LW models and LW models coupled to a gauge action is listed in table 1.

For example, take n as the input data, and let = G n. The degenerate ground states
can be parameterized by the charge = −k n0, 1 ,..., 1 of n, being the eigenvectors of

π π= = −B
k g

n
T

k g

n
˜ exp

2 i
, exp

2 i
. (4.18)p

g
p
g

0 0
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Such ground states Φk are related to Φ α∂( ) by the following Fourier transformation

∑Φ
πα

Φ α=
α

∂
∂

∂
n

k

n

1
exp

2 i
( ). (4.19)k

⎛
⎝⎜

⎞
⎠⎟

One can verify the identity by applying the action of Tg in equation (4.17) directly.

4.5. On a general closed surface

The de-equivariantization can be applied on an arbitrary closed surface Y in a similar way.
The isomorphism in equation (4.10) is replaced by

α α α α≅{ } { }g g, , ,... ; , ,... , (4.20)0 1 2
vertex colors

0 1 2 trivial homotopy and trivial holonomy

where trivial homotopy means that along any non-contractible loop on the dual-triangulation
of the graph, the group elements g multiply to the identity element of G.

G-symmetric LW models are transformed to traditional LW models in the trivial
homotopic Hilbert subspace coupled to a local action. The models are well defined because
the Hamiltonian is invariant in the trivial homotopic Hilbert subspace.

5. Open questions

We have studied how LW models can be extended to take multi-fusion categories as their
input, and how on-site symmetries play a role. There are however still interesting open
questions. We mention a few:

(1) Classify n × n two-matrices.
(2) Prove that the LW model with an indecomposable multi-fusion category input

= ⊕ ij ij realizes the Turaev–Viro TQFT based on ii for some i.
(3) How to realize symmetry fractionalization, symmetry defects, and gauging with LW

models.
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