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A class of anyonic models for universal quantum computation based on weakly-integral anyons has been
recently proposed. While universal set of gates cannot be obtained in this context by anyon braiding alone,
designing a certain type of sector charge measurement provides universality. In this paper we develop a
compilation algorithm to approximate arbitrary n-qutrit unitaries with asymptotically efficient circuits over the
metaplectic anyon model. One flavor of our algorithm produces efficient circuits with upper complexity bound
asymptotically in O(32 n log 1/ε) and entanglement cost that is exponential in n. Another flavor of the algorithm
produces efficient circuits with upper complexity bound in O(n 32 n log 1/ε) and no additional entanglement
cost.
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I. INTRODUCTION

Fault tolerance is becoming a key issue that will define the
success or failure of future programmable quantum computers.
Certain quasiparticles, called non-Abelian anyons, provide
a framework for coherent encoding of quantum information
that will require little or no error correction. Our primary
goal is to propose an algorithm for efficient circuit synthesis
(compilation) in one such non-Abelian framework.

Braiding non-Abelian objects such as anyons and zero-
energy modes is the standard gate operation for topological
quantum computation [1,2]. But any physically realistic quan-
tum operations are good for quantum information processing.
Besides braiding, measurement is a natural primitive for
quantum computation. While measurements in the quantum
circuit model in the computational basis can always be
postponed to the end, this cannot be done in topological
quantum computation. Therefore, we could gain extra compu-
tational power by supplementing braiding with measurements.
One physically realistic measurement in topological quantum
computation is to measure the total charge of a group of
anyons, which can be done by either projective measurement
or interferometric measurement.

In [3], we pursue a qutrit generalization of the standard
quantum circuit model. Some anyon systems are very natural
for the implementation of qutrits, e.g., anyons with quantum
dimension

√
3. One such anyon system is SU(2)4: the first

in the sequence of metaplectic anyons [4]. While braiding
alone for SU(2)4 is not universal as is the case with the
Majorana system, the metaplectic system is no longer like
Majorana when measurement is added. We proved that for
SU(2)4, braiding supplemented by projective measurement of
the total charge of a pair of metapletic anyons is universal for
qutrit quantum computation (see [3]).

Our motivation for weakly integral anyon framework is the
potential realization of metaplectic anyons and zero modes
in physical systems. Majoranas are closer to being well

*alexeib@microsoft.com

controlled, but their computational power is impacted by the
high complexity and cost of a universal basis [5]. Metaplectic
models strike the right balance between controllability and
universality. There is some recent numerical evidence that
SU(2)4 might be realized in a ν = 8

3 fractional quantum Hall
liquid (see [6]). There is also recent research potentially
leading to practical recipes for synthesizing and braiding
parafermionic zero modes in fractional quantum Hall liquids
paired with s-wave superconductors (see [7]). These are
essentially recipes generalizing the synthesis of Majorana
zero modes in the same general setup. In particular, it is
theoretically feasible that a species of Z4-parafermion zero
modes exhibiting SU(2)4 statistics can be realized along these
lines [7]. Therefore, SU(2)4 is a promising viable path to
universal topological quantum computation.

In this paper we build upon the metaplectic model definition
[3] and develop algorithms for effective synthesis of efficient
n-qutrit circuits over the model. Given a unitary target gate
U and an arbitrary low target precision, ε > 0, a circuit
approximating U to precision ε is considered efficient if the
number of primitive gates in that circuit is asymptotically
proportional to log 1/ε. An algorithm for synthesis of such an
efficient circuit is considered effective if it can be completed
on a classical computer in the expected run time, which is
polynomial in log 1/ε.

We develop two flavors of an effective general synthesis
algorithm. The first flavor makes a distinction between the
parameter approximation cost and the entanglement cost in an
efficient circuit and produces such circuits with an upper com-
plexity bound in O(32n{log3 1/ε + 2n + log[log(1/ε)]}) +
O([9 (2 + √

5)]n). The second flavor makes no such distinction
and produces efficient circuits with an upper complexity bound
in O(n 32 n {log3 1/ε + 2 n + log[log(1/ε)]}). While the first
flavor of our algorithm is clearly asymptotically superior
when n is fixed and ε → 0, there is obviously a practical
trade-off threshold between the two flavors when ε is fixed
and n is growing. The leading terms of our upper bounds for
both complexities are expressed in terms of specific leading
coefficients, not merely in the large O terms.

The technique for the algorithm is number-theoretic in
nature. For any range of practically interesting precisions the
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circuits produced by our algorithms are significantly more effi-
cient (in both the asymptotical and the practical sense) than any
hypothetical circuits obtainable with the Dawson-Neilsen ver-
sion of the Solovay-Kitaev algorithm (cf. [8]). Our algorithm
designs are more broadly applicable to other classes of weakly
integral anyons involving the quantum dimension of

√
3.

The paper is organized as follows: in Sec. II we provide
a very brief introduction to the fundamental properties of
metaplectic anyons, basic encodings, and quantum gates; in
Sec. III the core circuit synthesis tools are developed, which are
meant to reduce Householder reflections to axial reflections,
and axial reflections are then described as metaplectic circuits
in Sec. IV. In Secs. V and VI two approaches to synthesizing
approximation circuits for arbitrary unitaries are introduced
and compared, then a top-level overview of the synthesis flow
is given in Sec. VII. Section VIII concludes the paper with
some open problems and future work directions.

II. FUSION, BRAIDING, AND BASIC GATES

For completeness and readability we start with a very brief
introduction to the concepts of braiding and fusion, focusing
narrowly on the mathematical and logical side of these
concepts. For a broader exposure the reader is encouraged
to look up the available tutorials on the subject such as [9], [2],
and [10].

A. Background on fusion and braiding of non-Abelian anyons

Anyons are quasiparticles described by a certain topological
quantum-field theory (TQFT), and axiomatically this theory
allows for a finite number of anyon species that have distinct
values {α,β,γ, . . .} of topological charge. For example, one
of the simplest theories leads to Fibonacci anyons and allows
only two values of charge, 1 and τ , where τ is the charge
of a nontrivial anyon and 1 is the charge of “no anyon” or a
vacuum ([10]).

Given an ensemble of anyons (a1, a2, . . . ,an) the structure
of their collective state space H depends on the underlying
theory. If we measure the collective topological charge of some
subsequence of anyons in the ensemble, say (ai, . . . ,aj ), 1 �
i < j � n, the charge will probabilistically assume some value
c ∈ {α, β, γ, . . .}. After this is done, the state space of the
ensemble is reduced to some smaller subspace Hi,j,c ⊂ H .
This is the phenomenon known as fusion and the resulting
topological charge is often called the fusion charge.

Once we have measured the fusion charge of several
subsequences, we may end up with a one-dimensional state
space or, up to a global phase, with one specific state. This
state can be characterized by the collection of measurement
outcomes, and it is an established practice to represent this
collection as a tree, called the fusion tree.

As a segueway into the next subsection consider the
following.

Example 1. The theory of metaplectic anyons allows
five values of topological charge: {1,Z,X,X′,Y }. Consider a
quartet of anyons of type X, i.e., an ensemble (a1,a2,a3,a4)
where each anyon ai has charge X. Let us measure the charge
c12 of the pair (a1,a2), then the charge c34 of the pair (a3,a4),
and then the charge c14 of the entire quartet. This sequence of
measurements is represented by the tree shown in Fig. 1.

FIG. 1. A fusion tree for an anyonic quartet. The left pair of
anyons has fusion charge c12, the right pair has charge c34, and the
overall charge of the quartet is c14.

Possible outcomes of fusion charge measurement are
dictated by a set of fusion rules. A fusion rule has the
following syntax:

a ⊗ b =
∑

c

Nc
a b c.

Here the left-hand side stands for the fusion of two systems
with topological charges a and b. The

∑
c on the right is a

disjunction indexed by all possible outcomes (c) of fusing of
the two systems. Nc

a b is the multiplicity of the corresponding
outcome c. Its meaning is: if a pair of anyons of types a and
b happened to fuse to the charge c, then their collective state
space have reduced to an Nc

a b-dimensional Hilbert space.
Example 2. 1 The following three rules are among the fusion

rules of the metaplectic anyon theory:

∀c ∈ {1,Z,X,X′,Y }, c ⊗ 1 = 1 ⊗ c = c, (1)

X ⊗ X = 1 + Y, (2)

Y ⊗ Y = 1 + Z + Y. (3)

To simplify matters, we allow only multiplicities of 1 below.
Suppose (a1,a2, . . . ,an) is an ensemble of anyons and a se-
quence of topological charge measurements has been selected
that defines a certain fusion tree structure. Then the number
of distinct fusion trees that are allowed by the fusion rules is
precisely the dimension of the Hilbert state space H of the
ensemble, and there exists a basis in H whose elements are
labeled by those distinct fusion trees. We describe a basis like
this in the beginning of the next subsection.

While fusion bases are suitable for encoding quantum
information, natively topologically protected gates on such
encodings can be derived from braiding of non-Abelian
anyons. Quite simply, braiding is either an exchange of two
distinct anyons in an ensemble or the movement of a single
anyon along a complete closed loop. In general, braiding
causes a nontrivial unitary action on the state space. By the
definition of “non-Abelian,” these actions caused by different
exchanges do not have to commute and the corresponding sets
of unitary operators are not simultaneously diagonalizable.
This creates the opportunity for building interesting and useful
groups of unitary gates from braiding operations. Such groups
are not always universal for quantum computation. Braiding
happens to be universal in the case of Fibonacci anyons ([1]),

1The incomplete set of rules is sufficient for our purposes.
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FIG. 2. A fusion tree for eight anyons. The overall charge is
assumed to be Y . There are six fusion charges defining the specific
fused state.

and in the case of metaplectic anyons below universality can
be achieved with a little help from measurement.

B. Metaplectic basis and metaplectic circuits

The metaplectic anyon model is defined in [3] as an
idealized multiqutrit model, where each qutrit is encoded
using a specific quartet of SU(2)4 anyons and thus an n-qutrit
quantum register is encoded using 4 n anyons. The model
allows five values of topological charge {1,Z,X,X′,Y } and
the relevant subset of fusion rules is listed in Example 2. We
encode a standard qutrit using a quartet of anyons of type
X prepared such that their joint topological charge is Y . The
corresponding basis states can be labeled by fusion trees such
as shown in Fig. 1 with the c14 = Y constraint. It follows from
the fusion rules that (c12,c34) ∈ {(1,Y ),(Y,1),(Y,Y )}.

One can do a similar analysis on the state space H of eight
anyons of type X prepared such that their overall topological
charge is Y . The possible charges that label a basis in H are
shown in Fig. 2. Under the constraint c14 = c58 = Y the system
is reduced to a state in a nine-dimensional subspace H ′ ⊂ H

with an obvious ad hoc isomorphism of this subspace and
H3 ⊗ H3, where H3 is the state space of the standard qutrit.
We use H ′ to encode a standard two-qutrit register and call
it the computational subspace. It is not difficult to compute
the dimension of H . As per the fusion rules, (1)–(3), and by
combinatorial enumeration, dim H = 21. Thus H ′ is a proper
subspace of codimension 12.

This analysis generalizes in a natural way to multiqutrit
encodings with more than two qutrits. One should be cognizant
that braiding of anyons from quartets encoding different qutrits
(cf. Fig. 2) does not, in general, preserve the computational
subspace, therefore we should only be deriving the multiqutrit
gates from the subgroup of braids that do preserve H ′.

The actual derivation of primitive gates is beyond the scope
of this paper. Below we summarize the designs developed in
[3]. Consider the one-qutrit fusion basis {|1,Y 〉,|Y,1〉,|Y,Y 〉}
introduced at the beginning of this subsection and relabel
it {|0〉 = −|Y,Y 〉, |1〉 = |1,Y 〉, |2〉 = |Y,1〉} (the minus sign
leads to nicer algebra). Introduce ω = e2π i/3 and γ = eπ i/12.

Braiding of the anyons constituting a qutrit amounts to a
finite-image representation of the braid group B4, where the
generators of B4 are represented by the following unitaries in

the above basis:

σ1 = γ diag(1,ω,1), σ3 = γ diag(1,1,ω),

σ2 = γ 3 s2, s2 = 1√
3

⎛
⎝ 1 ω ω

ω 1 ω

ω ω 1

⎞
⎠. (4)

We observe that, up to global phase, σ1 is equivalent to Q1 =
diag(1,ω,1), σ3 is equivalent to Q2 = diag(1,1,ω), and σ2 is
equivalent to s2.

For completeness we also need classical transpositions of
the qutrit basis. By direct computation, τ0,1 = i (σ3 σ2 σ3)2,
τ0,2 = i (σ1 σ2 σ1)2, where τj,k is the |j 〉 ↔ |k〉 transposition.
Obviously τ0,1 and τ0,2 generate a faithful representation of the
symmetric group S3 on the qutrit, and in particular, in terms
of notations in [3] we have Q0 = τ0,1 σ1 τ

†
0,1 = τ0,2 σ3 τ

†
0,2,

INC = τ0,2 τ0,1, INC† = τ0,1 τ0,2, where INC is the increment
gate defined by INC|j 〉 �→ |j + 1 mod 3〉.

In the two-qutrit encoding explained above there is a
certain braid explicitly composed of 92 anyon exchanges that
preserves the computational subspace and, in the |j 〉 ⊗ |k〉,
j,k = 0,1,2 basis, implements the entangler

SUM|j,k〉 = |j,(j + k) mod 3〉,
which is a natural qutrit generalization of the CNOT. It turns
out that the gates designed above are not sufficient for the
universal quantum computation, per [11]. They are known to
generate a finite group that is projectively equivalent to the
two-qutrit Clifford group. However, the reflection gate,2

R|2〉 = diag(1,1, − 1),

is outside the Clifford group and thus provides universality
when added to the above gates.

The other two single-qutrit axial reflection operators are
classically equivalent to R|2〉: R|0〉 = τ0,2 R|2〉 τ

†
0,2, R|1〉 =

τ0,1 R|0〉 τ
†
0,1. We collectively call these reflections the R gates.

An R gate is implemented exactly via a certain measurement-
assisted repeat-until-success circuit with two ancillary qutrits,
as described in Lemma 5 in [3]. The circuit performs a
probabilistic protocol that succeeds in three iterations on
average (with the variance of the iterations to success equal
to six). This is the most expensive protocol in our set so
far,3 and for the purposes of resource estimation, we take the
following.

Assumption. The cost of performing any braiding-only
(generalized Clifford) gate, including the SUM, is trivial
compared to the cost of performing an R gate.

Therefore we use the R count as the measure of the cost of
a quantum circuit.

Definition 3. A circuit composed of unitary gates introduced
in this section is called a metaplectic circuit.

The R count of a metaplectic circuit is the minimal number
of R gates in all equivalent representations of the circuit. All
the generators of metaplectic circuits are defined by matrices
that are populated by algebraic numbers, and it follows from

2Also called the Flip [12] gate elsewhere.
3However, this protocol is not nearly as expensive as a magic-state

distillation.
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[12] that the generator set is efficiently universal, meaning that
for any target unitary operator G and small enough desired
approximation precision ε, there exists a circuit of depth in
O( log(1/ε)) that approximates G to precision <ε. The main
purpose of this paper is to develop an actual classically feasible
algorithm for finding such efficient approximating circuits.

C. Useful additional gates

Here we expand the metaplectic basis defined in Sec. II B
with additional useful gates.

1. P gates

Pj = I − (ω2 + 1)|j 〉〈j | = R|j〉Q2
j , j = 0,1,2.

By design a P gate has an R count of 1. Any odd power of a
P gate also has an R count of 1, while an even power of a P

gate has an R count of 0. A useful observation regarding the
cost of P -gate sequences is as follows.

Observation 4. Any gate in the group generated by
{P0,P1,P2} can be effectively represented as a product of the
global phase in {±1} and a circuit of the R count of at most 1.

Proof. Clearly, diag(−1,−1,−1) is identity up to the global
phase of (−1) and has an R count of 0. Similarly, each of the
gates f01 = diag(−1,−1,1), f02 = diag(−1,1,−1), and f12 =
diag(1,−1,−1) is an R gate up to the global phase of (−1) and
has an R count of 1.

Now, any gate in the group generated by {P0,P1,P2}
is of the form diag((−ω2)d0 ,(−ω2)d1 ,(−ω2)d2 ) =
diag((−1)d0 ,(−1)d1 ,(−1)d2 ) × diag(ω2 d0 ,ω2 d1 ,ω2 d2 ). The
second factor in this product has an R count of 0 by
convention and the first factor is either ±I , or one of the R

gates, or one of the f01, f02, f12 gates and has an R count of
at most 1. �

2. The SWAP gate

While it is intuitively clear that the two-qutrit SWAP gate
can be obtained by pure braiding, direct computation leads to
the following.

Observation 5. SWAP = (τ1,2 ⊗ I )SUM1,2SUM2,1SUM2,1

SUM1,2.
Here τ1,2 is the single-qutrit transposition |1〉 ↔ |2〉 (which

can be expressed through already available transpositions as
τ1,2 = τ0,2τ0,1τ0,2). By the usual notation convention here and
everywhere the SUMj,k in the multiqutrit context is shorthand
for the two-qutrit sum gate applied to the j th qutrit as the
control and the kth qutrit as the target (tensored with the
identity gates on all other qutrits).

3. Axial reflection

The following is key for our circuit synthesis.
Definition 6. Consider an integer n � 1 and let |j 〉,j =

0, . . . ,3n − 1 be an element of the standard n-qutrit basis.
The operator R|j〉 = I⊗n − 2 |j 〉〈j | is called an n-qutrit

axial reflection (operator). Clearly it is indeed a reflection
with regard to the hyperplane orthogonal to |j 〉.

III. EXACT SINGLE-QUTRIT AND APPROXIMATE
TWO-LEVEL STATES

Consider the field of Eisenstein rationals Q(ω), which is
a quadratic extension of Q. Z[ω] is its integer ring, called
the ring of Eisenstein integers. Z[ω] has the group of units
isomorphic to Z6 generated by −ω2 = 1 + ω.

The two core tools needed for effective synthesis of
metaplectic circuits are described in Lemmas 7 and 8 below.

Lemma 7 (“short-column” lemma). Consider a uni-
tary single-qutrit state |ψ〉 = (u |0〉 + v |1〉 + w |2〉)/√−3

L
,

where u,v,w ∈ Z[ω], L ∈ Z.
(1) There is an effectively synthesizable metaplectic circuit

c with an R count of at most L + 1 such that c |ψ〉 ∈
{|0〉,|1〉,|2〉}.

(2) The classical cost of finding such a circuit is linear in
L.

Before proving the lemma, we need to handle one special
case and make one algebraic observation.

Lemma 8 (special case). If |ψ〉 is a unitary state, the
coefficients of which in computational basis are Eisenstein
integers, then:

(1) One and only one coefficient is nonzero.
(2) This nonzero coefficient is an Eisenstein integer unit.
(3) |ψ〉 can be reduced to one of the computational basis

states using at most one P gate.
Proof. If ψ0, . . . ,ψN are the coefficients, then∑N
j=0 |ψj |2 = 1. Since for any j , |ψj |2 is a non-negative

integer, all the coefficients except one, some ψj∗ , must be 0’s,
while |ψj∗ |2 = 1 and hence ψj∗ is a unit in Z[ω]. Therefore
ψj∗ = (−ω2)d and (−ω2)−d mod 6 ψj∗ = 1. Hence it is easy to
find a P gate of the form G = I ⊗ . . . P −d mod 6

j . . . ⊗ I such
that G|ψ〉 is a standard basis vector. �

Let us introduce the finite ring Z3[ω] = Z[ω]/(3Z[ω]).
This is a ring with exactly nine elements: {0,1,2,ω,2 ω,1 +
ω,1 + 2 ω,2 + ω,2 + 2 ω}. Let ρ : Z[ω] → Z3[ω] be the
natural epimorphism. By construction, its kernel consists of
elements that are divisible by 3. Both the complex conjugation
∗ : Z[ω] → Z[ω] and the norm map | ∗ |2 : Z[ω] → Z can
be consistently factored down to the morphism ∗̃ : Z3[ω] →
Z3[ω] and the reduced norm map ˜| ∗ |2 : Z3[ω] → Z3 (since
both ρ ∗ and | ∗ |2 mod 3 annihilate the kernel of ρ). For the
benefit of several future constructions we need to analyze the
action of the group of Eisenstein units EU = {−ω2} on Z3[ω].

Observation 9. Z3[ω] is split into three orbits under the
action of the group EU as follows:

0. The one-element orbit O0 of 0. Note that |0|2 = 0.
1. The six-element orbit O1 of 1. Note that for any z ∈ O1,

|z|2 = 1 mod 3.
2. The two-element orbit O2 of 1 + 2 ω. Note that for any

z ∈ O2, |z|2 = 0 mod 3.
This split is established by direct computations.
Proof (of Lemma 7). We prove the lemma by induction on

L. For L = 0 the claim follows from Lemma 8.
Consider a state with denominator exponent L > 0. Note

that
√−3 = 1 + 2 ω and thus it is an Eisenstein integer. It

follows, of course, that 3 = −(1 + 2 ω)2 and thus 3 is divisible
by both 1 + 2 ω and (1 + 2 ω)2 in Z[ω].
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The state |ψ〉 is immediately reducible to a state of the form

1/
√−3

L−1
(u′ |0〉 + v′ |1〉 + w′ |2〉) if each of u, v, w is divisi-

ble by 1 + 2 ω, and it is immediately reducible to a state of the

form 1/
√−3

L−2
(u′′ |0〉 + v′′ |1〉 + w′′ |2〉) if each of u, v, w

is divisible by 3 in Z[ω]. From the unitariness condition on
|ψ〉 we have |u|2 + |v|2 + |w|2 = 3L. Given L > 0, then 3L

mod 3 = 0 and thus (|u|2 mod 3) + (|v|2 mod 3) + (|w|2
mod 3) = 0. By direct computation we check, however, that
for any z ∈ Z[ω], |z|2 mod 3 is either 0 or 1. By sim-
ple exclusion argument, for (|u|2 mod 3) + (|v|2 mod 3) +
(|w|2 mod 3) = 0 to hold, either all the summands must be
0 or all the summands must be 1. Let us distinguish the two
cases.

Case 0: (|u|2 mod 3) = (|v|2 mod 3)=(|w|2 mod 3)=0.
Per Observation 9 (above) the residues ρ(u), ρ(v), ρ(w)

belong to the union of orbits O0 and O2. In the edge case
where all three belong to the orbit O0, each of u, v, and w is
divisible by 3. Per our earlier remark, |ψ〉 is reducible to the
case of denominator exponent L − 2 and we do not need to
apply any gates for this reduction.

More generally, within case 0 each of the residues
ρ(u), ρ(v), ρ(w) is divisible by ρ(1 + 2 ω). However, if ρ(z)
is divisible by ρ(1 + 2 ω), then z is divisible by 1 + 2 ω in
Z[ω]. Indeed, the divisibility of the residue implies that z =
(1 + 2 ω) z′ + 3 z′′, z′,z′′ ∈ Z[ω], but as noted, 3 is divisible
by 1 + 2 ω in Z[ω]. Thus the general subcase allows reduction
to the denominator exponent L − 1 without application of any
gates.

Case 1: (|u|2 mod 3)=(|v|2 mod 3)=(|w|2 mod 3)=1.
We are going to find a short circuit cL of R-count at most

1 such that cL |ψ〉 is reduced to a case with denominator
exponent at most L − 1. (This would complete the induction
step.)

Suppose first that ρ(v) = ρ(w) = ω2 ρ(u) ∈ Z3[ω], which
means that v = ω2 u + 3 v′, w = ω2u + 3w′ for some v′,w′ ∈
Z[ω], and it follows that s2 |ψ〉 = (−(u + ω v′ + ω w′) |0〉 −
(v′ + ω w′) |1〉 − (ω v′ + w′) |2〉))/√−3

L−1
. Thus, in this par-

ticular special case the denominator exponent is reduced
to L − 1 by application of the single s2 gate that has R

count 0.
In general, since (|ω2 u|2 mod 3) = (|u|2 mod 3) = (|v|2

mod 3) = (|w|2 mod 3) = 1, then ω2 ρ(u), hρ(v), ρ(w)
must belong to the same orbit O1 of the unit group EU.
This means, in particular, that we can effectively find integers
dv, dw such that ω2 ρ(u) = ρ((−ω2)dv v) = ρ((−ω2)dw w) =
r ∈ Z3[ω]. Hence the short circuit cL = s2 P

dv

1 P
dw

2 reduces
the state as shown. Per Observation 4, P

dv

1 P
dw

2 in this circuit
is equivalent to a circuit of R count at most 1 up to the
possible global phase of ±1. This completes the induction
step. �

Example 10. Consider unitary column |K〉 = ((2 +
i
√

3) |0〉 + |1〉 + |2〉)/3.
|K〉 is reduced to the basis state at an R count of 2 as

follows: s2 R|0〉 Q2
1 Q2

2 s2 R|0〉 |K〉 = |0〉.
Note that

s2 R|0〉 Q2
1 Q2

2 s2 R|0〉 = −ω σ2 R|0〉 σ 2
1 σ 2

3 σ2 R|0〉.

In Algorithm 1 we present the method suggested by
Lemma 7 in algorithmic format.

Algorithm 1 Reduction of a short unitary column.

Require:L ∈ Z, u,v,w ∈ Z[ω]
1. ret ← 〈empty〉
2. while L > 0 do
3. {νu,νv,νw} = {|u|2,|v|2,|w|2} mod 3
4. if νu = νv = νw = 1 then
5. Find dv,dw ∈ {−2, − 1,0,1,2,3} such that
6. ω2 u ≡ (−ω2)dv v ≡ (−ω2)dww mod 3
7. {u,v,w} ← {u,(−ω2)dv v,(−ω2)dww}
8. v′ ← (v − ω2 u)/3; w′ ← (w − ω2 u)/3
9. {u,v,w} ←

10. {−(u + ω v′ + ω w′), − (v′ + ω w′), − (ω v′ + w′)}
11. ret ← s2 P

dv

1 P
dw

2 ret

12. else
13. {u,v,w} ← {u,v,w}/(2 ω + 1)
14. end if
15. L ← L − 1
16. end while
17. Implied L = 0; Only one of u,v,w is nonzero.
18. Find classical g s. t. g(u|0〉 + v|1〉 + w|2〉) = u′|0〉
19. Find d ∈ {−2, − 1,0,1,2,3} such that (−ω2)d = u′

20. return P −d
0 g ret

Lemma 11. Consider a “two-level” unitary single-qutrit
state |ϕ〉 = x |0〉 + y |1〉 + z |2〉 where x y z = 0 and let ε be
an arbitrarily small positive number.

(1) There is a family of effectively synthesizable

states of the form |ψε〉 = (uε |0〉 + vε |1〉 + wε |2〉)/√−3
Lε ,

uε,vε,wε ∈ Z[ω], Lε ∈ Z, such that |ψε〉 is an ε approxima-
tion of |ϕ〉 and Lε � 4 log3(1/ε) + O( log[log(1/ε)]).

(2) The expected average classical cost of finding each
|ψε〉 is polynomial in log(1/ε).

A proof of this lemma is given in Appendix B. The proof is
very technical. It combines elementary geometry with rather
profound number theory, which is based on a mild number-
theoretical hypothesis (Conjecture 29).

It follows from the two lemmas that a two-level unitary state
can be prepared with precision ε from a standard basis state
using a metaplectic circuit of R count at most 4 log3(1/ε) +
O( log[log(1/ε)]), and in fact this readily generalizes to
multiple qutrits as follows.

Lemma 12 (“two-level approximation” lemma). Consider
an integer n � 1 and let |ϕ〉 be a unitary n-qutrit state that has
at most two nonzero components in the standard n-qutrit basis.

For arbitrarily small ε > 0:
(1) There is an effectively synthesizable metaplectic circuit

c with an R count of at most 4 log3(1/ε) + O( log[log(1/ε)])
such that c |0〉 is an ε approximation of |ϕ〉.

(2) The expected average classical cost of finding such a
circuit is polynomial in log(1/ε).

Before proving the lemma we need two lesser technical
facts, which are useful in their own right:

Lemma 13. Let |b1〉 and |b2〉 be two standard n-qutrit basis
states. There exists an effectively and exactly representable
classical permutation π such that |b2〉 = π |b1〉

Proof. In the case of n = 1 the Z3 group generated by INC
acts transitively on the standard basis {|0〉, |1〉, |2〉}.
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Consider |bk〉 = |(bk)1, . . . ,(bk)n〉, n � 1, k = 1,2. Let
πj ∈ {I,INC,INC2} be such that πj |(b1)j 〉 = |(b2)j 〉, j =
1, . . . ,n. Then π = ⊗n

j=1πj is the desired permutation. �
Lemma 14.
(1) For any two standard n-qutrit basis vectors |j 〉 and |k〉

there exists a classical effectively representable metaplectic
gate g, such that for |j ′〉 = g|j 〉 and |k′〉 = g|k〉 we have |j ′ −
k′| < 3.

(2) Such a gate g can be effectively represented with at
most (n − 1) instances of the SUM, SUM† or SWAP gates.

In other words, digital representations of j ′ and k′ base 3
are the same except possibly for the least-significant base-3
digit.

Proof. At n = 1 there is nothing to prove.
Given Lemma 13, for n = 2 the general pair of basis

vectors can be reduced to the case where |j 〉 = |00〉. When
|k〉 = |0,k1〉 no further transformations are needed; when
|k〉 = |k0,0〉 a single SWAP suffices. The remaining cases are
covered by SUM

†
2,1|11〉 = SUM2,1|21〉 = |01〉, SUM2,1|12〉 =

SUM
†
2,1|22〉 = |02〉. Suppose n > 2 and the lemma has been

proven for multiqutrit vectors in fewer than n qutrits.
Let |j 〉 = |j1 . . . ,jn−1,jn〉, |k〉 = |k1 . . . ,kn−1,kn〉

be base-3 representations of the two vectors. By
induction hypothesis, one can effectively find an
(n − 1)-qutrit classical metaplectic gate gn−1 such
that (gn−1 ⊗ I )|j1 . . . ,jn−1,jn〉 = | . . . ,j ′

n−1,j
′
n〉 and

(gn−1 ⊗ I )|k1 . . . ,kn−1,kn〉 = | . . . ,k′
n−1,k

′
n〉 may differ

only at the (n − 1)st and nth positions.
Select a two-qutrit classical gate g2, as shown above, such

that g2|j ′
n−1,j

′
n〉 and g2|k′

n−1,k
′
n〉 differ only in the last position.

Then, by setting g = (I⊗(n−2) ⊗ g2)(gn−1 ⊗ I ) we complete
the induction step. �

Proof (of Lemma 12). We start by reducing |ϕ〉 to the form
x |a1 . . . an−1,d〉 + z |a1 . . . an−1,f 〉, a1, . . . ,an−1, d,f ∈
{0,1,2} using the classical circuit b described in Lemma 14.
Let e ∈ {0,1,2} be the “missing” digit such that {d,e,f } is a
permutation of {0,1,2}.

Using Lemma 11 we can effectively approximate the
single-qutrit state x |d〉 + z |f 〉 with an Eisenstein state

of the form |η〉 = (u |d〉 + v |e〉 + w |f 〉)/√−3
k
, u,v,w ∈

Z[ω], k ∈ Z to precision ε, with k � 4 log3(1/ε) +
O( log[log(1/ε)]). Using Lemma 7 we can effectively syn-
thesize a single-qutrit metaplectic circuit c1 with R-count at
most k + 1 such that c1 |0〉 = |η〉.

Let cn = (I⊗(n−1) ⊗ c1). Clearly b† cn |a1 . . . an−1,0〉 is an
ε approximation of |ϕ〉. But |a1 . . . an−1,0〉 can be prepared
exactly from |0〉 using at most n − 1 local INC gates, which
finalizes the desired circuit. �

Corollary 15. Consider an integer n � 1 and let |ϕ〉 be a
unitary n-qutrit state that has at most two nonzero components
in the standard n-qutrit basis and consider the corresponding
Householder reflection operator R|ϕ〉 = I⊗n − 2 |ϕ〉〈ϕ|.

For arbitrarily small ε > 0:
(1) There is an effectively synthesizable metaplectic circuit

c with an R count of at most 4 log3(1/ε) + O( log[log(1/ε)])
such that c R|0〉 c

† is an ε approximation of R|ϕ〉 (where |0〉 =
|0〉⊗n).

(2) The expected average classical cost of finding such a
circuit is polynomial in log(1/ε).

Proof. Per [13], if the distance between state |ϕ〉 and
state |ψ〉 is less than ε/(2

√
2), then the distance between

R|ϕ〉 and R|ψ〉 is less than ε. Using Lemma 12 one can
effectively find a metaplectic circuit c with an R count of
4 log3(1/ε) + O( log[log(1/ε)]) such that c |0〉 approximates
|ϕ〉 to precision ε/(2

√
2) and the corollary follows. �

This result applies in a straightforward manner to the one-
parameter special diagonal unitary:

Corollary 16. Consider an integer n � 1 and an n-qutrit
diagonal operator of the form D = I⊗n + (ei θ − 1) |j 〉〈j | +
(e−i θ − 1) |k〉〈k|, where j,k ∈ {0, . . . ,3n − 1}, j �= k.

For arbitrarily small ε > 0 there is an effectively synthesiz-
able circuit at distance < ε from D composed of at most two
axial n-qutrit reflection operators and local metaplectic gates
with a total R count of

(1) at most 8 log3(1/ε) + O( log[log(1/ε)]) when n = 1
and

(2) at most 16 log3(1/ε) + O( log[log(1/ε)]) when n > 1.
Indeed, the diagonal unitary of this form is equal to r1 r2,

where r1 = I⊗n − |j 〉〈j | − |k〉〈k| + |j 〉〈k| + |k〉〈j |, r2 =
I⊗n − |j 〉〈j | − |k〉〈k| + e−i θ |j 〉〈k| + ei θ |k〉〈j |, and both r1

and r2 are two-level reflection operators. We note that for
n = 1 the r1 is a Clifford gate and has a trivial cost.

Since multiqutrit axial reflections become more important
below, we offer a decomposition method for them in the next
section.

IV. IMPLEMENTATION OF AXIAL
REFLECTION OPERATORS

Let |b〉 be a standard n-qutrit basis state. Then the axial
reflection operator R|b〉 is defined as

R|b〉 = I⊗n − 2 |b〉〈b|.
Clearly, R|b〉 is represented by a diagonal matrix that has a −1
on the diagonal in the position corresponding to |b〉 and a +1
in all other positions.

Per Lemma 13 any two axial reflection operators are
equivalent by conjugation with an effectively and exactly
representable classical permutation. Since we consider the cost
of classical permutations to be negligible compared to the cost
of R gates, we hold that for a fixed n all the n-qutrit axial
reflection operators have essentially the same cost. We show
in this section that all the n-qutrit axial reflection operators can
be effectively and exactly represented.

In view of the above it suffices to represent just one such
operator for each n. We start with the somewhat special case
of n = 2.

Observation 17. The circuit

(I ⊗ R|0〉) SUM(I ⊗ R|1〉) SUM(R|2〉 ⊗ R|2〉) SUM (5)

is an exact representation of (−1)R|20〉.
This is established by direct matrix computation. We

generalize this solution to arbitrary n � 2 and note that the
occurrence of the global phase (−1) is exceptional and happens
only at n = 2.

Lemma 18. Given n > 2, denote by 2̄ in the context of this
lemma a string of n − 2 occurrences of 2.
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Then the circuit

c202̄ = (I ⊗ R|02̄〉) SUM1,2 (I ⊗ I ⊗ R|2̄〉) (I ⊗ R|12̄〉)

× SUM1,2SWAP1,2(I⊗R|22̄〉)SWAP1,2 (I ⊗ R|22̄〉) SUM1,2

is an exact representation of the operator R|202̄〉.
Proof. Let |b〉 be an element of the standard n-qutrit basis.

The circuit consists of diagonal operators and three occur-
rences of SUM1,2. Let |b1b2b̄〉 be the ternary representation
of |b〉, where b̄ stands for the substring of the n − 2 least
significant ternary digits of b. It is almost immediate that the
circuit c202̄ represents a diagonal unitary. Indeed, when the
input is |b1b2b̄〉 we can only get ±|b1b2b̄〉, ±|b1 INC b2b̄〉,
or ±|b1 INC2b2b̄〉, up to swap, after applying each subse-
quent operator of the circuit, and clearly we can only get
ϕ|b1b2b̄〉, ϕ = ±1 after the entire circuit is applied.

The lemma claims that ϕ = −1 if and only if b = 202̄.
Consider the cases where b1 = 0 or b1 = 1. It is easy to
see that, whatever is the value of b2, one and only one
of the operators (I ⊗ R|02̄〉), (I ⊗ R|12̄〉), (I ⊗ R|22̄〉) activates
R|2̄〉 on |b̄〉 and this activation always cancels out with
(I ⊗ I ⊗ R|2̄〉) (since R2 = identity for any reflection R). So
the result is identity.

If b1 = 2, b2 �= 0, the five rightmost operations in the
circuit produce |2〉 ⊗ (INC2|b2〉) ⊗ (R|2̄〉|b̄〉), an action that is
subsequently canceled out by I ⊗ I ⊗ R|2̄〉. It is also easy to
see that for b2 = 1 or b2 = 2 the remaining two reflections
R|02̄〉 and R|12̄〉 amount to nonoperations. Therefore the net
result is identity.

We are left with the important case of b1 = 2, b2 = 0.
By definition, SUM12|20b̄〉 = |22b̄〉 and then the subsequence
SWAP1,2 (I ⊗ R|22̄〉) SWAP1,2 (I ⊗ R|22̄〉) activates the operator
R|2̄〉 on |b̄〉 twice, and of course these two activations cancel
each other. We proceed with SUM12|22b̄〉 = |21b̄〉, and I ⊗
R|12̄〉 activates R|2̄〉 on |b̄〉, which is immediately canceled out
by I ⊗ I ⊗ R|2̄〉. Finally, SUM12|21b̄〉 = |20b̄〉, and I ⊗ R|02̄〉
activates R|2̄〉 on |b̄〉 as desired. This applies the factor of −1
if and only if b̄ = 2̄, and that is what is claimed. �

Using this lemma we implement the operator R|202̄〉 exactly
by linear recursion. As noted earlier, all the axial reflection
operators in n qutrits have the same R count. Denote this R

count rc(n).
Observation 19. rc(n) = �((2 + √

5)n) when n → ∞.
Proof. We have rc(1) = 1, rc(2) = 4 (see Observation

IV). The recurrence rc(n) = 4 rc(n − 1) + rc(n − 2), rp(1) =
1,rc(2) = 4 can be solved in closed form as rc(n) = ((2 +√

5)n − (2 − √
5)n)/(2

√
5). Because |2 − √

5| < 1 the −(2 −√
5)n term is asymptotically insignificant. �
Thus the cost of the above exact implementation of the n-

qutrit axial reflection operator is exponential in n. This defines
several trade-offs explored in the following sections.

V. ANCILLA-FREE REFLECTION-BASED UNIVERSALITY

Consider integer n � 1. For the duration of this section we
set N = 3n.

Lemma 20. Given a diagonal unitary D ∈ U (N ) and
arbitrarily small ε > 0 there is an effectively synthesizable
ε approximation of D composed of a global phase factor,

at most 2 (N − 1) axial reflection operators, and metaplectic
local gates with a total R count that is

(1) 16 (log3(1/ε) + O( log[log(1/ε)])) when n = 1 and
(2) less than 16 (N − 1)(log3(1/ε) + n +

O( log[log(1/ε)])) when n > 1.
Indeed, a unitary diagonal D is decomposed into a product

of a global phase factor and (N − 1) special two-level diago-
nals as in Corollary 16. Each of the latter diagonals needs to
be approximated to precision ε/(N − 1) with log3 (1/(ε/(N −
1))) < log3(1/ε) + n.

In [14] Urias offers an effective U (2) parametrization
of the U (N ) group, whereby any U ∈ U (N ) is factored
into a product of at most N (N − 1)/2 special Householder
reflections and possibly one diagonal unitary. All reflections
in that decomposition are two level. This immediately leads to
the following.

Theorem 21 (general unitary decomposition, reflection
style). Given a U ∈ U (N ) in general position and small enough
ε > 0 the U can be effectively approximated up to a global
phase to precision ε by an ancilla-free metaplectic circuit
with an R count of at most 4 (N + 4)(N − 1)(log3(1/ε) +
2 n + O( log[log(1/ε)])) and at most (N + 4)(N − 1)/2 axial
reflections (in n qutrits).

Proof. It follows from [14] that U ∈ U (N ) is effectively
decomposed into N (N − 1)/2 special Householder reflections
and possibly a diagonal unitary D ∈ U (N ) that may add
up to 2 (N − 1) such reflections (see Lemma 20) to the
decomposition to a total of (N + 4)(N − 1)/2 reflections.
Each of these allows an effective ε/((N + 4)(N − 1)/2)
approximation by a metaplectic circuit with an R count of at
most eight (log3(1/ε) + 2 n + O( log(log(1/ε)) plus at most
two axial reflections per Corollary 15, and the cost bound
claimed in the theorem follows. �

The best-known cost of exact metaplectic implementation
of an n-qutrit axial reflection is �((2 + √

5)n) as per Observa-
tion 19. This may become prohibitive when n is large.

In the next section we show how to curb the R count at the
cost of roughly doubling the width of the circuits.

VI. ANCILLA-ASSISTED APPROXIMATION OF
ARBITRARY UNITARIES

An alternative way of implementing a two-level uni-
tary operator is through a network of strongly controlled
gates. For V ∈ U (3) introduce Cn(V ) ∈ U (3n+1), where
Cn(V )|j1, . . . ,jn,jn+1〉 = {|j1, . . . ,jn〉 ⊗ V |jn+1〉, j1 = · · · = jn = 2,

|j1, . . . ,jn,jn+1〉otherwise.

The C1(INC) gate,

C1(INC)|j,k〉 = |j,(k + δj,2) mod 3〉, (6)

is of particular interest in this context.
Bullock et al. [15] offer a certain ancilla-assisted circuit

that emulates Cn(V ) using only two-qudit gates. The circuit
requires n − 1 ancillary qutrits, 4 (n − 1) instances of the
C1(INC) gate [see Eq. (6)], and one single C1(V ) gate.

We do not believe that the classical C1(INC) gate can
be represented exactly, and we must resort to approximating
C1(INC) to the desired precision.

Lemma 22. C1(INC) [as defined by (6)] can be approxi-
mated to precision ε by a metaplectic circuit with an R count
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of at most 16 log3(1/ε) + O( log[log(1/ε)]) and 2 two-qutrit
axial reflections.

Proof. C1(INC) is the composition of two reflec-
tion operators, C1(INC) = R|2〉⊗v2 R|2〉⊗v0 , where v0 = (|1〉 −
|2〉)/√2, v2 = (|0〉 − |1〉)/√2, and the lemma follows. �

Corollary 23. Given V ∈ U (3), integer n > 0, and a
small enough ε > 0, Cn(V ) can be effectively emulated
approximately to precision ε by an ancilla-assisted 2 n-
qutrit circuit with an R count smaller than 64 n (log3(1/ε) +
O( log[log(1/ε)])).

It is easy to see from Lemma 14 that any two-level
n-qutrit unitary W is effectively classically equivalent to
some Cn−1(W̃ ), where W̃ is a certain (two-level) single-qutrit
derivative of W . This applies, in particular, to the two-level
Householder reflections that constitute the factors in the
explicit U (2) factorization of U (3n) ([14]).

An upper bound for the cost of ancilla-assisted emulation
of arbitrary n-qutrit unitary is summarized in the following.

Theorem 24 (general unitary decomposition, ancilla as-
sisted). Given U ∈ U (N ) in a general position and small
enough ε > 0 the U can be effectively emulated up to a global
phase to precision ε by a metaplectic circuit with (n − 2)
ancillas and an R count smaller than 32 (N + 4)(N − 1)(n −
1)(log3(1/ε) + 2 n + O( log[log(1/ε)])).

Proof. We can still exactly and effectively decompose U

into a global phase and at most (N + 4)(N − 1)/2 two-level
Householder reflections (see the proof of Theorem 21).

But now we treat each two-level reflection as the classical
equivalent of a Cn−1(V ), where V is a single-qutrit unitary.
We emulate each reflection as such using Corollary 23, and
the cost bound for the overall decomposition follows. �

This synthesis procedure is summarized as pseudocode in
Algorithm II.

Algorithm 2 Ancilla-assisted decomposition of a general
unitary.

Require: U ∈ U (3n), ε > 0
1. U = D

∏K

k=1 Uk as per [14] Diagonal D and two-level Uk

2. ret ← decomposition(D,ε) as per Corollary 23
3. for k = 1..K do
4. c ← decomposition(Uk,ε) as per Corollary 23
5. ret ← ret c
6. end for
7. return ret

VII. OVERALL SYNTHESIS ALGORITHM FLOW

Assuming that ancillary qutrits are readily available, the
decision point on choosing between the ancilla-free and
the ancilla-assisted decomposition strategies is defined by
the relative magnitudes of (2 + √

5)n and 64 n log3(1/ε).
Comparison of the upper bounds suggests that in practice
the ancilla-free solution becomes prohibitively costly when
n > 7. Otherwise the decision threshold in ε is of the form
εn = �(3−(2+√

5)n/(64 n)).
The two strategies can be run in parallel on a classical

computer, with the best resulting circuit postselected. This
approach is shown schematically in Fig. 3.

FIG. 3. Parallelizable control flow for the two flavors of the main
algorithm.

VIII. SIMULATION, THEORETICAL LOWER BOUND,
AND FUTURE WORK

The scaling of the cost of our metaplectic circuits is fully
defined by the cost of approximating a two-level state. The
R count of a circuit performing an ε approximation of the
latter is, in turn, defined by the denominator exponent k of an
approximating trilevel Eisenstein state |ϕk〉 = (u |j 〉 + v |�〉 +
w |m〉)/√−3

k
.

We currently have k upper-bounded by 4 log3(1/ε) +
O( log[log(1/ε)]). Our numerical simulation over a large set
of randomly generated two-level targets demonstrates that an
approximation algorithm based solely on Lemma 11 yields
k extremely close to this upper bound in the overwhelming
majority of cases.

A certain volume argument suggests that a uniform lower
bound for k is 5/2 log3(1/ε) + O( log[log(1/ε)]). Indeed for a
given two-level target state |ψ〉 and its ε approximation |ϕk〉 the
real vector [Re(u),Im(u),Re(v),Im(v)]T is found in a certain
four-dimension meniscus of four-volume �(ε5 32 k). If we ex-
pect, uniformly, each of these menisci to contain �(log(1/ε))
such vectors, we need to have ε5 32 k in �(log(1/ε)) and the
above lower bound on k follows.

There is clearly a gap between our guaranteed cost leading
term 4 log3(1/ε) and the cost’ lower-bound leading term
5/2 log3(1/ε) and we currently do not know (a) whether
the lower bound is reachable at all using metaplectic circuits
or (b) if it is reachable, whether this can be done using a
classically tractable algorithm. More theoretical (and, possibly,
simulation) work is needed to answer these questions. At stake
here is the potential practical reduction of the metaplectic
circuitry cost by 37.5%.

Another important open question is whether there is a set of
exact metaplectic circuits for n-qutrit axial reflections with an
R count that is subexponential (preferably, polynomial) in n.
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IX. CONCLUSION

We have addressed the problem of performing efficient
quantum computations in a framework where the quantum
information is represented in multiqutrit encoding by en-
sembles of certain weakly integral anyons and the native
quantum gates are represented by braids with the targeted
use of projective measurement. We have developed two
flavors of a classically feasible algorithm for the synthesis
of efficient metaplectic circuits that approximate arbitrary
n-qutrit unitaries to a desired precision ε. The first flavor of the
algorithm produces circuits that are ancilla-free and asymp-
totically optimal in ε (but may have additive entanglement
overhead that is exponential in n). The second flavor produces
circuits requiring roughly n clean ancillae and has a depth
overhead factor of approximately n but may be, nevertheless,
more efficient in practice when n is large. The combined
algorithm enables us to compile logical multiqutrit circuits
with scalability properties comparable to the scalability of the
recent crop of efficient logical circuits over multiqubit bases
such as Clifford + T, Clifford +V, and Fibonacci.

In summary, we have demonstrated that circuit synthesis
for a prospective ternary topological quantum computer based
on weakly integral anyons can be done effectively and
efficiently. This implicitly validates this prospective computer
for quantum algorithm development.

Although we have achieved asymptotic optimality of the
resulting circuits, there is some potential slack left in the
practical bounds of leading coefficients for the circuit depths,
as explained in Sec. VIII. Investigating this presumed slack is
one of our future research topics.
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APPENDIX A: EXACT REPRESENTATION OF
SINGLE-QUTRIT UNITARIES OVER THE METAPLECTIC

BASIS

Surprisingly, our synthesis algorithms did not require the
usual theorem regarding the exact decomposition of exactly
representable matrices. For completeness we state this result
here (Theorem 26).

Lemma 25. Let |ψ〉 be a unitary single-qutrit state of the

form |ψ〉 = 1/
√−3

L
(v |1〉 + w |2〉), where v,w ∈ Z[ω], L ∈

Z. Then |ψ〉 is effectively and immediately reducible to a
standard basis vector at the cost of at most one P gate.

Proof. We reuse remarks in the proof of Lemma 7 to note
that, whenever L > 0, then |v|2 mod 3 = |w|2 mod 3 = 0.
This also implies that each of the v,w is divisible by 1 + 2 ω =√−3 in Z[ω]. Therefore, the state reduces algebraically to a
unitary state of the form v′ |1〉 + w′ |2〉, where v′,w′ ∈ Z[ω]
and the lemma follows for Lemma 8. �

Theorem 26 (single-qutrit exact synthesis theorem). Con-

sider a 3 × 3 unitary matrix of the form U = 1/
√−3

L
M ,

where M is a 3 × 3 matrix over Z[ω]. Then U is represented
exactly by a metaplectic circuit of R count at most L + 3.

In order to prove the theorem, we handle the following
special case first.

Lemma 27. Consider a 2 × 2 unitary matrix of the form

V = 1/
√−3

L
M , where M is a 2 × 2 matrix over Eisenstein

integers. The 3 × 3 matrix U = (1 0
0 V ) can be effectively

reduced to identity by application of at most two P gates
and at most one classical gate.

Proof (of the lemma). Let 1/
√−3

L
[0,u,v]T be the second

column in matrix U . Per Lemma 25 the column can be
reduced to a standard basis vector using at most one P gate.
Applying an appropriate classical gate if necessary we can
force it to be |1〉 and thus U is reduced to diag(1,1,ϕ), where
ϕ ∈ Z[ω] is a phase factor and thus an Eisenstein unit. Hence
ϕ = (−ω2)d , d ∈ Z, and P −d mod 6

2 completes the reduction
of the matrix to identity. �

Proof (of the theorem). Per Lemma 7 we can effectively
find a unitary circuit c1 of R count at most L + 1 and H count
at most L that reduces the first column in U to a basis vector
and, in fact, without loss of generality, to |0〉.

Consider the matrix c1 U . Due to unitariness, it must be
of the form (1 0

0 V ) with V = 1/
√−3

L1
M1, where M1 is a

certain 2 × 2 matrix over Z[ω]. Per Lemma 27 this matrix can
be effectively reduced to identity at the cost of at most two P

gates.
Therefore we have effectively found a circuit c2 with an R

count of at most L + 3 and an H count of at most L such that
c2 U = I and thus U = c−1

2 . �

APPENDIX B: SINGLE-QUTRIT-STATE APPROXIMATION

1. Norm equation in Eisenstein integers

The ring of Eisenstein integers Z[ω] is arguably the
simplest cyclotomic ring [16]. In what follows we need certain
properties of the equation

|z|2 = n, n ∈ Z, z ∈ Z[ω]. (B1)

The two basic facts to deal with are that (a) Eq. (B1) is solvable
with respect to z only for some of the right-hand-side values,
and (b) the complexity of solving the equation for z is no less
than the complexity of factoring the integer n.

The first thing to note is that |z|2 is multiplicative in z.
Therefore if |z1|2 = n1 and |z2|2 = n2, then |z1 z2|2 = n1 n2.
Hence disregarding the integer factorization we only need to
know the effective solvability of the equation when n is a power
of a prime number. Moreover, since for p ∈ Z, |p|2 = p2, i.e.,
the equation is always solvable when n is a complete square, we
only need the effective solvability when n is a prime number.

According to [16], if n is a positive prime number, Eq. (B1)
is solvable if and only if n = 1 mod 3 or n = 3. In the case
of n = 3 the six solutions of the equation are (−ω)2 d (2 ω +
1), d = 0, . . . ,5.

In the more general case where n is a prime with n = 1
mod 3 it is easy to obtain all the solutions of (B1) at a run-time
cost that is probabilistically polynomial in log(n). The two-step
procedure used is as follows:

(1) Compute m ∈ Z such that m2 = −3 mod n, using, for
example, the Tonelli-Shanks algorithm [17].
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(2) Compute z = GCDZ[ω](m + 2 ω + 1,n).
(3) Now {(−ω2)d z, (−ω2)d z∗, d = 0, . . . ,5} are the solu-

tions of (B1).
As a matter of principle, we could limit ourselves only to

norm equations with integer prime right-hand sides and thus
sidestep the need for integer factorization.

If we pick an integer n at random from some interval
(B/2,B), then the probability that n is an integer prime with
n = 1 mod 3 is going to be �(1/ log(B)) (cf. [18]). While
this is sufficient for establishing asymptotic properties of the
algorithms we are about to design, for improved practical
performance it is beneficial to be able to deal with easily
solvable equations of the form (B1), that is, ones where the
integer n on the right-hand side can be factored at some
acceptable cost. A subset of solutions of the equation in this
case is described by the following.

Theorem 28. Let n be an integer, factored to the form n =
m2 p1 . . . p�, where m ∈ Z and p1 . . . p� are distinct positive
integer primes.

Then
(1) Eq. (B1) is solvable if and only if pj = 1 mod 3, j =

1, . . . ,�.
(2) If {z1, . . . ,z�} is a sequence of particular solutions

of the equations |zj |2 = pj , j = 1, . . . ,�, then all of the
following are solutions of Eq. (B1):

z = mConjd1 [z1] . . . Conjd� [z�], d ∈ {0,1}�, (B2)

where Conj is the complex conjugation operator.
Recall that an integer is smooth if it does not have prime

factors above a certain size [19]. Let us call an integer
semismooth if it is a product of a smooth integer and at most
one larger prime number.

In view of the theorem and the above effective procedure for
solving a norm equation with a prime right-hand side, solving
a norm equation with a semismooth right-hand side n is easy
and can be effectively performed at the run-time cost that is
polynomial in log(n).

The distribution of smooth integers is described by the de
Bruijn function [19]. Even though the density of semismooth
numbers n for which Eq. (B1) is solvable in interval (B/2,B)
may still be in �(1/ log(B)) asymptotically, in practice, such
integers are much more dense than the primes with n = 1
mod 3.

Intuitively, in a random stream of norm equations easily
solvable norm equations are not uncommon, and for large
enough B > 0 we need to sample some O( log(B)) integers
n ∈ (B/2,B) to find, with a sufficiently high probability, one
that is semismooth and such that Eq. (B1) is solvable.

Approximation methods developed in the next subsection
depend on the following more specific conjecture.

Conjecture 29. Let k be an arbitrarily large positive integer
and let u,v ∈ Z[ω] be randomly picked Eisenstein integers
such that

�(3k/2) � |u|2 + |v|2 � 3k.

Then for n = 3k − |u|2 − |v|2 Eq. (B1) is easily solvable with
a probability that has a uniform lower bound in �(1/k).

FIG. 4. Lattice of Eisenstein integers. (Downloaded from
http://mathworld.wolfram.com/EisensteinInteger.html, a Wolfram
Research Inc. web resource.)

2. Approximation of single-qutrit states

We start with the following.
Lemma 30. Let |ψ〉 be a unitary state of the form

x |0〉 + y |1〉, x,y ∈ C,|x|2 + |y|2 = 1, and let ε be a
small enough positive value. The unitary state |ψ〉 can be
approximated to precision ε by a unitary state for the form

(u |0〉 + v |1〉 + w |2〉)/√−3
k
, u,v,w ∈ Z[ω], k ∈ Z such

that k � 4 log3(1/ε) + O( log[log(1/ε)]). The expected
classical run time required to carry out the approximation
effectively is polynomial in log(1/ε).

Before proving the lemma, let us state the following.
Proposition 31. For a given complex number z with

|z| � 1 and small enough ε > 0 there exists an integer k �
2 log3(1/ε) + 5 and an Eisensten integer u ∈ Z[ω] such that

|u/
√−3

k − z| < ε and |u/
√−3

k| � |z|.
Set k0 = �2 log3(1/ε) + 2 log3(2) + 2� and let � be a non-

negative integer that can be arbitrarily large. For k = k0 + �

there are �(3�) distinct choices of Eisensten integer u such

that |u/
√−3

k − z| < ε.

Proof. Note that |u/
√−3

k − z| = |u/
√

3
k − z ik|, and we

can simplify the statement a bit by relabeling z ik as z.
We start by taking a geometric view of the feasibility of both

claims in this proposition. On the complex plane Eisenstein
integers are found at the nodes of a hexagonal lattice spanned,
for example, by 1 and 1 + ω = +1/2 + i

√
3/2. These two

lattice basis vectors are at the angle π/3 (and thus the entire
lattice is a tiling of the plane with equilateral triangles of side
length 1; see Fig. 4). A circle of radius R centered at the
origin contains at least 3 R (R + 1) nodes of this lattice. Per
the general properties of integral lattices, a convex domain
with a large enough area A is to contain O(A) lattice nodes
and, in this case, at least 3/π A nodes.
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The desired Eisenstein integer u must be within ε
√

3
k

from

z
√

3
k

and satisfy the side condition

|u| � |z|
√

3
k
. (B3)

Geometrically this means that u must belong to the

intersection of the two circles B(k,ε) = {|u|�|z|√3
k} ∩

|u−z
√

3
k|<ε

√
3

k|.
B(k,ε) is a convex domain, and when ε is sufficiently

smaller than |z| it contains a sector of the smaller circle
with an area of at least 1/2 (1 − ε/|z|)ε2 3k . Thus (assuming
ε < 2/3 |z|) if k is larger than k = log3(2/ε2) + 1, then the
area of B(k,ε) is greater than 1 and B(k) has a good chance
of containing at least one node of the Eisenstein lattice. It
may not contain one for a specific geometric configuration,
but one notes that for k = k + � the area of B(k,ε) grows
exponentially in � so there exists a small constant �0 such that
for k0 = �k� + �0 the B(k0,ε) contains an Eisenstein lattice
node. It is geometrically obvious that from that point on
for integer � > 0 the number of Eisenstein lattice points in
B(k0 + �,ε) grows as O(3�).

We now propose a procedure for effectively finding such
points in B(k,ε). The task is reduced to the case where π/12 �
arg z � 5 π/12. Indeed, the multiplication by the Eisensten
unit −ω2 = 1 + ω is interpreted as a central rotation of the
complex plane by the angle π/3 and an automorphism of
the Eisenstein integer lattice. A complex number z �= 0 lying
in any of the six sectors π/12 + π/3 m � arg z � 5 π/12 +
π/3m, m = 0, . . . ,5, can be moved into the sector π/12 �
arg z � 5 π/12 by applying zero or more such rotations. An
Eisenstein integer properly approximating the rotated target
can be rotated back into an Eisenstein integer approximating
the original target.

We now assume that k � log√
3(2/ε) + 2 = 2 log3(1/ε) +

2 log3(2) + 2 (this is a convenient if somewhat excessive

assumption). This implies that ε
√

3
k−1 � 2

√
3 and ε

√
3

k�6.
Considering π/12 � arg z � 5 π/12, the circle,

(B3), contains the vertical segment [z
√

3
k −

i |z|√3
k
(2 sin(π/12)),z

√
3

k
] of length at least 1/2 |z|√3

k
.

Assuming, again, that ε < |z|, B(k,ε/4) contains the vertical

segment V = [z
√

3
k − i

√
3

k
ε/4,z

√
3

k
].

We are now ready to build the desired Eisenstein integer
u = a + b ω = (a − b/2) + i (b

√
3/2), a,b ∈ Z. We choose

b such that b
√

3/2 is at a distance at most (ε/4)
√

3
k

from

Im(z)
√

3
k
. Per our choice of k this implies that it is necessary

and sufficient for the integer b to belong to a segment of length

ε
√

3
k−1

/2 �
√

3 > 1. Therefore at least one such integer
exists and can be effectively picked.

Next one must find an integer a such that u = a − (b/2) +
i (b

√
3/2) ∈ B(k,ε). Per the geometric condition arg z �

5 π/12, the circle, (B3), contains the horizontal segment

H = [z
√

3
k − |z|√3

k
sin(π/12),z

√
3

k
] of length at least

1/4 |z|√3
k
, and under ε < |z|, B(k,ε) contains the horizon-

tal segment H ′ = [z
√

3
k − ε

√
3

k
/4,z

√
3

k
]. By elementary

geometric considerations B(k,ε) also contains the horizon-

tal segment H ′′ = [z
√

3
k − i b

√
3/2 − 3/16 ε

√
3

k
,z

√
3

k −
i b

√
3/2] of length at least 3/16 ε

√
3

k
.

FIG. 5. Approximating a scaled complex number with an Eisen-
stein integer.

For our choice of k, 3/16 ε
√

3
k � 3/16 × 6 > 1. It is

necessary and sufficient for the desired integer a to belong

to the segment [Re(z)
√

3
k + b/2 − 3/16 ε

√
3

k
,Re(z)

√
3

k +
b/2] of length greater than 1 as we have just seen, so the
desired a exists and can be effectively picked.

The geometry of this approximation pro-
cedure is shown schematically in Fig. 5. Set
k0 = �2 log3(1/ε) + 2 log3(2) + 2�. Let � be some positive
integer. Since the geometry of the problem for k = k0 + � is
simply the geometry of the problem at k = k0 scaled out by

the factor of
√

3
�
, then the segments we used above to pick

the values of b and a are scaled out by a factor of �(
√

3
�
) and

thus allow at least �(
√

3
�
) distinct choices of b and at least

�(
√

3
�
) distinct choices of a for each choice of b. Therefore

there are �(3�) distinct choices of Eisenstein integer u,
yielding as many distinct approximations of z as claimed. �

Proof (of the lemma). For convenience we assume that ε<1.
Let us do some preliminary analysis first. We start by

observing that for a unitary state |ϕ〉 to be within ε of |ψ〉,
it would suffice that

2 Re(〈ϕ|ψ〉) > 2 − ε2. (B4)

Consider some small δ > 0 and a trilevel unitary state |ϕ〉 =
u′ |0〉 + v′ |1〉 + w′ |2〉 and assume that |u′ − x| < δ, |v′ −
y| < δ. By direct computation,

2 Re(u′ x∗) > |u′|2 + |x|2 − δ2,

2 Re(v′ y∗) > |v′|2 + |y|2 − δ2.

Hence 2 Re(〈ϕ|ψ〉) > 2 − (1 − |u′|2 − |v′|2) − 2 δ2.
Expanding the triangle inequalities |u′| � |x| −

|x − u′|, |v′| � |y| − |y − v′|, we get |u′|2 + |v′|2 �
1 − 2(|x| |x − u′| + |y| |y − v′|) + |x − u′|2 + |y − v′|2 �
1 − 4 δ. Assuming without loss of generality that δ2 < δ/2
we conclude that 2 Re(〈ϕ|ψ〉) > 2 − 5 δ.

Set δ = ε2/5 in order to satisfy inequality (B4)
and start with k0 = �2 log3(1/δ) + 2 log3(2) + 2� �
4 log3(1/ε) + log3(5) + 5. We look for a sufficient k = k0 + �

where � iterates sequentially through non-negative integers.
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Per Proposition31 there exist several suitable Eisenstein

integers u, v such that u/
√−3

k
is a δ approximation of x and

v/
√−3

k
is a δ approximation of y. In fact as � grows, there

are �(9�) distinct subunitary states u/
√−3

k|0〉 + v/
√−3

k|1〉
that are δ close to |ψ〉. To effectively prove the lemma it
suffices to find one such state that can be completed to a

unitary state |ϕ〉 = u/
√−3

k|0〉 + v/
√−3

k|1〉 + w/
√−3

k|2〉
for some � and that is not too large. The sufficient inequality,
(B4), does not explicitly involve w and is satisfied for δ = ε2/5
as shown above.

By unitariness of the desired |ϕ〉, w ∈ Z[ω] must satisfy
the equation

|w|2 = 3k − |u|2 − |v|2, (B5)

which is an instance of the norm equation, (B1). As we have
seen in subsection B 1, any particular instance of the norm
equation is not necessarily solvable. However we are going to
randomize the choice of u and v so that Conjecture 29 becomes
applicable.

To this end, let � be an integer iterating from 0 to some
sufficiently large L and let k = k0 + � iterate with it. For
each subsequent value of � we inspect all the available u,v

that generate δ approximations u/
√−3

k
, v/

√−3
k

of x, y.
As we have pointed out the number of such distinct u, v

grows exponentially with �. Assuming Conjecture 29 we
only need to inspect as many as O( log(3k − |u|2 − |v|2)) =
O(k) = O(k0 + �) such distinct u, v to find one for which
(B5) is easily solvable with a sufficiently high probability.

It is easy to see that there exists such � = O( log(k0))
for which an easily solvable norm equation, (B5), is ob-
tained with near certainty. Therefore a desired unitary state

(u |0〉 + v |1〉 + w |2〉)/√−3
k

will be obtained for some k =
k0 + O( log(k0)) � 4 log3(1/ε) + O( log[log(1/ε)]).

Finally, we note that we only needed to inspect O(k) =
O( log(1/ε)) candidate pairs u, v for completion. Each in-
spection involved a decision whether the corresponding norm
equation was easily solvable, which incurred an expected
run-time cost that was polynomial in O( log(3k)) = O(k) =
O( log(1/ε)). Therefore the overall expected run-time cost of
the algorithm is also polynomial in O( log(1/ε)). �

In Algorithm 3 we present the method suggested by this
lemma in pseudocode format.

Algorithm 3 Approximation of a short state.

Require: x,y ∈ C; |x|2 + |y|2 = 1; ε > 0
1. δ ← ε2/5
2. k0 ← �4 log3(1/ε) + log3(5) + 5�
3. w ← None; k ← k0 − 1
4. while w = None
5. k ← k + 1
6. enum ← enumerator for all u,v ∈ Z[ω]
7. s.t. (u|0〉 + v|1〉)/√−3

k
is δ close to x|0〉 + y|1〉

8. while w = None ∧ enum.Next do
9. (u,v) ← enum.Current

10. if Equation |z|2 = 3k − |u|2 − |v|2 is easily
solvable for z then

11. w ← z
12. end if
13. end while
14. end while
15. return {u,v,w,k}

APPENDIX C: TWO-QUTRIT CLASSICAL GATES
GENERATED BY SUM AND SWAP

It is currently not known which two-qutrit gates can be
represented exactly over the metaplectic basis. In particular,
it is not known whether the important classical C1(INC) gate,
(4), is so representable.

Let S9 be the permutation group on nine elements. There is a
natural unitary representation of S9 onC32

where a permutation
π is mapped to the unitary that extends the permutation π

applied to the standard basis vectors {|00〉, . . . ,|22〉}. The
image of this faithful representation coincides, by definition,
with the group of all the classical two-qutrit gates. With a slight
abuse of notation we also use S9 to denote the image.

The following proposition addresses the maximality of the
subgroup of two-qutrit classical gates obtained from braiding.

Proposition 32. The group, G, generated by SUM,SWAP, and
all the one-qutrit classical gates is a maximal subgroup of S9.

Proof. Of-course, one can always conduct a brute-force
computer search to verify this statement. Here we provide an
elegant alternative proof. Let AGL(2,F3) = GL(2,F3) � F2

3 be
the affine linear group acting on the two-dimensional vector
space F2

3. Explicitly, given ϕ = (A,c) ∈ AGL(2,F3), v ∈ F2
3,

we have ϕ(v) = Av + c. Note that F2
3 has, in total, nine

vectors, whose coordinates under the standard basis
are {(i,j )|i,j = 0,1,2}. We identify the coordinate (i,j )
with the two-qutrit basis vector |i,j 〉. Since elements of
AGL(2,F3) permute the nine coordinates, we then have a
group morphism ψ : AGL(2,F3) −→ S9 ⊂ U (32), such that
ψ(A,c)|i,j 〉=A.(i

j)+c.

For instance, let A = (1 0
1 1), since A · (i

j) = ( i

i + j); then
ψ(A) = SUM. Similarly, one can check the following corre-
spondences:

(
1 0
1 1

)
�→ SUM,

(
0 1
1 0

)
�→ SWAP,

(
1 0
0 2

)
�→ Id ⊗ S1,2, where S1,2 =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠,

(
1
0

)
�→ INC ⊗ Id,

(
0
1

)
�→ Id ⊗ INC.

It is easy to check that the matrices (vectors) on the left-
hand side of the above correspondences generate the group
AGL(2,F3) and the gates on the right-hand side generate G.
Also, it is not hard to verify that the map ψ is injective and
thus G � AGL(2,F3). Now by O’Nan-Scott theorem [20,21],
AGL(2,F3) is a maximal subgroup of S9.

Therefore G is a maximal subgroup of S9 ⊂ U (32). �
An immediate consequence of this proposition is that, as

soon as the C1(INC) gate is exactly representable, all of the
classical two-qutrit gates are also exactly representable.

012313-12



EFFICIENT TOPOLOGICAL COMPILATION FOR A . . . PHYSICAL REVIEW A 93, 012313 (2016)

[1] M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang,
Topological quantum computation, Bull. Amer. Math. Soc. 40,
31 (2003).

[2] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. (NY) 303, 2 (2003).

[3] S. X. Cui and Z. Wang, Universal quantum computation with
metaplectic anyons, J. Math. Phys. 56, 032202 (2015).

[4] M. Hastings, C. Nayak, and Z. Wang, Metaplectic anyons,
Majorana zero modes, and their computational power, Phys.
Rev. B 87, 165421 (2013).

[5] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero
modes and topological quantum computation, npj Quantum
information 1, 15001 (2015).

[6] M. R. Peterson et al., Abelian and non-Abelian states in ν =
2/3 bilayer fractional quantum Hall systems, Phys. Rev. B 92,
035103 (2015).

[7] D. J. Clarke, J. Alicea, and K. Shtengel, Exotic non-Abelian
anyons from conventional fractional quantum Hall states, Nature
Commun. 4, 1348 (2013).

[8] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algo-
rithm, Quantum Inf. Comput. 6, 81 (2006).

[9] M. E. Beverland, O. Buerschaper, R. Koenig, F. Pastawski, J.
Preskill, and S. Sijher, Protected gates for topological quantum
field theories, arXiv:1409.3898.

[10] J. Preskill, Topological quantum computing for begin-
ners, http://online.itp.ucsb.edu/online/exotic_c04/preskill/pdf/
Preskill.pdf (2003).

[11] D. Gottesman, Fault-tolerant quantum computation with higher-
dimensional systems, Chaos Solitons Fractals 10, 1749 (1999).

[12] J. Bourgain and A. Gamburd, A Spectral Gap Theorem in SU(d),
J. Eur. Math. Soc. 14, 1455 (2012).

[13] V. Kliuchnikov, Synthesis of unitaries with Clifford + T circuits,
arXiv:1306.3200.

[14] J. Urias, Householder factorizations of unitary matrices, J. Math.
Phys. 51, 072204 (2010).

[15] S. S. Bullock, D. P. O’Leary, and G. K. Brennen, Asymptotically
Optimal Quantum Circuits for d-level Systems, Phys. Rev. Lett.
94, 230502 (2005).

[16] L. Washington, Introduction to Cyclotomic Fields (Springer,
New York, 1997).

[17] D. Shanks, Five number theoretic algorithms, in Proceedings of
the Second Manitoba Conference on Numerical Mathematics,
October 5–7, 1972, edited by R. S. D. Thomas and H. C.
Williams (Utilitas Mathematica, Winnipeg, 1973).

[18] M. Hazewinkel, Distribution of prime numbers, in Encyclopedia
of Mathematics (Springer, Berlin, 2001).

[19] A. Granville, Smooth Numbers: Computational Number Theory
and Beyond, Math. Sci. Res. Inst. Publ., Vol. 44 (Cambridge
Univ. Press, Cambridge, 2008), pp. 267–323.

[20] M. W. Liebeck, C. E. Praeger, and J. Saxl, On the O’Nan-
Scott theorem for finite primitive permutation groups, J. Austral.
Math. Soc. (Ser. A) 44, 389 (1988).

[21] L. L. Scott, Representations in characteristic p, Santa Cruz Conf.
Finite Groups 37, 319 (1980).

012313-13

http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1090/S0273-0979-02-00964-3
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1063/1.4914941
http://dx.doi.org/10.1063/1.4914941
http://dx.doi.org/10.1063/1.4914941
http://dx.doi.org/10.1063/1.4914941
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1103/PhysRevB.87.165421
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1038/npjqi.2015.1
http://dx.doi.org/10.1103/PhysRevB.92.035103
http://dx.doi.org/10.1103/PhysRevB.92.035103
http://dx.doi.org/10.1103/PhysRevB.92.035103
http://dx.doi.org/10.1103/PhysRevB.92.035103
http://dx.doi.org/10.1038/ncomms2340
http://dx.doi.org/10.1038/ncomms2340
http://dx.doi.org/10.1038/ncomms2340
http://dx.doi.org/10.1038/ncomms2340
http://arxiv.org/abs/arXiv:1409.3898
http://online.itp.ucsb.edu/online/exotic_c04/preskill/pdf/Preskill.pdf
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.1016/S0960-0779(98)00218-5
http://dx.doi.org/10.4171/JEMS/337
http://dx.doi.org/10.4171/JEMS/337
http://dx.doi.org/10.4171/JEMS/337
http://dx.doi.org/10.4171/JEMS/337
http://arxiv.org/abs/arXiv:1306.3200
http://dx.doi.org/10.1063/1.3451111
http://dx.doi.org/10.1063/1.3451111
http://dx.doi.org/10.1063/1.3451111
http://dx.doi.org/10.1063/1.3451111
http://dx.doi.org/10.1103/PhysRevLett.94.230502
http://dx.doi.org/10.1103/PhysRevLett.94.230502
http://dx.doi.org/10.1103/PhysRevLett.94.230502
http://dx.doi.org/10.1103/PhysRevLett.94.230502
http://dx.doi.org/10.1017/S144678870003216X
http://dx.doi.org/10.1017/S144678870003216X
http://dx.doi.org/10.1017/S144678870003216X
http://dx.doi.org/10.1017/S144678870003216X
http://dx.doi.org/10.1090/pspum/037
http://dx.doi.org/10.1090/pspum/037
http://dx.doi.org/10.1090/pspum/037
http://dx.doi.org/10.1090/pspum/037



