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Graph states are widely used in quantum information theory, including entangle-
ment theory, quantum error correction, and one-way quantum computing. Graph
states have a nice structure related to a certain graph, which is given by either a
stabilizer group or an encoding circuit, both can be directly given by the graph.
To generalize graph states, whose stabilizer groups are abelian subgroups of the
Pauli group, one approach taken is to study non-abelian stabilizers. In this work,
we propose to generalize graph states based on the encoding circuit, which is
completely determined by the graph and a Hadamard matrix. We study the entan-
glement structures of these generalized graph states and show that they are all
maximally mixed locally. We also explore the relationship between the equivalence
of Hadamard matrices and local equivalence of the corresponding generalized graph
states. This leads to a natural generalization of the Pauli (X, Z) pairs, which charac-
terizes the local symmetries of these generalized graph states. Our approach is also
naturally generalized to construct graph quantum codes which are beyond stabilizer
codes. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926427]

I. INTRODUCTION

An undirected graph G with n vertices and the edge set E(G) corresponds to a unique n-qubit
quantum state |ψG⟩, which is called the graph state (corresponding to the graph G). Graph states
are extensively studied and widely used in quantum information theory, due to its nice entanglement
structures.1,2 Certain kind of graph states (e.g., the cluster states) can be used as resource states
for measurement-based quantum computing.3 And it is known that any stabilizer state is in fact
equivalent to some graph states via local Clifford (LC) operations.4

Graph states are also building blocks for a wide class of quantum error-correcting codes. For
instance, it is natural to choose the basis of a stabilizer code using stabilizer states. Furthermore,
by including ancilla qubits for encoding, graphs can be used to represent stabilizer codes, called
the graph codes,5 and any stabilizer code is local Clifford equivalent to some graph code.4 Going
beyond the stabilizer codes, one can use graph states as basis for the so called codeword stabilized
(CWS) quantum codes,6 with which good nonaddictive codes may be constructed.

Graph states are also of interests to many-body physics. They naturally appear as ground states
of gapped local Hamiltonians, which are given by commuting local projectors.7 These states are
relatively easy to analyze and may exhibit interesting properties such as topological orders8 and
symmetry-protected topological orders9–12 which are beyond the traditional symmetry-breaking
orders.

There are two equivalent ways to define |ψG⟩. One is from a stabilizer formalism. That is, for
each vertex i in G, assign a stabilizer generator,
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gi = Xi


j ∈N (i)

Z j, (1)

where Xi (Z j) is the Pauli X (Z) operator acting on the ith ( jth) qubit and N(i) denotes the qubits
that are neighbours of i in graph G. Each gi has eigenvalues 1 and −1, and the gis are mutually
commuting. Therefore, there exists a unique quantum state |ψG⟩ satisfying gi |ψG⟩ = |ψG⟩, i.e., |ψG⟩
is the stabilizer state with the stabilizer group generated by gis.

The other way is given by a circuit U that generates |ψG⟩ from the product state |0⟩⊗n,
i.e.,U |0⊗n⟩ = |ψG⟩, where

U = 1
2n/2


i j ∈E(G)

CZ
i jH

⊗n. (2)

Here, E(G) is the edge set of the graph G. H is the Hadamard matrix,

H = *
,

1 1
1 −1

+
-
, (3)

and CZ is the two-qubit controlled-Z gate which a diagonal matrix given by

CZ =

*.....
,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

+/////
-

. (4)

These two ways are equivalent definitions for |ψG⟩ given that

UZiU† = gi, ∀ i. (5)

Graph states have a natural generalization to the qudit case, based on the generalized Pauli
operators Xd, Zd satisfying the commutation relations of a quantum plane13

XdZd = qdZdXd, (6)

where Xd, Zd are defined by the maps Xd |i⟩ = |i − 1 (mod d)⟩, Zd |i⟩ = qi
d
|i⟩, i = 0,1, . . . ,d − 1, and

qd = e2πi/d. Based on this, Eq. (1) naturally generalizes to

gi = (Xd)†i


j ∈N (i)
(Zd) j, (7)

and gis are mutually commuting. The corresponding unique qudit graph state, denoted by |ψG,Fd⟩,
is then given by gi |ψG,Fd⟩ = |ψG,Fd⟩, ∀ i. Also, the circuit given in Eq. (2) has a natural generaliza-
tion by replacing H by the discrete Fourier transform

Fd =
d−1
i, j=0

qi j

d
|i⟩⟨ j |, (8)

and replacing CZ by its generalized version

CZd =

d−1
i, j=0

qi j

d
|i j⟩⟨i j |, (9)

and naturally

UdZiU†d = gi, ∀ i, (10)

for

Ud =
1

dn/2


i j ∈E(G)

CZd
i j F

⊗n
d . (11)
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Recently, there have been considerations to generalize the graph (stabilizer) states beyond the
abelian group structure of the Pauli group. One approach is to generalize the stabilizer formalism,
by allowing non-commuting stabilizers. This includes the monomial stabilizer states14 and the
XS-stabilizer states,15 which describes some well-known many-body quantum states, for instance,
the Affleck-Kennedy-Lieb-Tasaki states16 and the twisted quantum double model states.17 However,
because these is no longer a simple relationship between the stabilizers and the circuits (as Eq. (2)),
the corresponding “stabilizer states” with non-commuting stabilizers lack a clear graph structure.
Another approach is to generalize the Pauli X operators as a certain kind of group action corre-
sponding to an non-abelian group, and together with a generalized controlled-NOT operation, the
correspond generalized graph states can then be defined on bipartite graphs which are directed.18

In this work, we propose a generalization of graph states based on Hadamard matrices. On one
hand, this is a very natural generalization, by observing the information “encoded” in Eqs. (8) and
(9). That is, in the circuit Ud, if one uses a Hadamard matrix H (to replace Fd), then one may
further replace CZd by some generalized controlled-Z operation which is defined by the entries of
H . In this sense, our generalization will be based on the circuit approach instead of the stabilizer
approach. On the other hand, (complex) Hadamard matrices themselves are of great mathemat-
ical interests, which has already been connected to various areas of study in quantum information
science.19–23

The advantage of our generalization is its simple description at the first place: given an undi-
rected graph G with n vertices and a d × d (symmetric) Hadamard matrix H , a unique generalized
graph state |ψG,H⟩ is then defined. We focus on basic properties of these graph states, especially
their structures related to the properties of the graph G and the Hadamard matrix H .

For basic entanglement properties of |ψG,H⟩, we show that |ψG,H⟩ has maximally entangled
single particle states regardless of the choice of the graph G. And |ψG,H⟩ has a tensor network
representation with tensors directly given by the entries of H . If H has a tensor product structure,
then |ψG,H⟩ also has a tensor product structure.

Since one of the most basic properties of Hadamard matrices is the equivalence relation21 (see
also Definition 9), we explore the relationship between the equivalence of Hadamard matrices and
local equivalence of the corresponding graph states. Our main results along this line include the
following.

• |ψG,H⟩ need not be local unitary (LU) equivalent to |ψG,Fn⟩ for some G.
• Certain equivalence of H corresponds to the local unitary equivalence of |ψG,H⟩.
• For any bipartite graph G, equivalence of H corresponds to the local unitary equivalence of
|ψG,H⟩.
• Certain symmetry (automorphism) of H corresponds to the local symmetries (stabilizers) of
|ψG,H⟩.

Furthermore, we show that the generalization of the circuit Ud can also be used as an en-
coding circuit for quantum error-correcting codes, by adding a classical encoder. This leads to
non-stabilizer codes, where the effects of some errors are easy to analyze, depending on the struc-
ture of H .

II. THE GENERALIZED GRAPH STATES

Definition 1. A complex Hadamard matrix H is a d × d matrix which satisfies each matrix
element hi j of H for i, j = 0,1, . . . ,d − 1 with |hi j | = 1 and

H†H = dId, (12)

where Id is the d × d identity matrix.

We consider a d × d complex Hadamard matrix H that is symmetric, i.e.,

H = HT , H∗H = dId. (13)
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FIG. 1. Some n = 2 and n = 3 graphs.

For any quantum state in Cd ⊗ Cd, we define a generalized controlled-Z gate, which is completely
determined by H . For this reason, we write this gate by CH , which is given by

CH |i j⟩ = hi j |i j⟩. (14)

The reason for choosing H symmetric is that CH does not distinguish the controlled qudit from the
target qubit, so one can then define a generalized graph state on an undirected graph, which is given
by the following definition.

Definition 2. For an undirected graph G of n vertices, with vertex set V (G) and edge set E(G),
define a circuit based on the symmetric Hadamard matrix H by

UG,H =
1

dn/2


i j ∈E(G)

CH
i j H ⊗n, (15)

where CH
i j is the generalized controlled-Z gate acting on the i, jth qudits, and the n-qudit general-

ized graph state |ψG,H⟩ given by

|ψG,H⟩ = UG,H |0⟩⊗n. (16)

For d = 2 and H =
(1 1

1 −1

)
, |ψG,H⟩ is the usual qubit graph state |ψG⟩. And when H is the

d-point discrete Fourier transform Fn, |ψG,H⟩ is the usual qudit graph state |ψG,Fn⟩.
We also introduce a graphical way to represent the circuit UG,H , which will help us to visu-

alize/prove some general properties of |ψG,H⟩. Based on the usual way of drawing a quantum cir-
cuit, we further use H representing the unitary transform 1√

d
H , and the black-diamonds to replace

the black-dots in the usual controlled-Z , to represent the generalized controlled-Z , given by CH .
As an example, for the triangle graph of Figure 1(c), we have the corresponding circuit for creating
|ψ△,H⟩ as given in Figure 2.

In order to discuss the properties of |ψG,H⟩, we would need the concepts of local equivalence of
two quantum states.

Definition 3. Two n-qudit quantum states |ψ1⟩ and |ψ2⟩ are LU equivalent if there exists a local
unitary operator U =

n

i=1 Ui, such that U |ψ1⟩ = |ψ2⟩, where each Ui is a single-qudit unitary
operation.

The single qudit Clifford group is the automorphism group of the qudit Pauli group generated
by Xd and Zd.

FIG. 2. Circuit for creating a triangle graph state. H represents the unitary transform 1√
d
H , and the black-diamonds

connected by a line represent the generalized controlled-Z gate CH .
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Definition 4. Two n-qudit quantum states |ψ1⟩ and |ψ2⟩ are LC equivalent if there exists a local
unitary operator L =

n

i=1 Li, such that L |ψ1⟩ = |ψ2⟩, where each Li is a single-qudit Clifford
operation.

III. ENTANGLEMENT PROPERTIES

We discuss basic entanglement properties of |ψG,H⟩. Denote Γi the d × d diagonal matrix
whose diagonal elements are the ith column of H . Denote |GHZn,d⟩ the n-qudit GHZ state, which is
given by

|GHZn,d⟩ = 1
√

d

d
i=1

|
n

ii . . . i⟩. (17)

A. The bipartite system

We start to examine the properties of |ψG,H⟩ for n = 2, where the nontrivial graph corresponds
to the one given by Figure 1(a). In this case, the corresponding |ψG,H⟩ is a maximally entangled
state. This can be seen from

|ψG,H⟩ = 1
d

CH
12H ⊗2|0⟩⊗2 =

1
d

CH
12(Γ1 ⊗ Γ1)


i j

|i j⟩ = (Γ1 ⊗ Γ1) 1
d

CH
12


i j

|i j⟩

= (Γ1 ⊗ Γ1) 1
√

d


i

|i⟩ *.
,

1
√

d


j

hi j | j⟩+/
-
= (Γ1 ⊗ Γ1) 1

√
d


i

|i⟩|ψi⟩. (18)

Here the states |ψi⟩ = H |i⟩ = 1√
d


j hi j | j⟩ are orthonormal (⟨ψi |ψ j⟩ = δi j) due to the orthogonality

of the rows of H .
It is obvious that |ψG,H⟩ is LU equivalent to the state 1√

d


i |i⟩|ψi⟩, which is also a generalized

graph state with the same graph but another Hadamard matrix with all 1 elements of the first
row/column. In other words, to discuss entanglement properties of |ψG,H⟩, it suffices to assume that
Γ1 = I. In fact, this Γ1 = I assumption is without loss of generality, as in general |ψG,H⟩ will be LU
equivalent of another generalized graph state with the same graph whose Hadamard matrix is with
all 1 elements of the first row/column (see Lemma 11 and Theorem 14). Therefore, we will just
assume Γ1 = I for all the Hadamard matrix H in our following discussions.

Furthermore, since we also have (for Γ1 = I)

|ψG,H⟩ = 1
d

CH
12


i j

|i j⟩ = 1
√

d
*.
,

1
√

d


j


j

Hi j |i⟩+/
-
| j⟩ = 1

√
d


j

|ψ j⟩| j⟩, (19)

we have that H ⊗ H∗ (or H∗ ⊗ H) is a symmetry of |ψG,H⟩. That is,

H ⊗ H∗|ψG,H⟩ = |ψG,H⟩. (20)

This shows that |ψG,H⟩ is a maximally entangled state, which is independent of the choice of
H . Or in other world, all the |ψG,H⟩ are local unitary equivalent to each other. This is consistent with
the observation that all |ψG,H⟩ can be used in teleportation and dense-coding schemes.19

B. Single particle entanglement

For n = 3, there are two kinds of connected graphs G. The first one has edge set E(G) =
{(12), (23)}, given by the line graph of Figure 1(b). The other one has edge set E(G) = {(12), (23),
(13)}, given by the triangle graph of Figure 1(c). We discuss the line graph here and will discuss the
triangle graph in Sec. V.

For G being a three-qudit line graph, we have

|ψG,H⟩ = 1
d3/2CH

12CH
23


i jk

|i j k⟩ = 1
√

d


j

|ψ j⟩| j⟩|ψ j⟩, (21)
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which is LU equivalent to |GHZ3,d⟩. This is also independent of the choice of H , i.e., all these
|ψG,H⟩ are LU equivalent to each other.

This property generalizes to multi-qudit case, which is given by the following proposition.

Proposition 5. If G is an n-qudit star-shape graph, i.e., with edge set E(G) = {(12), (13), . . . ,
(1n)}, then |ψG,H⟩ is LU equivalent to |GHZn,d⟩.

Proof. Notice that

|ψG,H⟩ = 1
dn/2


i j ∈E(G)

CH
i j H ⊗n |0⟩⊗n

=
1

dn/2

n
j=2

CH
1 j


|i1i2 . . . in⟩

=
1
√

d


j

| j⟩|ψ j⟩ · · · |ψ j⟩, (22)

which is LU equivalent to |GHZn,d⟩. �

A direct consequence of Proposition 5 is the following

Corollary 6. Any single particle reduced density matrix (RDM) of |ψG,H⟩ is maximally mixed
for any connected graph G.

Proof. Denote the vertex set of the graph G by V (G). For any vertex a ∈ V (G), denote G⋆
a the

graph with the same vertices as that of G, but only edges a j ∈ E(G). Without loss of generality, we
only consider the case of a = 1. Then we have

|ψG,H⟩ =


i,1, i j ∈V (G)
CH
i j |ψG⋆

1 ,H
⟩. (23)

Since G is a connected graph, according to Proposition 5, |ψG⋆
1 ,H

⟩ is LU equivalent to a tensor
product of some |GHZm,d⟩s (for m ≤ n). Furthermore,


i,1, i j ∈V (G) CH

i j does not act on the 1st
qudit. Consequently, the single particle reduced density matrix of the 1st qudit is then maximally
mixed. �

C. The tensor network representation

It is known that the graph states are “finitely correlated states”24,25 with a tensor network
representation.26 They are unique ground states of Hamiltonian of local commuting projectors with
locality determined by the graph G. Here, we show that these properties naturally carry over to the
generalized graph states |ψG,H⟩.

First of all, it is straightforward to show that |ψG,H⟩ is a unique ground state of gapped Hamil-
tonian of commuting projectors. This is because that we know |0⟩⊗n is stabilized by {|0i⟩⟨0i |}ni=1,
where |0i⟩ is |0⟩ state of the ith qudit. Since |ψG,H⟩ = UG,H |0⟩⊗n, |ψG,H⟩ is then stabilized by
{UG,H |0i⟩⟨0i |U†G,H}ni=1. Therefore, |ψG,H⟩ is the unique ground state of the gapped Hamiltonian

H = −
n
i=1

UG,H |0i⟩⟨0i |U†G,H , (24)

where each term UG,H |0i⟩⟨0i |U†G,H is mutually commuting. Furthermore, the locality of each
UG,H |0i⟩⟨0i |U†G,H is determined by the connectivity of the graph G, given the structure ofUG,H .

|ψG,H⟩ has a representation as a tensor product state (also called the projective entanglement-
pair states (PEPS)). To discuss this representation, we first choose the (un-normalized) “bond state”
between the sites s, t to be
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FIG. 3. |ΨG⟩ for a graph G of four vertices and E(G)= (12,23,34). Each circle represents a site. Each black dot represents
a qudit. And two black dots connected by a line represent a bond |ψbond⟩.

|ψbond
st ⟩ = CH

st


isit

|isit⟩, (25)

where is, it ∈ (0,1, . . . ,d − 1).
Consider a graph G. For each site s ∈ V (G), denote m(s) the degree of the vertex s in G. Now

consider a state |ΨG⟩ which has m(s) qudits on the site s, given by

|ΨG⟩ =


st ∈E(G)
|ψbond

st ⟩. (26)

As an example, |ΨG⟩ for a graph G of four vertices and E(G) = (12,23,34) is illustrated in Fig. 3.

Proposition 7. |ψG,H⟩ has the following representation:

|ψG,H⟩ ∝


s∈V (G)

*..
,

d
is=1

|is⟩⟨
m(s)        

isis . . . is |+//
-
|ΨG⟩. (27)

Proof. Notice that

|ψG,H⟩ ∝


st ∈E(G)
CH
st H ⊗n |0⟩⊗n

=


st ∈E(G)
CH
st


i1i2...in

|i1i2 . . . in⟩. (28)

On the other hand,


s∈V (G)

*..
,

d
is=1

|is⟩⟨
m(s)        

isis . . . is |+//
-
|ΨG⟩

=


s∈V (G)

*..
,

d
is=1

|is⟩⟨
m(s)        

isis . . . is |+//
-

*.
,


r t ∈E(G)

CH
rt


ir it

|irit⟩+/
-

=


st ∈E(G)
CH
st


i1i2...in

|i1i2 . . . in⟩. (29)

We remark that this tensor network representation may help to analyze what kind of general-
ized graph states may be resource states for measurement-based quantum computing.27

D. The tensor product structure

It is easy to show that if H1 and H2 are Hadamard matrices, then H = H1 ⊗ H2 is also a
Hadamard matrix. A natural question is then what is the relationship between the structure of
|ψG,H⟩ and those of |ψG,H1⟩ and |ψG,H2⟩. This is given by the following proposition.

Proposition 8. If H = H1 ⊗ H2, then |ψG,H⟩ = |ψG,H1⟩ ⊗ |ψG,H2⟩ (up to qudit permutation).
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FIG. 4. The circuit for generating the generalized graph state |ψ△,H ′⟩ with the Hadamard matrix given in Eq. (31). |ia⟩|ib⟩
for i = 1,2,3 is the input |0⟩ state for the ith qudit.

Proof. Let the dimensions of H1,H2 be d1,d2, respectively. Since H1 and H2 are both Hadamard
matrices, then H = H1 ⊗ H2 is also a Hadamard matrix of dimension d1d2. We identify the Hilbert
space Cd1d2 with Cd1 ⊗ Cd2. Then, H ⊗n|0⟩⊗n can be naturally interpreted as (H1 ⊗ H2)⊗n|00⟩⊗n. We
then need to examine the generalized controlled-Z , which reads

CH |i1i2, j1 j2⟩ = Hi1i2, j1 j2|i1i2, j1 j2⟩ = (H1)i1 j1|i1 j1⟩ ⊗ (H2)i2 j2|i2 j2⟩ = CH1|i1 j1⟩ ⊗ CH2|i2 j2⟩. (30)

Then, it is clear that under this identification of qudits, we have |ψG,H⟩ = |ψG,H1⟩ ⊗ |ψG,H2⟩. �
As an example, consider a triangle graph with the Hadamard matrix H ′ given by

*
,

1 1
1 −1

+
-
⊗ *

,

1 1
1 −1

+
-
. (31)

The circuit for generating the corresponding generalized graph state |ψ△,H ′⟩ is then given in Fig. 4,
where H represents the single-qubit unitary operation 1√

2

(1 1
1 −1

)
, and the black dots connected by

a line is just the usual controlled-Z gate of two qubits.

IV. LOCAL EQUIVALENCE AND SYMMETRY

An important basic property of Hadamard matrices is their equivalence.

Definition 9. Two d × d Hadamard matrices H1 and H2 are equivalent if there exists two d × d
permutation matrices P1,P2, and two diagonal matrices D1,D2, such that

H1 = D1P1H2P2D2. (32)

The classification of complex Hadamard matrices for d = 2,3,4,5 up to equivalence is given by
the following theorem (see, e.g., Ref. 21).

Theorem 10. For d = 2,3,5, any complex Hadamard matrix is equivalent to the discrete
Fourier transform Fd. For d = 4, any complex Hadamard matrix is equivalent to Hα given by

Hα =

*.....
,

1 1 1 1
1 1 −1 −1
1 −1 eiα −eiα

1 −1 −eiα eiα

+/////
-

, (33)

where α ∈ R.

A. The local equivalence

We now study the relationship between the equivalence of Hadamard matrices and the LU
equivalence of the corresponding generalized graph states. We first look at the relationship between
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FIG. 5. A graphical way for illustrating the relationship between CH1 and CH2 for H2=D1H1D2. The left side represents
CH1, and the right side represents CH2 in terms of CH1.

the corresponding generalized controlled-Z operations CH . This will be given by the following two
lemmas.

Lemma 11. For two equivalent d × d Hadamard matrices H2 = D1H1D2, where D1,D2 are
d × d diagonal matrices,

CH2 = (D1 ⊗ D2)CH1. (34)

Proof. Assume D1 =
d−1

i=0 d1, i |i⟩⟨i | and D2 =
d−1

i=0 d2, i |i⟩⟨i |. And denote h(1)
i j (h(2)

i j ), the matrix
elements of CH1 (CH2). Then, we have

CH2|i j⟩ =
d−1
i, j=0

h(2)
i j |i j⟩ =

d−1
i, j=0

d1, id2, jh
(1)
i j |i j⟩ = (D1 ⊗ D2)CH1|i j⟩. (35)

�

We illustrate this relationship between CH1 and CH2 in Fig. 5.

Lemma 12. For two equivalent d × d Hadamard matrices H2 = P1H1PT
2 , where P1,P2 are

d × d permutation matrices,

CH2 = (P1 ⊗ P2)CH1(PT
1 ⊗ PT

2 ). (36)

Proof. Denote ĩ = P1i and j̃ = P2 j. Notice that H2 =
d−1

i, j=0 h(2)
i, j |i⟩⟨ j | = d−1

i, j=0 h(1)
i, jP1|i⟩⟨ j |P2,

then h(2)
i j = h(1)

ĩ j̃
. Therefore, we have

CH2 =

d−1
i, j=0

h(2)
i, j |i j⟩⟨i j | =

d−1
i, j=0

h(1)
ĩ j̃
|i j⟩⟨i j |

= ((P1 ⊗ P2))
d−1
i, j=0

h(1)
ĩ j̃
(PT

1 ⊗ PT
2 )|i j⟩⟨i j |(P1 ⊗ P2)(PT

1 ⊗ PT
2 )

= (P1 ⊗ P2)CH1(PT
1 ⊗ PT

2 ). (37)

�

We illustrate this relationship between CH1 and CH2 in Fig. 6.
To study the relationship between the LU equivalence of the corresponding generalized graph

states |ψG,H1⟩ and |ψG,H2⟩, we will need the following concept of P-equivalent Hadamard matrices.

FIG. 6. A graphical way for illustrating the relationship between CH1 and CH2 for H2= P1H1P2. The left side represents
CH1, and the right side represent CH2 in terms of CH1.
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Definition 13. Two Hadamard matrices H1 and H2 are called P-equivalent if there is a d × d
permutation P and two d × d diagonal unitary matrices D1 and D2 such that

H1 = PD1H2D2PT . (38)

Two P-equivalent Hadamard matrices are also equivalent, but two equivalent Hadamard matrices
are in general not P-equivalent.

We remark that the latter is also true for two P-equivalent symmetric Hadamard matrices. That
is, two equivalent symmetric Hadamard matrices may not be P-equivalent. A simple example is for
d = 3, and choose

H1 =
*...
,

1 1 1
1 ω ω2

1 ω2 ω

+///
-

and H2 =
*...
,

1 1 1
1 ω2 ω

1 ω ω2

+///
-

=
*...
,

1 0 0
0 0 1
0 1 0

+///
-

H1 = PH1, (39)

where ω = e2iπ/3. And obviously H1 and H2 are not P-equivalent.
We now show that, two P-equivalent symmetric Hadamard matrices correspond to LU equiva-

lent generalized graph states, for any graph G.

Theorem 14. If two symmetric Hadamard matrices H1 and H2 are P-equivalent, then |ψG,H1⟩
and |ψG,H2⟩ are LU equivalent.

Proof. Observe that for H1 = PH2PT , the corresponding CH1 and CH2 satisfy CH1 = (P ⊗
P)CH2(P ⊗ P)T , as given by Lemma 12. Now notice that PPT = I and (i |i⟩)⊗n is invariant under
the action of P on any qudit. Therefore, for Hadamard matrices H1,H2 with H1 = PH2PT , |ψG,H1⟩
and |ψG,H2⟩ are LU equivalent.

For H1 = D1H2D2, the corresponding CH1 and CH2 satisfy CH1 = (D1 ⊗ D2)CH2, as given by
Lemma 11. Therefore, for Hadamard matrices H1,H2 with H1 = D1H2D2, |ψG,H1⟩ and |ψG,H2⟩ are
LU equivalent. �

As an example, we illustrate the LU equivalence of two generalized graph states |ψ△,H1⟩ and
|ψ△,H2⟩ for the triangle graph in Fig. 7, where the two Hadamard matrices H1 and H2 satisfy
H2 = PH1PT for some permeation matrix P.

A natural question is whether there exists a graph G, such that |ψG,H1⟩ and |ψG,H2⟩ are not LU
equivalent for two equivalent symmetric Hadamard matrices H1 and H2. This is indeed possible.
First of all, we only need to discuss the case that two symmetric Hadamard matrices H1 and H2 are
equivalent but not P-equivalent. Let us consider the d = 3 example given in Eq. (39). Here, H1 is in
fact the discrete Fourier transform for d = 3, so |ψG,H1⟩ is the usual graph state. Notice that in fact
CH2 = (CH1)2, consequently |ψG,H2⟩ is a “weighted graph” state with edge weight 2 for each edge.
And it is known that the weighted graph states are in general not LU equivalent to the “unweighted
graph” states.28

Although in general two equivalent Hadamard matrices H1 and H2 may correspond to LU
inequivalent generalized graph states |ψG,H1⟩ and |ψG,H2⟩, one would ask for what kind of graphs
that |ψG,H1⟩ and |ψG,H2⟩ are LU equivalent. We will show that it is the case if G is a bipartite graph.

FIG. 7. The LU equivalence of two generalized graph states |ψ△,H1⟩ and |ψ△,H2⟩. The two Hadamard matrices H1 and H2
satisfy H2= PH1P

T for some permeation matrix P. Two black diamonds connected by a line represents CH1. This circuit
generates the state |ψ△,H2⟩, which is given by Lemmas 11 and 12, from the circuit generating of |ψ△,H1⟩. Notice that each
PPT = I , so they do cancel. And PH1|0⟩=DH1|0⟩ for some diagonal matrix D, which commutes with all the diagonal
CH1 s. This then shows that |ψ△,H2⟩= (PTD)⊗3|ψ△,H1⟩.
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FIG. 8. An n = 4 bipartite graph G, with the vertices set V (G)=V1∪V2, where V1= {1,3} and V2= {2,4}.

That is, the vertex set V (G) of G can be divided into two disjoint sets V1 and V2 such that there does
not exists any edge ab ∈ E(G) with a ∈ V1 and b ∈ V2, i.e., every edge of G connects on vertex in V1
to another one in V2.

Theorem 15. If G is a bipartite graph, then |ψG,H1⟩ and |ψG,H2⟩ are LU equivalent for two
equivalent symmetric Hadamard matrices H1 and H2.

Proof. According to Lemma 11, we only need to deal with H2 = P1H1PT
2 , where P1 and P2

are two permutation matrices. Since both H1 and H2 are symmetric, we also have H2 = P2H1PT
1 .

According to Lemma 12, we then have

CH2 = (P1 ⊗ P2)CH1(PT
1 ⊗ PT

2 ) = (P2 ⊗ P1)CH1(PT
2 ⊗ PT

1 ). (40)

This means that for implementing each CH2 in terms of CH1 and single-qudit permutation operations
P1/PT

1 and P2/PT
2 , we can choose which of the two qudits (that CH2 is acting on) to apply P1/PT

1
or (P2/PT

2 ) on. Notice that for bipartite graph G with V (G) = V1 ∪ V2, we can than apply P1/PT
1 s on

vertices in V1, and apply P2/PT
2 s on vertices in V2. Then, the argument of Theorem 14 will follow for

this case, where P1PT
1 = P2PT

2 = I. �
As an example, we consider a bipartite graph G of n = 4, as shown in Fig. 8.
Now consider two Hadamard matrices H2 = P1H1PT

2 . The LU equivalence of the correspond-
ing generalized graph states |ψG,H1⟩ and |ψG,H2⟩ is then shown in Fig. 9.

B. Local symmetries

Due to Theorem 14, we will assume the Hadamard matrix H has entries 1 in the first row and
first column in the following discussion.

Definition 16. For a symmetric Hadamard matrix H, if there is a d × d permutation P and a
d × d diagonal unitary D such that

PHD = H, (41)

then the pair (P,D) is called a S-symmetry of H.

FIG. 9. The LU equivalence of two generalized graph states |ψG,H1⟩ and |ψG,H2⟩, where G is the bipartite graph as
shown in Fig. 8. The two Hadamard matrices H1 and H2 satisfy H2= P1H1P

T
2 for some permeation matrices P1 and

P2. Two black diamonds connected by a line represents CH1. This circuit generates the state |ψG,H2⟩, which is given by
Lemmas 11 and 12, from the circuit generating of |ψG,H1⟩. Notice that each P1P

T
1 = P2P

T
2 = I , so they do cancel. And

P1H1P
T
2 |0⟩=DH1|0⟩ for some diagonal matrix D, which commutes with all the diagonal CH1 s. This then shows that

|ψG,H2⟩= (PT
1 D) ⊗ (PT

2 D) ⊗ (PT
1 D) ⊗ (PT

2 D)|ψG,H1⟩.
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Proposition 17. Let G be any graph with n vertices, and let H be a d × d Hadamard. For any
S-symmetry, (P,D), the graph state |ψG,H⟩ is stabilized by Pa


ab∈E(G)

Db for any a ∈ V (G).

Proof. For any a ∈ V (G), let Ea = {i j ∈ E(G)|i = a or j = a}, Aa =


i j ∈Ea

CH
i j , and let Ba =

i j ∈E(G)\Ea

CH
i j . Then, we have |ψG,H⟩ = d−

n
2BaAaH ⊗n|0⟩⊗n.

By Lemma 11 and Lemma 12, CH = CPHD = (P ⊗ D)CH(PT ⊗ I). Then

Aa =


ab∈Ea

CPHD
ab = Pa(


ab∈Ea

Db)(


ab∈Ea

CH
ab)PT

a = Pa(


ab∈Ea

Db)AaPT
a . (42)

Note that PT
a Ha|0⟩ = Ha |0⟩, and Db and Pa both commute with Ba. Therefore, we have

|ψG,H⟩ = d−
n
2BaAaH ⊗n |0⟩⊗n

= d−
n
2BaPa(


ab∈Ea

Db)AaPT
a H ⊗n |0⟩⊗n

= d−
n
2 Pa(


ab∈Ea

Db)BaAaH ⊗n|0⟩⊗n

= Pa


ab∈Ea

Db |ψG,H⟩. (43)

�

For example, we take H to be the discrete Fourier transform Fd, and let P,D be the pauli opera-
tors X†

d
, Zd, respectively. Then X†

d
FdZd=Fd, and the local symmetry is given by (X†

d
)a 

ab∈E(G)
(Zd)b,

which is consistent with Eq. (7), and we recover Theorem 1 in Ref. 13.
Another example is the family of Hadamard matrices Hα in dimension 4 given in Equa-

tion (33). Let P,D be given as follows:

P =
*.....
,

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+/////
-

, D =
*.....
,

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

+/////
-

. (44)

Then PHαD = Hα. Notice that P(=P†) and D commute, so they cannot be Pauli Xd and Zd

operators on the same qudit. In this sense, we provide a natural generalization of the Pauli (Xd, Zd)
pairs.

V. THE TRIANGLE GRAPH

As a concrete example to discuss the difference between a generalized graph state and a usual
graph state, we use the triangle graph. As given by Theorem 14, we only need to discuss the case
where the Hadamard matrix H is “dephased,” that is, the matrix elements of the first row/column
are all 1s. This can be always achieved by D1HD2, i.e., multiplying diagonal matrices from left and
right, and the resulted graph states will be just LU equivalent.

The triangle △ has the edge set E(G) = {(12), (23), (13)}, as given by Figure 1(c). This gives

|ψ△,H⟩ = 1
d3/2CH

12CH
23CH

13


i jk

|i j k⟩ = 1
d3/2


i jk

hi jh jkhik |i j k⟩. (45)

The structure of |ψ△,H⟩ is less obvious. That is, we would like to know whether these |ψ△,H⟩
may be LU equivalent to each other, for different choices of H . We start from the following lemma.

Lemma 18. If H is the discrete Fourier transform Fd, then |ψ△,Fd⟩ is LU equivalent to the GHZ
state |GHZ3,d⟩.
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Proof. We use stabilizer formalism. Consider the generalized Pauli matrices Xd, Zd satisfying

XdZd = qdZdXd, (46)

where qd = exp(i2π/d). Then, |ψ△,Fn⟩ is stabilized by the stabilizer group generated by g1, g2, g3,
given by

g1 = X†
d
⊗ Zd ⊗ Zd,

g2 = Zd ⊗ X†
d
⊗ Zd,

g3 = Zd ⊗ Zd ⊗ X†
d
. (47)

We now choose another set of generators

g′1 = g1 = X†
d
⊗ Zd ⊗ Zd,

g′2 = g
†
1g2 = (XdZd) ⊗ (Z†

d
X†
d
) ⊗ I,

g′3 = g
†
2g3 = I ⊗ (XdZd) ⊗ (Z†

d
X†
d
). (48)

Notice that

(XdZd)Zd = qdZd(XdZd), (49)

there exists a LC transformation which maps

(XdZd) → Xd, Zd → Zd. (50)

Applying this transform on all of the three qudits maps,

g′1 → g1 = ZdX†
d
⊗ Zd ⊗ Zd,

g′2 → g†1g2 = Xd ⊗ X†
d
⊗ I,

g′3 → g†2g3 = I ⊗ Xd ⊗ X†
d
. (51)

Furthermore, since

Xd(ZdX†
d
) = qd(ZdX†

d
)Xd, (52)

there exists a LC transformation which maps

Xd → Xd, ZdX†
d
→ Zd. (53)

Applying this transform on the first qudit maps,

g′1 → g1 = Zd ⊗ Zd ⊗ Zd,

g′2 → g†1g2 = Xd ⊗ X†
d
⊗ I,

g′3 → g†2g3 = I ⊗ Xd ⊗ X†
d
. (54)

which is LU equivalent to the GHZ state |GHZ3,d⟩. �

When H is not the discrete Fourier transform Fn, |ψ△,Fn⟩ may still be LU equivalent to
|GHZ3,d⟩. In fact, this is true for all d = 2,3,4,5, which can be shown based on the classification of
complex Hadamard matrices in these dimensions, as given by the following theorem.

Theorem 19. For d = 2,3,4,5, |ψ△,H⟩ is LU equivalent to the GHZ state |GHZ3,d⟩ for any H.

Proof. We first prove this theorem up to equivalence of Hadamard matrices. For d = 2,3,5, any
complex Hadamard matrix is equivalent to the discrete Fourier transform Fd, which is then covered
by Lemma 18. And for d = 4 and Hα, |ψ△,Hα⟩ is a GHZ state as follows:

|ψ△,Hα⟩ = (|0⟩ + |1⟩ + eiα/2|2⟩ − eiα/2|3⟩)⊗3

+ (|0⟩ + |1⟩ − eiα/2|2⟩ + eiα/2|3⟩)⊗3

+ e−3iα/2[(−|0⟩ + |1⟩ + e3iα/2|2⟩ + e3iα/2|3⟩)⊗3

+ (|0⟩ − |1⟩ + e3iα/2|2⟩ + e3iα/2|3⟩)⊗3]. (55)
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Now for d = 2,3,5, we need to deal with the cases where PDFd are still symmetric, for some
permutation matrix P and some diagonal matrix D.

For d = 2, such P and D have to be identity.
For d = 3, such P,D can be identity or PDF3 = F ∗3 , the latter one of course generates a GHZ

state for triangle graph.
For d = 5, such P,D has to satisfy that

PDF5 = F5(wk) = (w i jk)5×5,1 ≤ k ≤ 4

employing the above lemma, such Hadamard matrix generates a GHZ state for triangle graph by
using wk instead of w = e2πi/5.

For d = 4, we also need to deal with the cases where PDHα are still symmetric, for some
permutation matrix P and some diagonal matrix D.

Case 1. eiα , ±1, such P,D has to satisfy that

PDHα =

*.....
,

1 1 1 1
1 1 −1 −1
1 −1 eiα −eiα

1 −1 −eiα eiα

+/////
-

or
*.....
,

1 1 1 1
1 1 −1 −1
1 −1 −eiα eiα

1 −1 eiα −eiα

+/////
-

, (56)

such Hadamard matrix generates a GHZ state for triangle graph by using eiα instead of −eiα.
Case 2. eiα = ±1, such P,D has to satisfy that PDHα equals one of the following matrices:

H̃a =

*........
,

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

+////////
-

, H̃b =

*........
,

1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

+////////
-

, H̃c =

*........
,

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

+////////
-

, H̃d =

*........
,

1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

+////////
-

.

(57)

The fact that H̃a (H̃b) corresponds to a generalized graph states |ψ△, H̃a
⟩ (|ψ△, H̃a

⟩) that is LU
equivalent to |GHZ3,d⟩ simply follows from the previous argument for general α for Hα.

The third matrix H̃c =
(1 1

1 −1

)
⊗
(1 1

1 −1

)
, so it corresponds to a generalized graph state

|ψ△, H̃c
⟩ that is LU equivalent to |GHZ3,d⟩, using Proposition 8.

For the last matrix H̃d, we notice that

H̃d = CNOTH̃cCNOT, (58)

where

CNOT =
*.....
,

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+/////
-

(59)

is just the usual controlled-NOT operation on two-qubits. Then it directly follows from Theorem 14
that the corresponding generalized graph state |ψ△, H̃d

⟩ is LU equivalent to |GHZ3,d⟩, for the triangle
graph. We give the circuit explicitly in Fig. 10. �

The case for d ≥ 6 is much more complicated, as we know there is no classification of
Hadamard matrices in these higher dimensions. However, we can indeed show that for d = 6, some
of the choices of H give the states |ψ△,H⟩ which are not GHZ states. This shows that even for a small
n = 3, the generalized graph states |ψG,H⟩ may not be local unitary equivalent to a usual graph state.

Proposition 20. In general, |ψ△,H⟩ may not be LU equivalent to |GHZ3,d⟩.
Proof. We use some known results based on invariant theory. We consider the degree 6 invari-

ants as discussed in Ref. 29. The LU invariant we compute is

I6 = Tr(ρT1
12)3, (60)
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FIG. 10. |ia⟩|ib⟩ for i = 1,2,3 is the input |0⟩ state for the ith qudit. H is the single-qubit Hadamard transform (multiply
by a factor of 1/

√
2). The two Hadamard matrices H̃c and H̃d satisfy H̃d =CNOTH̃cCNOT. Two black dots connected

by a line represents the usual controlled-Z operation. One black dot connected with an ⊕ by a line represents the usual
controlled-NOT operation, with the black dot denotes the controlled qubit. This circuit generates the state |ψ△, H̃d

⟩, which is
given by Lemmas 11 and 12, from the circuit generating of |ψ△, H̃d

⟩. Notice that CNOT2= I , so two CNOTs do cancel. And
CNOT|0⟩ia |0⟩ib = |0⟩ia |0⟩ib. This then shows that |ψ△, H̃d

⟩= (CNOT)⊗3|ψ△, H̃c
⟩.

where ρ12 is the RDM of the 1,2 qudits, and T1 is the partial transpose on qubit 1.
For the |GHZ3,6⟩, we have

I6(|GHZ3,6⟩) = 0.0278. (61)

Now we consider the generalized graph state |ψ△,H⟩ with

H =

*...........
,

1 1 1 1 1 1
1 −1 i −i −i i
1 i −1 i −i −i
1 −i i −1 i −i
1 −i −i i −1 i
1 i −i −i i −1

+///////////
-

. (62)

Direct computation gives

I6(|ψ△,H⟩) = 0.0150. (63)

This means that |ψ△,H⟩ is not LU equivalent to |GHZ3,6⟩. �

We remark that alternatively, we can observe the following: (a) two tripartite states are LU
equivalence iff their 2-RDMs are LU equivalent; (b) two bipartite mixed states ρAB and σAB

are LU equivalent iff their corresponding quantum operations E and F are unitarily equivalent,
E = U ◦ F ◦V for some unitary operations U,V , where ρAB and σAB are the Choi matrices of
E and F . We know that the quantum operation corresponding to |GHZn,d⟩ is E = d−1

i=0 Ei · Ei†
with Ei = |i⟩⟨i |. And for the matrix H we choose, the corresponding quantum operation is F =d−1

i=0 Fi · Fi† with Fi = ΓiHΓi. Notice that if |GHZn,d⟩ is LU equivalent to |ψ△,H⟩, then E and
F are unitarily equivalent. There then exists two unitary operations U,V such that UFiV are all
diagonal. As a direct consequence, F†i Fj are all commute. Now for the Hadamard matrix H as given
in Eq. (62), since F†i Fj are not all commute, we can conclude that |ψ△,H⟩ is not LU equivalent to
|GHZ3,d⟩.

All these methods discussed above to prove Proposition 20 can be directly used to test the LU
properties of other generalized graph states, |ψG,H⟩ for different choices of the Hadamard matrix H
and different graphs G.

VI. GENERALIZED GRAPH CODES

Eq. (16) in fact defines an encoding circuit. That is, instead of starting from the state |0⟩⊗n, one
can start from any computational basis state. Note that for any |i⟩, we have
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H |i⟩ = ΓiH |0⟩, (64)

where Γi is the diagonal matrix with the diagonal elements the ith row/column of H . And here we
again assume that the elements of the first row/column of H are all 1s.

Therefore, for an n-qubit computational basis state |i1i2 . . . in⟩, we have

UG,H |i1i2 . . . in⟩ = 1
dn/2


i j ∈E(G)

CH
i j H ⊗n |i1i2 . . . in⟩ =

n
k=1

Γik |ψG,H⟩, (65)

which is LU equivalent to |ψG,H⟩ up to some diagonal local unitary determined by the columns
of H .

Eq. (65) shows that the computational basis states |i1i2 . . . in⟩ are mapped to orthogonal gener-
alized graph states (corresponding to the same graph), by the encoding circuit UG,H as given in
Eq. (16). For an n-dit classical string c = c1c2 . . . cn, denote the corresponding quantum computa-
tional basis state by |c⟩, andUG,H |c⟩ = |ψG,H(c)⟩. Then for any n-dit classical code C, the encoding
circuit UG,H gives a quantum code QC, whose dimension is the same as the cardinality of C, and
spanned by an orthonormal basis |ψG,H(c)⟩ for c ∈ C. In this sense, we can say that the “codewords”
of QC are generalized graph states. This then gives a direct generalization of the graph codes,5 when
C is a linear code. More generally, it gives a direct generalization of the CWS codes 6,30–33 (where H
is the Fourier transform Fn).

When the dimension of QC is 1, it is a generalized graph state, and we already know from
Proposition 20 that it is not LU equivalent to a CWS code. Here we give an example of Qc with
dimension > 1 with d = 4 that is not LU equivalent to a CWS code of the same classical code C and
the same graph G.

Consider the triangle graph △ and the 4 × 4 Hadamard matrix Hα as given in Eq. (33). Now
choose the classical code as the linear code

C = {000,111,222,333}, (66)

then the corresponding quantum code QC has length 3 and encodes an 1. And one can check that QC

has distance 2, so using the coding theory notation, QC is an [[3,1,2]]4 code.
By calculating the weight enumerators of QC, we know that QC is not LU equivalent to a CWS

code for some α. For instance, α = π/5. Since C is linear, the corresponding CWS code is in fact
additive. This shows that QC is not an additive code for some α. This provides a systematic method
to construct non-additive quantum codes from linear classical code.

The error-correcting property of these codes would depend on both the structure of the graph
G and that of the Hadamard matrix H . For a single-qudit error E, one can equivalently analyze the
effect ofUG,HEU†

G,H on the quantum code spanned by the basis states |c⟩ for c ∈ C. For example,
consider the triangle graph △ with the encoding circuit UG,H as given in Fig. 2. And the circuit of
UG,HEU†

G,H is illustrated in Fig. 11 (for the error E acting on the first qudit).
If E is diagonal, then effectively on the code spanned by |c⟩, we still have a single qubit error,

given by HEH†. And, if E corresponds to a generalized Pauli X operator as discussed in Sec. IV B,
then HEH† remains to be a tensor product of local operators, whose effect on computational basis
states is relatively easy to analyze. For a general E, the structure of HEH† may be complicated. We
will leave the analysis of the effect of errors for these generalized graph/CWS codes for future work.

FIG. 11. The effect of a single qudit error E after decoding. Here the bar on top of each CH
i j means (CH

i j )†, i.e., its hermitian
conjugate.
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