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Complexity classes as mathematical axioms II
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Abstract. �e second author previously discussed how classical complexity separation

conjectures, we call them “axioms,” have implications in three manifold topology: poly-

nomial length strings of operations which preserve certain Jones polynomial evaluations

cannot produce exponential simpli�cations of link diagrams. In this paper, we continue

this theme, exploring now more subtle separation axioms for quantum complexity classes.

Surprisingly, we now �nd that similar strings of operations are unable to e�ect even linear

simpli�cations of the diagrams.
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1. Introduction

Evaluation of the Jones polynomial at !r D e
2�i

r is known to be ]P hard for

r � 5 except r D 6 [18], [19]. Following [5], we consider strings of Dehn surg-

eries designed to be easily (polynomially) describable and not to alter the!r -Jones

evaluation. In the earlier paper [5], it was shown that polynomial length strings

of such Dehn surgeries cannot e�ect an exponential simpli�cation of the gen-

eral link diagrams without contradicting standard conjectures – they were called

“axioms” – regarding the separation of classical complexity classes. In particular,

it was shown that “P PP not in NP ” would be contradicted by exponential simpli-

�cation of diagrams.1 In this paper, we continue this theme, exploring now more

subtle separation axioms for quantum complexity classes. Moreover, we general-

ize the Dehn surgeries in [5] so that we have more �exibility to change the link

� S. X. Cui and Z. Wang are partially supported by NSF DMS 1108736.

1 �e new diagrams have crossing numbers or girths that are logarithmic in the crossing

numbers or girths of the original diagrams via a sequence of polynomially many moves.
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while preserving its Jones evaluations. Surprisingly, we now �nd that even the

generalized strings are unable to e�ect even linear simpli�cations of the diagrams

without contradicting the separation “axiom” that BQP is not in NDQC1 – a

complexity class that we will de�ne in Section 2.3. For more on the history of the

question and background on complexity theory, see [5].

BQP is the class of problems that the quantum circuit model can solve

e�ciently. One complete problem for BQP is the approximation of the !r -Jones

evaluation at r D 5 [6]. Detailed analysis of the approximation revealed two sub-

tleties: the e�cient approximation is an additive approximation and the algorithm

depends on the presentation of links as plat closures [3], [17]. Additive approx-

imation turns out to be very sensitive to the presentation of links. As shown in

[17], the approximation of the !r -Jones evaluation at r D 5 for trace closure is

complete for DQC1 – a complexity class conjecturally strictly weaker than BQP .

Our sharpening of the result in [5] is an elucidation of the dependence of the

approximation on the presentation of links.

�roughout this paper, we use the following notation: r is an integer � 5

except r D 6, and d D 2 cos.�
r
/. For a braid � 2 B2n, O�plat is the plat closure.

For � 2 Bn; O� tr is the trace closure. J. O�platI r/ and J. O� trI r/ are the Jones poly-

nomial at the r-th root of unity !r of the plat closure and trace closure of � ,

respectively.

�e rest of the paper is organized as follows. In Section 2.1, we de�ne an

equivalence relation on links and a distance between two equivalent link diagrams.

Section 2.2 consists of background materials on approximating the Jones polyno-

mial at the root of unity !r . In Section 2.3, we introduce three “axioms” regarding

the separation of complexity classes. Finally in Section 3, we obtain three theo-

rems, each of which follows from one of the axioms in Section 2.3.

Acknowledgment. We thank two anonymous referees for their suggestions on

the de�nition of NDQC1.

2. Surgeries and axioms

2.1. An equivalence relation and a distance. First we introduce an equivalence

relation on links which generalizes the relation �r in [5]. Links and link diagrams

in this paper are oriented and framed.

For a link diagram D in the x-z plane with the blackboard framing, we de-

�ne its girth g.D/ to be the maximum over all z0 of the cardinality of the set

D\ ¹z D z0º, and de�ne its complexity c.D/ to be the number of crossings ofD.
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Intuitively, g.D/ measures how wide D spreads along the x-axis direction, while

c.D/ measures the “area” of the diagram. Note that the de�nition of c.D/ here is

di�erent from that in [5] since we will not deal with the maxima and minima of a

diagram. For a link L, we de�ne its girth

g.L/ D min¹g.D/ j D is a diagram of Lº:

�e complexity c.L/ is de�ned similarly, i.e.

c.L/ D min¹c.D/ j D is a diagram of Lº:

Given a link L in S3, recall in [5] that the ˙1
4r

-Dehn surgery on L is de�ned as

follows. ConsiderLqU , where U is an unknot disjoint from L, and then perform

a ˙1
4r

-Dehn surgery onU to changeL into a new linkL0. It turns out thatL0 has the

same !r -Jones evaluation asL. For example, if U bounds a standard disk and this

disk meets L transversally in n points, then the surgery will introduce 4rn.n� 1/
crossings to L.

Let �.4r/ be the principal congruence subgroup of level 4r of SL.2;Z/, i.e.

the kernel of the group homomorphism

SL.2;Z/ �! SL.2;Z=4rZ/

sending a matrix A to A .mod 4r/ entry-wise.

Now we generalize the ˙1
4r

-Dehn surgery process. Consider a pair .M;L/,

whereM is an oriented closed 3-manifold and L is an oriented framed link inM .

For any knot K disjoint from L in M , performing a Dehn surgery of M along

K via a map � 2 �.4r/ results in a new closed 3-manifold denoted by MK;�.

Passing from .M;L/ to .MK;� ; L/ is what we call a �r -Dehn surgery on .M;L/;

it generates an equivalence relation on pairs .M;L/ similar to the “congruence”

studied by Lackenby [13] and Gilmer [9].

Given a link L in S3, a sequence of �r -Dehn surgeries leads to a pair .M;L/

of a 3-manifold M with a link L inside, where M may not be S3. Since we are

only interested here in links in S3, we want the manifold M to be di�eomorphic

to S3: If this is the case, we need to construct a di�eomorphism from M to S3

which transforms L to a new link L0 in S3. However, it is not presently known if

there is an e�cient (polynomial time) algorithm for recognizing the 3-sphere. But

by [16], verifying whether a given closed 3-manifold is S3 is a problem in NP .

So there is a polynomial size certi�cate to verify if a manifold is di�eomorphic to

S3: Moreover, by [16], one may actually construct such a di�eomorphism if the

certi�cate gives “yes” output. Let us refer to this process as S3 recognition.
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De�nition 1. Two oriented framed links L and L0 are called r-equivalent, which

is denoted by L �r L0; if there is a sequence of operations consisting of

�r -Dehn surgeries and S3 recognitions to pass from the pair .S3; L/ to .S3; L0/:
Two oriented framed link diagrams D and D0 are r-equivalent if the links that

they represent are r-equivalent.

Next we want to de�ne a distance between two r-equivalent diagramsD andD0.
Roughly speaking, the distance is the minimal length of the sequence of operations

consisting of Reidemeister moves, �r -Dehn surgeries, and S3 recognitions. How-

ever, the knots K1; � � � ; Kn and the regluing matrices F1; � � � ; Fn in �.4r/ along

which we do the surgeries should be e�ciently describable, i.e. they should not

be too complicated. Moreover, the complexity of S3 recognition process would

depend on the complexity of the Dehn surgery description. Considering these

factors, we will assign a weighted distance to the transition from D, a diagram

for .S3; L/, to D0 for .S3; L0/: To do so, we use a larger, intermediate, diagram,
zD0.S3; L0/; a literal �r -Dehn surgery diagram for .S3; L0/; consisting of L and

the components K1; � � � ; Kn labeled by F1; � � � ; Fn, which designate the �r -Dehn

surgeries.

De�nition 2. For two r-equivalent diagrams D and D0, the r-distance

distr .D;D
0/ is the minimum of cCbC
 , where c is the total number of crossings

(of all types) in zD0.S3; L0/; b is the number of bits needed to write the integral

entries of matrices ¹F1; � � � ; Fnº; and 
 is the number of Reidemeister moves re-

quired to take the image of L in the resulting manifold, after sphere recognition

has been applied, and transform it to L0. �e minimum is taken over all possible

�r -Dehn surgery diagrams and all subsequent sequences of Reidemeister moves.

Remark 1. �e explicit form of distr is not relevant. What is important is that the

number of computational steps to pass from D to D0 is not larger than a polyno-

mial in distr.D;D
0/. �e number of computational steps of each �r -Dehn surgery

and each Reidemeister move is clearly bounded by a polynomial in the weights

they contribute to distr .D;D
0/. After the �r -Dehn surgeries, one can construct a

triangulation of the resulting manifold. And the number of simplices in the tri-

angulation is less than poly.b C c/: So the number of computational steps of S3

recognition is also a polynomial in b C c, hence a polynomial in distr .D;D
0/.

It is straightforward to pass in polynomial time between any of the common

methods for describing a 3-manifold. For the case here, one just embeds

the link diagram in the 1-skeleton of some triangulation �1 of S3 and then

extends �0 – the restriction of �1 to the link complement – to a triangulation
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� of the Dehn surgered manifold,� D �0[�solid tori. To match the triangulation

�0 on the link complement with the triangulation on the solid tori �solid tori, both

may have to be re�ned. �e amount of re�nement is polynomial in the entries of

the gluing matrices.

�e following lemma says that the Dehn surgery preserves the absolute value

of the Jones polynomial at the r-th root of unity !r .

Lemma 1. [5] If D �r D
0; then jJ.DI r/j D jJ.D0I r/j:

Proof. �is lemma was from [5]. Here we prove it in the more general case.

�e connection between !r -Jones evaluation and the Dehn surgery is the

SU.2/–Reshetikhin–Turaev topological quantum �eld theory (TQFT) at level

k D r � 2, which we call SU.2/k-TQFT and denote by .Vk; Zk/ . Let L be the

link represented by D. By [15], J.L; r/ D Zk.S
3; L/; the partition function of

.S3; L/ in the SU.2/k-TQFT.

Now we prove that the Dehn surgery we de�ned preserves the partition func-

tion of .M;L/ up to a phase, where M is an oriented closed 3-manifold. Let K

be the knot along which we do the surgery and let T be the torus which bounds a

solid torus neighborhood N of K. �en Vk.T / Š C
kC1; where Vk is the SU.2/k-

modular functor. Let � 2 �.4r/ be the gluing map. �en we have the formula

Zk.MK;� ; L/ D hZk.MnN;L/jVk.�/.Zk.N //i: By [14], �.4r/ is contained in

the kernel of the (projective) modular representation corresponding to SU.2/k-

TQFT. �us Vk.�/ acts as identity up to a phase. So

jZk.MK;� ; L/j D jhZk.M �N;L/jZk.N /ij D jZk.M;L/j:

�e di�eomorphism from a manifoldM to S3 preserves the partition function

up to a phase. So we have jZk.S3; L/j D jZk.S3; L0/j; which implies

jJ.L; r/j D jJ.L0; r/j:

2.2. Approximating the Jones polynomial. �e following theorem can be

found in various references, e.g. [6], [2], [22], [3], [21], [12], [1], [8], [7], which

says approximating the Jones polynomial of the plat closure of a braid at the r-th

root of unity !r is BQP -complete for r � 5 except r D 6.
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�eorem 1 ([6], [2], [22], [3], [21], [12], [1], [8], [7]). �ere is an e�cient classical

algorithm which, given a braid � 2 B2n of length m and an error threshold " > 0

as input, outputs a description of a quantum circuitU�;" of size poly.n;m; 1
"
/:�is

quantum circuit computes a random variable 0 � Z.�/ � 1; such that

P r

²ˇ̌
ˇ̌ jJ. O�platI r/j

dn
�Z.�/

ˇ̌
ˇ̌ < "

³
>
3

4
:

Moreover, the problem of approximating jJ. O�platIr/j
dn for a braid � 2 B2n is

BQP -complete.

In [17], the authors showed that for r D 5, approximating the Jones polynomial

of the trace closure of a braid at the r-th root of unity is DQC1-complete. In

[10], it was further shown that actually approximating the Jones polynomial of

the trace closure at any r-th root of unity is a DQC1 problem. Here DQC1 is

the set of problems which can be solved e�ciently by a one clean qubit quantum

computer [11]. One clean qubit means the initial state consists of a single qubit in

the pure state j0i; and n qubits in a maximally mixed state. �is is described by

the density matrix

� D j0ih0j ˝ I

2n

�en we can apply a unitary evolution on these .nC 1/ qubits and measure the

clean qubit in the computational basis. �e probability of measuring j0i is

p0 D 2�nT r¹.j0ih0j ˝ I /U.j0ih0j ˝ I /U �º (2.1)

For more detailed discussion of the DQC1 model, see [11], [17].

�eorem 2 ([17], [10]). �ere is an e�cient classical algorithm which, given a

braid � 2 Bn of length m and an error threshold "0 > 0 as input, outputs a

description of a quantum circuit U�;"0 of size poly.n;m; 1
"0 /: �is quantum circuit

computes a random variable 0 � Z.�/ � 1 in the one clean qubit model such that

P r

²ˇ̌
ˇ̌ jJ. O� trI r/j

dn
� Z.�/

ˇ̌
ˇ̌ < "0

³
>
3

4
:

�eorem 3. [17] When r D 5, the problem of approximating jJ. O� trIr/j
dn for a braid

� 2 Bn is DQC1-complete.
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Sketch of proof. �e key point is that approximating the normalized trace of a cir-

cuit isDQC1-complete [4]. We know that the Jones polynomial of a braid closure

is equal to a weighted trace of the braid under the Jones representation. �us mod-

ulo some technical details such as how to encode the Jones representation into a

circuit, the theorem is plausible. We now sketch the proof that approximating the

normalized trace, tr.U /
2n , of a circuit U on n qubits is a DQC1-complete problem.

We �rst show approximating the normalized trace is inDQC1. For a circuit U

of n qubits and a pure state j i, there is a standard way to approximate h jU j i,
which is called the Hadamard test and is shown below.

1p
2
.j0i C j1i/

j i

H

U

M

In the circuit above, a horizontal line with a slash through it represents multiple

qubits. U is the n-qubit gate and H is the Hadamard gate. M is the measurement

of the �rst qubit in the computational basis. Moveover, the gate in the dashed box

is called Controlled-U gate denoted by
V
.U /: It’s an .n C 1/-qubit gate de�ned

by the maps ^
.U / W jiij i �! jiiU i j i:

In other words, the �rst qubit acts as a control bit. �e gate U will be applied

to the other n qubits only if the �rst qubit is 1.

�e following short computation shows that the probability of obtaining j0i is

fp0 D
ˇ̌
ˇ̌.j0ih0j ˝ Id/.H ˝ Id/

^
.U /

� j0i C j1ip
2

˝ j i
�ˇ̌
ˇ̌
2

D
ˇ̌
ˇ̌1C U

2
j i

ˇ̌
ˇ̌
2

D 1C Re.h jU j i/
2

:

Similarly, if the control bit is initialized with 1p
2
.j0i�i j1i/; then the probability

to obtain j0i is 1CIm.h jU j i/
2

.

Now suppose j i is in a maximally mixed state, then running the Hadamard

test to it gives the probability

fp0 D
X

x2¹0;1ºn

1

2n
1C Re.hxjU jxi/

2
D 1

2
C Re.T r U /

2nC1 :
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Notice that the maximally mixed state, together with a clean qubit, is exactly

the input of the one clean qubit model. We can use the one clean qubit as the

control qubit in the Hadamard test to convert the circuit U into Controlled-U .

�erefore, the one qubit clean model can approximate the normalized trace.

Next we show that approximating the normalized trace is DQC1-complete.

�is should be more or less clear from Equation 2.1, namely after applying an

.nC1/-qubit gateU to the density matrix j0ih0j˝ I
2n followed by the measurement

of the clean qubit, the probability to obtain j0i is

p0 D 2�n tr¹.j0ih0j ˝ I /U.j0ih0j ˝ I /U �º:

Note that .j0ih0j˝I /U.j0ih0j˝I /U � is not a unitary transformation so we cannot

approximate the trace directly. However, the following circuit U 0 can be easily

constructed, and one can check that

p0 D tr.U 0/

2nC2 :

Also note that U 0 is an .n C 3/-qubit gate, thus we can approximate

the normalized trace tr.U 0/

2nC3
:�is shows that approximating the normalized trace is

DQC1-complete.

s s

✒✑
✓✏✒✑

✓✏
U � U

U 0=
= =n qubits

the clean qubit

Remark 2. For r > 6; we cannot �nd a proof of the DQC1-hardness of approx-

imating jJ. O� trIr/j
dn for a braid � 2 Bn in the literature. However, its containment in

DQC1 is su�cient for our purpose. �erefore, our theorems below hold for all

r > 6 and r D 5:

2.3. Complexity classes as axioms. It is easy to show that DQC1 � BQP .

But it’s not known whether this inclusion is strict or not. Another generally ac-

cepted conjecture is thatBQP ª NP:We are going to give a stronger assumption.

We de�ne a new complexity class NDQC1, which informally is the compo-

sition of NP and DQC1. Intuitively, a problem X in NDQC1 can be solved by

solving two related problems, the �rst one is in NP and the second one inDQC1.
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We model our de�nition of NDQC1 on the de�nition of NP using a veri�er:

instead of a P veri�er, the veri�er for our complexity class is a DQC1 machine.

Note that DQC1 as de�ned in [11] contains P .

De�nition 3. �e complexity class NDQC1 is de�ned as follows: an instance

x of an NDQC1 problem X has a “yes” answer if there exists a polynomial-

length certi�cate y.x/ such that the veri�er, which is aDQC1 algorithm, accepts

the input .x; y.x// with probability > 2
3
; and the instance has a “no” answer if,

for all y.x/ of the speci�ed length, the veri�er rejects the input .x; y.x// with

probability > 2
3
.

Obviously, NDQC1 contains both NP and DQC1. But whether or not

NDQC1 contains BQP is open.

Axiom 1. BQP ª NDQC1.

Axiom 2. BQP ª NP .

Axiom 3. BQP ª DQC1.

Remark 3. Note that Axiom 1 is potentially stronger than Axioms 2 and 3. �us

if we accept Axiom 1, then Axioms 2 and 3 follow automatically. We still list

them as separate axioms because �eorems 5 and 6 depend only on Axiom 2 and

Axiom 3, respectively. In the next section, we deduce �eorems 4, 5, and 6 from

these three axioms.

3. Main theorems

Lemma 2. Let D be an oriented link diagram and let c.D/, s.D/ and n.D/ be

the number of crossings ofD, the number of Seifert circles and the number of link

components, respectively. �en we have

s.D/ � c.D/C n.D/:

Proof. For a link diagramD, let S be the corresponding Seifert surface obtained

from the Seifert algorithm. By shrinking the disks bounded by Seifert circles into

vertices and the half twisted bands into edges, we can easily compute the Euler

characteristics of S , namely

�.S/ D s.D/ � c.D/:
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�en we attach a disk to S along each component of the boundary of S to obtain a

closed surface which we denote by T . Clearly the number of disks that we need to

attach is n.D/: Note that T may not be connected and the number of components

is equal to the number of components of D as a planar diagram, which is less than

or equal to n.D/: Since each component of T has Euler characteristics at most 2,

therefore �.T / � 2n.D/. On the other hand,

�.T / D �.S/C n.D/ D s.D/ � c.D/C n.D/:

�en the inequality in the lemma follows.

Remark 4. For knots, a better bound holds: let g.D/ be genus of the Seifert

surface from the Seifert algorithm. �en

c.D/ � s.D/ � n.D/C 2� 2g.D/ D 0:

In particular, s.D/ � c.D/C 1:

Axiom 1 implies �eorem 4.

�eorem 4. If r � 5 is an integer not equal to 6, then given any two positive

numbers ˛ and ˇ, there exists a link diagram D such that, if D0 �r D, and D0 is

the trace closure of some braid, then

g.D0/ > g.D/C ˛.logg.D/C log c.D//

unless

distr.D;D
0/ > .g.D/c.D//ˇ :

Remark 5. �is is reminiscent of �eorem A in [5], which basically says a di-

agram cannot be made logarithmically thin via polynomially many operations.

�eorem 4 re�nes �eorem A in [5] in the sense that if the resulting diagram has

the nice form of a trace closure, we get a much better linear lower bound.
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Proof. We will show that the failure of this theorem contradicts Axiom 1. Assum-

ing the theorem does not hold, then we have:

there exist ˛; ˇ > 0 such that, for all link diagrams D, there exists

D0 D b� 0tr;

for some braid � 0 , such that D0 �r D;

distr .D;D
0/ � .g.D/c.D//ˇ

and

g.D0/ � g.D/C ˛.log g.D/C log c.D//:

Translated into complexity theory language, this is essentially to say there exists

an algorithm which solves a problem in NP � NDQC1. �is algorithm, with a

diagram D as input, outputs a diagram

D0 D b� 0tr

such that

D0 �r D

and

g.D0/ � g.D/C ˛.logg.D/C log c.D//:

Given a braid � 2 B2n; j� j D m, then we know that g. O�plat/ D 2n; and

c. O�plat/ D m: By the statement above, there exists a diagram

D0 D b� 0tr; D0 �r O�plat;

such that

distr . O�plat; D0/ � .2nm/ˇ ;

and

g.D0/ � 2nC ˛.log 2nC logm/:

Assume � 0 2 Bn0 ; then g.D0/ D 2n0. So we have the inequality

n0 � nC ˛

2
.log 2nC logm/:

Notice that j� 0j is poly.n;m/ since distr . O�plat; D0/ � .2nm/ˇ :
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Now we apply the algorithm in �eorem 2 to � 0. Set the error threshold

"0 D "

dn
0�n ;

and note that dn
0�n � .2nm/

˛

2 . �en we get a circuit U of size

poly
�
n0; j� 0j; d

n0�n

"

�
D poly

�
n;m;

1

"

�
;

and

P r

²ˇ̌
ˇ̌ jJ.b� 0trI r/j

dn
0 �Z.� 0/

ˇ̌
ˇ̌ < "

dn
0�n

³
>
3

4
:

�e above inequality is equivalent to

P r

²ˇ̌
ˇ̌ jJ. O�platI r/j

dn
� dn0�nZ.� 0/

ˇ̌
ˇ̌ < "

³
>
3

4
:

�e number dn
0�n is e�ciently computable on a one clean qubit machine. �ere-

fore, approximating jJ. O�platIr/j
dn is a problem in NDQC1: By �eorem 1, this prob-

lem is complete in BQP: So it follows that BQP � NDQC1; which contradicts

Axiom 1.

Corollary 1. If r � 5 is an integer not equal to 6, then given any two positive

numbers ˛ and ˇ, there exists a link diagram D such that, for any diagram D0;
D0 �r D,

c.D0/ >
g.D/

2
C ˛.logg.D/C log c.D// � n.D/

unless

distr .D;D
0/ > .g.D/c.D//ˇ ;

where n.D/ is the number of link components of D.

Proof. Assuming that the corollary is false, we have:

there exist˛; ˇ > 0 such that, for all link diagramD, there existD0,D0 �r D,

such that

distr .D;D
0/ � .g.D/c.D//ˇ

and

c.D0/ � g.D/

2
C ˛.logg.D/C log c.D// � n.D/:

By Lemma 2 , ](Seifert circles of D0) � c.D0/C n.D0/:
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Clearly, the �r -Dehn surgeries preserve the number of components of a link.

�us n.D0/ is equal to n.D/:

It’s well-known that there exists a classically e�cient algorithm to transform

a link diagram into the trace closure of some braid diagram while preserving the

link type (e.g. see [23]). Moreover, as the algorithm described in �eorem 1-1

of [20], if a link diagram has n Seifert circles, then at most n2 Reidemeister II

moves su�ce to implement this transformation. No other types of Reidemeister

moves are needed, and this algorithm preserves the number of Seifert circles.

Applying this algorithm to the diagram D0 results the trace closure of some

braid � 0 2 Bn0 : Since

].Seifert circles of D0/ D ].Seifert circles of b� 0tr/

D n0

D g.b� 0tr/

2
;

we have

g.b� 0tr/ � 2c.D0/C 2n.D0/ � g.D/C 2˛.logg.D/C log c.D//

and

distr .D;
b� 0tr/ � .g.D/c.D//ˇ C

�g.D/
2

C ˛.logg.D/C log c.D//
�2

Clearly, b� 0tr �r D: �is contradicts �eorem 4.

�e following theorem appeared in [5], where it followed from the assumption

that ]P ª NP: Here we deduce it from Axiom 2.

Axiom 2 implies �eorem 5.

�eorem 5. If r � 5 is an integer not equal to 6, then given any two positive

numbers ˛ and ˇ, there exists a link diagram D such that if D0 �r D, then

g.D0/ > ˛.logg.D/C log c.D//

unless

distr.D;D
0/ > .g.D/c.D//ˇ :

Proof. As in the original proof in [5], if the theorem is not true, then evaluating

the Jones polynomial of a link diagram at the r-th root of unity is a problem in

NP . �en approximating jJ. O�platIr/j
dn for a braid � 2 B2n is a problem inNP , which

implies BQP � NP; contradicting Axiom 2.
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�e following corollary is clearly weaker than Corollary 1. Since it follows

directly from Axiom 2 (and �eorem 5), which is weaker than Axiom 1, we still

include it here with a proof:

Corollary 2. If r � 5 is an integer not equal to 6, then given any two positive

numbers ˛ and ˇ, there exists a link diagram D such that, if D0 �r D, then

c.D0/ > ˛.logg.D/C log c.D//

unless

distr.D;D
0/ > .g.D/c.D//ˇ :

Proof. If the statement is not true, then there exist ˛; ˇ > 0, given any braid

� 2 B2n, j� j D m; there exists a link diagram D, such that b�plat �r D,

distr . O�plat; D/ < .2nm/ˇ , and c.D/ < ˛.log 2nC logm/.

Classically evaluating the Jones polynomial of the diagram D has the com-

plexity O.2c.D// < O.2nm/˛/. �us evaluating jJ. O�platIr/j
dn for a braid � 2 B2n is

a problem is NP , which contradicts to Axiom 2.

�eorem 6 below and its corollary 3 are weaker than �eorem 4 and Corol-

lary 1. However, we still point them out separately since they follow from weaker

axioms.

Axiom 3 implies �eorem 6.

�eorem 6. If r � 5 is an integer not equal to 6 and ˛ > 0, let Q.r; ˛/ be such

a problem which, given a link diagramD, computes a braid diagram � , such that

D and O� tr have the same Jones polynomial at the r-th root of unity and

g. O� tr/ � g.D/C ˛.logg.D/C log c.D//:

�en there is no e�cientDQC1 algorithm to solveQ.r; ˛/, i.e. Q.r; ˛/ cannot

be solved in polynomial time by a DQC1 machine.

Proof. Assume there is such an algorithm, then apply it to the plat closure of the

braid � 2 B2n; j� j D m. Let � 0 2 Bn0 be the output. �en

g.b� 0tr/ � 2nC ˛.log 2nC logm/:

As in the last part of the proof in �eorem 4, we can approximate jJ. O�platIr/j
dn by

applying the algorithm in �eorem 2 to � 0 to approximate jJ.b� 0trIr/j
dn0 . By �eorem 1,

approximating jJ. O�platIr/j
dn is BQP complete. �is implies BQP � DQC1, which

contradicts Axiom 3.
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Corollary 3. If r � 5 is an integer not equal to 6 and ˛ > 0, let R.r; ˛/ be such

a problem which, given a link diagramD, computes a link diagram D0, such that

D0 �r D and

c.D0/ � g.D/

2
C ˛.logg.D/C log c.D// � n.D/:

�en there is no e�cient DQC1 algorithm to solve R.r; ˛/.

Proof. �e proof is basically the same as that of Corollary 1.
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