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The classical max-flow min-cut theorem describes transport through certain ideal-
ized classical networks. We consider the quantum analog for tensor networks. By
associating an integral capacity to each edge and a tensor to each vertex in a flow
network, we can also interpret it as a tensor network and, more specifically, as a linear
map from the input space to the output space. The quantum max-flow is defined to
be the maximal rank of this linear map over all choices of tensors. The quantum
min-cut is defined to be the minimum product of the capacities of edges over all
cuts of the tensor network. We show that unlike the classical case, the quantum
max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g.,
when the capacity on each edge is some power of a fixed integer, the quantum
max-flow is proved to equal the quantum min-cut. However, concrete examples are
also provided where the equality does not hold. We also found connections of quan-
tum max-flow/min-cut with entropy of entanglement and the quantum satisfiability
problem. We speculate that the phenomena revealed may be of interest both in spin
systems in condensed matter and in quantum gravity. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954231]

. INTRODUCTION

Networks transport classical things like power, water, oil, and cars. Tensor networks transport
linear algebraic things like rank and entanglement and should be thought of as the quantum analogy.
We take a first step in comparing the two. In 1956 two papers'"!* set the classical study on a
strong algorithmic foundation by proving the max-flow=min-cut theorem (MF/MC) which, roughly
speaking, says that in a certain idealized limit, capacity or ability of a network to transport is equal
to a measure of what needs to be cut to totally sever the network. This paper explores the quantum
analogy of MF/MC for tensor networks.

Tensor networks have been extensively studied in the physics literature, especially in condensed
matter physics and quantum gravity. In quantum many-body systems, the ground states can be
represented as tensor networks whose complexity is typically a polynomial of parameters (for
example—in terms of the number of particles or number of sites in a lattice), instead of the expo-
nential of parameters under the naive representation. Moreover, it is more convenient to visualize
the entanglement entropy of a many-body system using tensor networks. The area law naturally
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provides an upper bound for the entanglement entropy. Among important classes of tensor networks
are Matrix Product States (MPSs)'? in 1d which are known to faithfully represent the ground
state of a gapped 1-D local-Hamiltonian and Projected Entangled Pair States (PEPSs)?’ in 2d. For
an introduction on tensor networks, see Refs. 15 and 23, etc. Connections of tensor networks to
holographic duality have also been proposed.?3 Perfect tensors are used to construct holographic
states and holographic codes.?* Under certain conditions, the area law is shown to be saturated and
the Ryu-Takayanagi formula holds.

One motivation for the study of quantum max-flow min-cut comes from Ref. 8. In Ref. 8, the
authors considered tensor networks where all edges have the same dimension k and all vertices are
assigned the same tensor. It was conjectured that the maximal rank of the tensor network (quantum
max-flow) is equal to k raise to the power of classical min-cut (quantum min-cut). If the conjecture
were true, it would imply the existence of tensors with certain “positive” properties, the construc-
tion of which is part of the work in showing the positivity of the universal pairings in unitary
(2 + 1)-TQFTs.

In this paper, we generalize the conjecture in two versions. The first version is more general
than the second version, and the original conjecture is a special case of the second version. We show
that the quantum MF/MC conjecture in both of the two versions does not hold in general,' but we
will give some conditions under which the first version does hold. More detailed results will be
given after introducing some terminology below.

Associated with each tensor network is an undirected graph which has some internal edges and
open edges. All edges are assigned an integral capacity (dimension) and all vertices are assigned
a tensor. In the first version, the tensors at different vertices are independent of each other. All of
them are chosen arbitrarily. In the second version, vertices of the same valence type are required to
be assigned the same tensor, where two vertices have the same valence type if they have the same
degree and the same sequence of capacities of edges adjacent to each of them (see Section IV). In
particular, if all edges have the same capacity and all vertices have the same degree, then all the
vertices also have the same valence type and thus are assigned an identical tensor, which reduces to
the original requirement in Ref. 8. Apparently, the choice of tensors in the second version is more
restricted than in the first version.

In either version, we partition the set of open edges into two disjoint subsets called the input
set and the output set and define the input space (respectively output space) to be the tensor product
of the Hilbert spaces associated to each edge in the input set (respectively output set). Contracting
the tensor network along internal edges results in a linear map L from the input space to the output
space. We define the quantum flow as the rank of this linear map, and the quantum max-flow is
the maximum value that the quantum flow can take. An edge cut set is a set of edges, the removal
of which disconnects the input from the output. The cut value is defined to be the product of the
capacities of all edges in an edge cut set, and the quantum min-cut is the minimum value among
all the cut values. Every cut provides an interpretation of the linear map L as L = L,L; where the
dimension of the intermediate space is the cut value, and therefore the quantum min-cut provides an
upper-bound on the quantum max-flow. By definition, the quantum max-flow in the first version is
no less than that in the second version. In the following, we focus on the quantum MF/MC of the
first version.

We find that a bit of elementary number theory enters. When the local degrees of freedom (i.e.,
capacities) are organized in finite d; = d*i dimensional Hilbert spaces for fixed d, then there is a
straightforward generalization (Theorem 3.8) of the classical MF/MC. However, if—to take the other
extreme—the various dimensions {d;} are relatively prime, then new and surprising phenomena are
seen.

Already in the case where some Hilbert spaces, bonds of a tensor network, have dim = 2 and
others have dim = 3, one observes a surprising drop in ‘“capacity” which in this context means
either rank (Section III), entropy of entanglement (Section V), or the dimension of the unsatisfying
subspace of a quantum satisfiability instance (Section VI). The lowest possible dimension for this
phenomenon is Example 3.15 (also see Figure 1) in which a tensor network which on the basis of
“cut reasoning” appears to have maximal rank = 8 actually has maximal rank = 7. Thus for this
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FIG. 1. Maximal rank =7.

network, the quantum max-flow is strictly less than the quantum min-cut. Most of our results can be
summarized in the following meta-statement:

Theorem 1.1 (main result, informal). The quantum max-flow is at most the quantum min-cut.
There exist examples where this inequality is strict and other examples where this inequality
becomes an equality.

We really only scratch the surface in this note and cannot yet answer the obvious questions
about typical or asymptotic behaviors of large random networks with bonds of relatively prime
dimensions, although we do give some elementary lower bounds (Proposition 3.11).

Our examples suggest two lines for future investigations: Example 3.15 can be read (in light of
Section V) as revealing an unexpected reluctance of spin % and spin 1 particles to entangle. At least
when coupled by that network, regardless of the tensor coupling, entanglement cannot be maximal.
In an entirely different direction, the capacity of tensor networks may have something to say about
quantum gravity. Entanglement entropy in the holographic side of anti-de Sitter/conformal field
theory (AdS/CFT) duality has been recognized as equivalent to the minimal area (on a related
geometric functional) of cut surfaces on the AdS side.!”-> It is natural to interpret the cut surface
dually as a transverse flow'* with the flow lines being strands of entanglement. It would be natural
to go further and replace this overly classical “entanglement flow” with something more quantum:
a tensor network. If one postulated that fundamental degrees of freedom are finite and not all
commonly divisible, then the present paper reveals that entanglement may be unexpectedly small.
Since maximal entanglement, for example, between infalling states and Hawking radiation emitted
by black holes beyond their “page time,” is central to the “firewall” paradox,* a mechanism which
reduces entanglement is of potential interest.

Structure. In Section II, we give a review of the classical max-flow min-cut theorem and Menger’s
theorem. In Sections III and IV, we provide two versions of quantum analogues of the max-flow
min-cut theorem. Unlike the classical case, we prove that the quantum max-flow min-cut theorem
only holds for some networks. A number of examples are explained. Section V studies the quantum
max-flow min-cut theorem from the perspective of entanglement entropy. In Section VI, we show a
relationship between quantum max-flow and the quantum satisfiability problem.

Il. CLASSICAL MAX-FLOW MIN-CUT THEOREM

The classical max-flow min-cut theorem was proven by Elias, Feinstein, and Shannon'! in 1965
and independently also by Ford and Fulkerson.'® The theorem states that the maximum amount of
the flow in a network from the source to the sink is equal to the minimum capacity that, when
removed from the network, causes no flow to pass from the source to the sink. We first give several
definitions below and then state the theorem in detail.

Let G = (V,E) be a directed graph (flow network) where V is the set of vertices and E is the
set of edges. Let S and T be the set of sources and sinks, respectively. Namely, S (respectively T) is
the set of vertices with only outgoing (respectively incoming) edges. The capacity of the edges is a
function ¢ : E — R such that ¢, gives the maximum amount of flow through each edge e € E.

A flow from the sources to the sinks is given by a function f : E — R*, such that f satisfies
the following.

1. Capacity constraint

f[j < Cijs V(l,]) eE.
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2. Conservation of flow

D fu= D, fwYieVASUD).

{i:(i.))eE} {k:(j,k)eE}

Definition 2.1. The value of the flow f in a network G = (V,E) with the capacity function

¢ is defined to be |f| = > fij- The maximum amount of flow MF(G,c) is defined to be
{(i,j)eE:ieS}
max{|f] : fis a flow}.

An edge cut set C is a set of edges such that there exists a partition V = §U T such that
ScS, TcT,and C={(u,v) € E:uec 8 veT}. Clearly, the removal of the edges in C from E
disconnects all paths from S to 7. Note that there could still be paths from T to § after the edges in C
are removed.

The following theorem is well-known in graph theory.

Definition 2.2. The capacity of an edge cut set C in a network G = (V,E) with the capac-
ity function c is defined to be |C|= } ¢;;. We define the min-cut MC(G, c) = min{|C| :
{G.)eC}
C is an edge cut set}.

Theorem 2.3 (Refs. 11 and 13, max-flow min-cut theorem). For a network G = (V, E) with
the capacity function ¢ : E — R*, the maximum amount of flow MF(G, ¢) from the sources to the
sinks is equal to the minimum capacity MC(G, ¢).

If the capacity of every edge is a rational number, then the Ford-Fulkerson algorithm'? provides
an efficient way to construct the max-flow. Moreover, if all the capacities are integers, the max-flow
resulting from the Ford-Fulkerson algorithm also has integral values at every edge.

Thus in particular, when the capacity is 1 on every edge, the maximum amount of flow is equal
to the maximum number of edge disjoint directed paths from a source to a sink, and the max-flow
min-cut theorem reduces to the directed Menger’s theorem.?! Furthermore, the undirected Menger’s
theorem can also be derived as a special case. Since we will mainly generalize this case to the
quantum network, it is worth stating this theorem in more detail.

Assume G = (V,E) is an undirected graph with a specified partition S L T of the set of degree
1 vertices, where S and T are called sources (or inputs) and sinks (or outputs), respectively. Let
MF(G) be the maximum number of edge disjoint paths in G connecting a vertex in S to a vertex in
T, and let MC(G) be the minimum cardinality of all edge cut sets where an edge cut set is defined
in the same way as in the case of directed graph. Note that here “edge disjoint” means that paths are
allowed to share vertices but not edges.

Theorem 2.4 (Refs. 21, 11, and 13, undirected Menger’s theorem). Let G = (V,E) be as
above, then MF(G) = MC(G).

Proof. Let C be an edge cut set such that |C| = MC(G). Since the removal of C from E
disconnects S from T, every path connecting some input to some output must contain at least
one edge from C, and different edge disjoint paths contain different edges from C. Therefore
MF(G) < MC(G).

We turn G into a directed graph G’ and use the max-flow min-cut theorem to prove MF(G) >
MC(G). Start with a new graph with the same set of vertices as G, but with no edges. For each edge
(i,j) € E, insert a pair of directed edges (i, j),(j,i) to the new graph, then remove all the edges from
the new graph which come into the set S or leave the set 7. Denote the resulting graph by G’. By
construction, G’ also has the inputs S and outputs 7. Define the capacity function ¢ on G’ to be
the constant function 1. Then by Theorem 2.3 (or more precisely, the second paragraph below the
theorem), the maximum number of edge disjoint directed paths MF(G’; ¢) from S to T is equal to the
minimum capacity MC(G’; ¢) of edge cut sets. It is clear that MC(G) = MC(G’,c). We show below
that MF(G) > MF(G’, ¢), which implies MF(G) > MC(G).

Let P denote the set of edge disjoint paths in G’ whose cardinality achieves the maximum num-
ber MF(G’, ¢). Note that if the edges (i, j),(j,i) both appear in a path p € P, say (u,us) - - - (ug,i)(i, )
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- (j,0)(,u,)- - -, then we can just replace the path with a shorter one (uy,uz) - - - (ug,i)(i,u,) - -,
which still connects an input to an output. Also note that if two paths in P are of the form p; =
(u1,up) - -+ (ug, )6, (s thge11)- - -5 p2 = (v1,02) - - - (U, ))(J,D)(E,0r41) - - -, then we can replace them by
py = (un,uz) - -+ (ug, D)@, 0,41) -+, p5 = (01, 02) - - (U, j)(J, uk41) - - - . By a sequence of the above oper-
ations, we can assume that for each pair of the edges (i, j),(j,i) in G’, at most one of them appears
in the collection of the edge disjoint paths P, and thus we can pick out the same number of edge
disjoint paths in G. Therefore, MF(G) > MF(G’,c). O

lll. QUANTUM MAX-FLOW MIN-CUT THEOREM: VERSION |

We give a quantum analogue of the max-flow min-cut theorem where flow networks are re-
placed by tensor networks. The capacity on edges represents the dimension of a Hilbert space and
the capacity of a tensor network thus behaves multiplicatively, instead of additively. After stating
and proving the theorems, some additional context and applications will be given. Two versions of
quantum (MF/MC) will be provided in this section and Sec. IV, respectively.

Let G = (V,E) be a finite undirected graph with a set of inputs S and a set of outputs T such
that S LI T is a disjoint partition of the set of degree 1 vertices. Here it will be more convenient to
assume S and T are not sets of vertices, but rather the open ends of some edges. Let V =SuUT UV
be a partition of V. Below, we will only call the elements in V vertices. For every vertex v of
degree d,, we assume there is a local ordering 1,2,...,d, of the ends of the edges incident to v. Let
e(v,1),e(v,2),...,e(v,d,) denote the edges incident to v listed according to the local ordering. For
each u € SUT, denote by e(u) the edge whose open end is u. These edges are called input edges
and output edges, respectively.

The graph G now is a template for a tensor network. See Figure 2. To each edge e, we associate
a Hilbert space C°¢, where ¢ : E — N, e — ¢, acts as the quantum capacity. We fix a basis of C¢e,

so that it allows us to freely raise and lower indices of the tensors to be introduced below. Now
any assignment v — 7, taking each vertex v to a tensor 7, € 7V := (%é) CCe.i), which as totality can
be writtenas V= 7 € I = @ I?, sends the graph G to a tensorllzll:twork, G — N(G,c; 7). The
linear ordering 1,2,...,d, spléec‘i/ﬁes which index of 7, is identified with which edge end at v. As

usual, graphical edges are interpreted as contraction of indices. Thus N(G,c; 7") in turn determines
an element a(G,c;7") € Vs ® Vi, where Vs = ®,,csC¢ and Vr = ®,,crC . Using the standard
basis in C", this also determines an element B(G,c;7 ) € Vg ® Vr = Hom(Vs,Vr). In a compact
multi-index notation, we can write it as

(BG.eTlsy = >, [ W%,

W extending Ig,I7 veEV

where I and I are multi-indices for input edges and output edges, W is a multi-index for all edges,
and W), indicates the portion of W which can be read at v.
With the notations above, we define the following.

Definition 3.1. The quantum max-flow, QMF(G, ¢), is the maximum rank of (G, c; 7" ) over all
tensor assignments 7.

9 Q
Z 2z J

Input Output
2 73 3

FIG. 2. A tensor network. The integer on each edge is the capacity of that edge. There are five open ends, three of which on
the left form the input S and the other two the output 7. There are three vertices and they are assigned the tensor 77, 72, 73,
respectively.
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An edge cut set C is defined in the same way as in the classical case in Section II. Namely,
C is a set of edges such that there exists a partition V = SUT such that Sc §, T c T, and
C={(uv)eE:ucSveT}.

Definition 3.2. The quantum min-cut, QMC(G,¢), is the minimum of [] ¢, the quantum
eeC

capacity, over all edge cut sets C.

Remark 3.3. Although N(G,c; T ),a(G,c;T ), and B(G,c; T ) depend on the local ordering of
the ends of edges incident to a vertex, we did not indicate this dependence in their notation to
avoid prolixity. The quantity QMF(G, ¢), on the other hand, does not depend on the local ordering,
since the tensors assigned to each vertex can be varied arbitrarily. By definition, QMC(G, ¢) is also
independent of the ordering. We will see in Section I'V that Version II of tensor networks depends on
the local ordering in a critical way.

Remark 3.4. QMC(G, ¢) can be calculated efficiently (that is, in polynomial time in the input’s
length) by running the efficient classical min-cut algorithm with capacities log(cy),. . . ,log(c,,) and
taking the exponent of the result. We do not know whether QMF(G, c) can be calculated efficiently.

Remark 3.5. In a classical directed flow network, the max-flow can change when the roles of
the input S and the output T are replaced, but the max-flow remains fixed when the flow network
is undirected. This is also the case for quantum max-flow: the roles of the inputs and the outputs
can be interchanged without changing the quantum max-flow; this follows from the equality of the
dimensions of the image and the coimage.

The functorial nature of tensor networks immediately implies the following lemma.
Lemma 3.6. Let G = (V,E), S, T, ¢, T be as above, and let V¢ = ® C¢e, where C is an

eeC
edge cut set. Then B(G,c; T ) € Hom(Vs, Vy) factors as B, o 81, where 81 € Hom(Vs,Vc) and 3, €
HOI’I’[(VC,VT).

Proof. Let V = §UT be the partition of V such that, S ¢ §, T c T, and the set of edges
between S and T form the cut set C. Delete an interior point on each edge in C so that each
edge is split into two edges, each with one open end. Let M be the set of the deleted points and
let Gy (respectively G,) be the components of G, which contain S (respectively 7). Then G is a
graph with input S and output M, and G, is a graph with input M and output 7. Also let ¢; and
7; be the restriction of ¢ and 7~ on G;, respectively, i = 1,2. Then it follows that B(G,c; 7 ) =
B(Ga,¢2;72) o B(Gy,cp;Th), and B(Gy,c1; Tr) € Hom(Vs, Vi), B(Ga, c2; T2) € Hom(Ve, V). mi

The corollary below shows a basic property of tensor networks that any cut of the network
provides an upper bound for the maximal rank, which is well known in possibly different forms in
the literature. For instance, if one views the map B(G,c; 7 ) as an unnormalized state in € Vg ® V7,
namely, as (G, c; 7 ), then the entropy of entanglement between S and T is upper bounded by the
logarithm of the rank, and thus the entropy is also upper bounded by the logarithm of the min-cut
which is just an upper bound version of the area law.?* See also Lemma 5.1.

Corollary 3.7. Given a finite graph G with the quantum capacity function c, then QMF(G, c) <
QMC(G,c).

Proof. For any tensor assignment 7~ and any edge cut set C, by Lemma 3.6, B(G,c;7 ) =
B o B1, where 8, € Hom(Vs,V¢). Thus rank(B(G,c; T)) < rank(B)) < dim(V¢). o

In general, we do not know a necessary and sufficient condition for the inequality in Corollary
3.7 to become an equality. Theorem 3.8, however, states that if the quantum capacity at all edges has
a uniform tensor product structure, then the quantum version of max-flow min-cut theorem holds.
The authors in Ref. 24 had a similar result (Theorem 2 in Ref. 24) for a more restricted class of
tensor networks, where tensors are all perfect tensors, the quantum capacity is the same on all edges,
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and the underlying graph is required to have “non-positive curvature.” Our result does not have any
requirement on tensors and the shape of the graph.

Theorem 3.8 (quantum max-flow min-cut theorem). Let G = (V,E) be as above. If there
exists an integer d > 0, such that the capacity function ¢ at each edge is a power of d, then
QMEF(G, c) = QMC(G,c¢).

Proof. For each edge e, let m, = log,c,. Let G’ = (V,2) be a graph with no edges. Then for
each edge e = (u,v) in G with capacity c,, if both u and v are vertices, we insert m, parallel
edges connecting u to v in G'. If u (respectively v) is an open end, we insert in G’ m, open edges
all incident to v (respectively u). Denote the resulting graph still by G’, and define the capacity
function ¢’ to have value d on each edge of G’. It can be seen that there is a one-to-one correspon-
dence between the tensor assignments in G and tensor assignments in G’ such that the resulting
linear maps have the same rank. Moreover, a direct consequence of the definition of G’ is that
QMC(G, c) = QMC(G’,¢’). Therefore, if the theorem holds for (G’, ¢’), it also holds for (G, ¢). Thus,
without loss of generality, we assume that the capacity of each edge in G is equal to d.

Let M = QMC(G,c). We give an explicit tensor assignments so that the resulting linear map
has rank equal to M. Viewed as a classical network, there are log,M edge disjoint paths in G from
the sources to the sinks by Theorem 2.4. Denote these paths by py, ps, . . .. For each vertex v in G, the
tensor 7, is assigned 1 if and only if the following rules are satisfied for the indices of edges incident
tov.

1. Iftwo edges are adjacent on one of the paths p;’s, then they have the same index.
2. An edge which does not belong to any p;’s has index 1 (the first index in the index set

{1,....d}).

T, is assigned O otherwise. It is clear that for the contraction of the tensor network to be non-zero,
which must be 1 actually, the indices on all edges of a path p; must be the same, and indices on
the edges which do not belong to any p;’s must be 1. Thus there are in total d'°2¢™) configura-
tions of indices which make the contraction equal 1. Therefore after an appropriate ordering of the
basis elements in Vs and in Vr, respectively, the map B(G,c;7) is of the form shown in Equa-
tion (3.1), where the dimension of the upper left block is M x M. Hence, QMF(G, c) = QMC(G,¢).
Combining with Corollary 3.7, we have QMF(G, ¢) = QMC(G, ¢),

0

1 . 3.1

0 10

To summarize, we used the classical solution to find an exceedingly simple list of tensors 7, all
entries of which are O or 1, which provide a solution instance to the quantum problem. However, the
following proposition shows that as long as one can find one solution, almost all choices of tensors
7 are also solutions.

1

(]

Proposition 3.9. Let G = (V,E) be as above with the capacity function c. Then the set of all
tensors 7~ € 1 := € IV such that rank(B(G,c; 7)) is equal to QMF(G, ¢) is an open dense subset

veV
of I.

Proof. Let M = QMF(G,c). Consider the general assignment 7~ € I of tensors to vertices
T ={7,:v € V}. The condition that rank(B8(G,c; 7)) < M is equivalent to the vanishing condi-
tion of a set of polynomials {P,}, each of which is the determinant of some M X M minor of
B(G,c;T). Thus the set of all tensors 7~ which give rank(B(G,c;T)) < M is a proper affine
algebraic variety, the complement of which is an open dense subset of 7. O
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Proposition 3.10. Let G = (V,E) be a tensor network with the capacity function ¢ : E — N,
and let G’ = (V,E) be the classical network with the same underlying graph as G, but with the
capacity function ¢’ = log,c : E — R*, for some d > 0. Direct G’ such that G’ has the same set
of inputs and outputs as G, and MC(G’,¢’) = log,QMC(G,c). If G’ has a max-flow with the flow
amount at each edge being the log,; of some integer, and there is no loop in G’ such that the flow on
each edge of the loop is non-zero, then QMF(G, c) = QMC(G,¢).

Proof. Choose a max-flow f : E — R* for G’ as stated in the proposition. Consider the tensor
network G”" = (V,E) with the capacity function ¢”” = @/ : E — N. G” has the same underlying
graph as G, and in particular, G” is directed. Then since ¢”(e) = d(© < d<"(®) = ¢(e), we have
QMF(G”,c”) < QMF(G, ¢). On the other hand, QMC(G”,¢"") = dM°G"<) = QMC(G, c). Hence to
prove QMF(G, c) = QMC(G, ¢), it suffices to show QMF(G”,¢”") = QMC(G”,c").

By construction, G” has the property that at each vertex, the product of the capacities on
the incoming edges is equal to that of the capacities on the outgoing edges. Moreover, the set of
edges associated to the sources is a min-cut set. Thus, to each vertex, one can associate a linear
isomorphism from the space of the incoming edges to the space of the outgoing edges. Since there
is no loop in G”, the resulting linear map of the tensor network is simply a composition of linear
isomorphisms and hence is an isomorphism from the input space to the output space. Therefore,
QMEF(G”,c¢”) = QMC(G”,c"). O

Proposition 3.11 (lower bound on capacity). If a graph G has edges of capacity dyjn < -+ <
dmax and a classical min-cut of cardinality C, then the quantum capacity satisfies the lower bound:
QMEF(G,c¢) = dﬁin.

Proof. We may always restrict to a subspace V of any edge space and correspondingly restrict
to tensors which vanish when input at any index is from the orthogonal complement V+. Doing this
and applying Theorem 3.8 give the result. O

Note 3.12. A somewhat better lower bound can be obtained by “thinning” G to G by reducing,
for each edge e, the capacity (i.e., dimension) d, to the largest power dﬁfﬂ < d, and then computing

the QMF(G, c) = QMC(G, ¢) of the thinned graph G.

Before presenting any examples, we need a technical lemma where one can found the proof in
Ref. 10 or an independent proof in the Appendix A 1.

Lemma 3.13 (Ref. 10). Let U,V,W be vector spaces isomorphic to C2. Then the set of linear
maps @ : U — V ® W, which can be written in the form |1);; = [1)y @ |Dw, [2)y — 12)v ® 2)w
under appropriate bases of U, V, and W, is an open dense subset of Hom(U,V ® W).

LetS = {Sijk:i,j,k=0,1} € (C?)®3 be the tensor such that Sijk=1ifi=j=k,and S;j, =0
otherwise. Translating Lemma 3.13 into the language of tensors, we have the following corollary.

Corollary 3.14. The set of tensors 7 = {7« : i, j,k = 0,1} € (C*)®3, which satisfies the prop-
erty that there exist invertible tensors A = {A;; :i,j = 0,1}, B={B;;:i,j =0,1},C ={C;; :i,j =
0,1} such that 7;jx = 3, A;aSabeBpjCer or graphically the equality in Figure 3 holds, is a dense

a,b,c

subset of (C2)®3,

FIG. 3. Tensors 7 and S.
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FIG.5. (Gy,¢2), p,g >2.
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FIG. 6. (Gy,¢3),n >2,j,k <n.

Theorem 3.8 shows that if the capacity of each edge in a graph is a power of some fixed integer,
then the quantum max-flow equals quantum min-cut. However, in general, this equality may or may
not hold. See Examples 3.15 and 3.16 for the illustrations. By Remark 3.3, the local ordering of the
edges around a vertex does not matter. We will put an integer on each edge to represent the quantum
capacity or dimension of the local Hilbert space.

Example 3.15. Let G be the graph shown in Figure 4 with capacity function c¢;. This is a
special case of the network in Figure 6, Example 3.16 with n = 2,j = k = 1. So by the conclusion
there, QMC(Gy,c;) = 8 and QMF(Gy,¢;) < 7, and thus the quantum max-flow min-cut theorem
does not hold. On the other hand, in Figure 5, if we use the same graph as that in Figure 4, but
change the capacity of the two internal edges to p and g with p,g > 2, then direct calculations show
that QMF(G1, ¢;) equals 8 as long as p > 3 or g > 3, in which case the quantum max-flow min-cut
theorem holds.

Example 3.16. With the same graph G, one can generalize the quantum capacity function in
another direction, as shown in Figure 6, where the capacity function is denoted by c3, 71,72, 73
are three tensors assigned to each vertex, and we assume n > 2,j,k < n. For the network in
Figure 6, we have QMC(G,c3) = min{2n?,(2n — j)(2n — k)}. In the following, we prove that
QMF(G,c3) < 2n® — jk, which is strictly less than QMC(G1, c3).

Note 3.17. Optimizing example 3.16, we find, for j =k = (2 - \/E) n, networks where the
quantum/classical ratio QME(G.c) approaches 2 (\/5 - 1) ~ (0.828427 1. This is the

exp(Zmin cut In(cut dimension))
smallest ratio, i.e., greatest discrepancy from the analog of classical capacity (the denominator)

that we have so far obtained with 3-input networks. Of course, with more inputs, this ratio may be
driven to zero: p parallel copies of such a network will have the quantum/classical ratio approaching

[2(v2-1)]".

One can view 71,7, 75 as linear maps C? - C?eC%,CreC? — Ck Cc?oCr — C,
respectively. By Lemma 3.13, a generic 77, via a local change of basis, can be transformed to the
map: |0) — [00),|1) — |11). Since a local change of basis does not affect the rank of B(G1,c3;7),
we can assume that 77 is given by the map just mentioned.
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For a generic choice of 7; : C" ® C> — C>"* and i = 0,1, we can view ¢; := 75(- ® |i)) as a
linear map C"* — C?"~*, Then generically, both the image of ¢, and the image of ¢, are of dimen-
sion n, and thus they must have an overlap of dimension at least k. So there exist two sets of linearly
independent vectors, {vy,...,vr}, {ui,...,ur}, such that 7(v; ® |0)) = (u; ® |1)),1 <i < k. By
the same argument, there exist two sets of linearly independent vectors, {wy,...,w;}, {x1,...,x;}
such that 73(|0) ® wy) = 72(|1) ® x3),1 < h < j. Then the subspace spanned by {v; ® |00) ® wy, —
ui®|11)® x, : 1 <i < k,1 < h < j} with dimension jk is contained in the kernel of 7; ® 73. Note
that this subspace is also contained in the image of Idcr ® 71 ® Idcn, therefore the image of
B(G1,c3:T) = (T1® T3) o (Iden ® Ty ® Idcn) is at most 2n” — jk, which implies that the rank of
B(G1,c3;T) is at most 2n” — jk. By Proposition 3.9, the set of tensors which realize the maximum
rank is an open dense subset, hence QMF(G 1, c3) < 2n* — jk.

IV. QUANTUM MAX-FLOW MIN-CUT THEOREM: VERSION I

Here we study a second version of quantum max-flow min-cut theorem for a more restricted
class of tensor networks originally motivated by Ref. 8. Roughly speaking, vertices of the same type
(to be defined below) in a tensor network are required to be assigned the same tensor. In Ref. 8, it
was conjectured that the quantum max-flow for this version equals the quantum min-cut. And if it
were true, it implies the existence of some tensors with certain “positive” properties, which is part of
the work in Ref. 8 for proving the positivity of the universal pairing in dimension 3. Unfortunately,
we show below that this conjecture is false by a concrete example, Ref. 3. Some more examples and
properties will also be presented.

Notations from Section III will be used here. For G = (V, E) with a capacity function ¢ and a
local ordering L of the ends of the edges incident to each vertex, we define the valence type B, of a

vertex v to be the sequence (ce(y,1), - - - » Ce(v,d,))> and define B(G, ¢, L) to be the set of valence types
k

of vertices of G. Let 78 = (X) C™i for a valence type B = (my,...,m),andlet I'= € 15
i=1 BeB(G,c,L)

Now the vertices with the same valence type have to be assigned the same tensor. Given a family of
tensors 7 = {7 : B € B(G,c,L)} € I’, a vertex v with valence type B, is assigned the tensor 75,
(according to the local ordering of its incident edges). Again contracting the graphical edges of the
tensor network results in a linear map, denoted by B(G, ¢, L; T), in Hom(Vs, V).

Definition 4.1. The quantum max-flow, QMF(G,c, L), for Version II is defined to be the
maximum rank of B(G,c,L; T).

The quantum min-cut QMC(G, ¢) is the same in either version. It is clear from the definitions
that QMF(G,¢,L) < QMF(G,c), and thus QMF(G,c,L) < QMC(G,c). When does the equality
hold? Again, we do not know a sufficient and necessary condition to this question. let us first look at
some examples.

All edges of the graphs in Example 4.2, 4.3, and 4.4 have a capacity of 2, so we omit the labels
of the capacity to make the pictures nicer. Instead, we put a number at each edge end incident to a
vertex to stand for the local ordering. Note that in this version, the local ordering affects the valence
type, and so it also affects maximal rank of the tensor network.

Example 4.2. In Figure 7, denote the graph, the capacity function, and the local ordering by
Gi,cy, and Ly, respectively. There is only one valence type of the vertices, namely, (2,2,2). So

T T

T T

FIG.7. (G1,c1,Ly).
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T T

FIG.8. (G, c1, L)

we only need to choose one tensor 7~ € (C?)®3 and assign it to each vertex according to the local
ordering L. Clearly QMC(Gy,cy) is equal to 4. However, it will be proved in Appendix A 2 that
QMF(Gl,Cl,Ll) < 3. Thus QMF(Gl,Cl,Ll) < QMC(G],Cl).

Example 4.3. This example will show that the ordering on the ends of edges is crucial. In
Figure 8, the same graph as that in Figure 7 is drawn with the same local ordering for all vertices
except the one on the lower right. We denote this new ordering by L,. Then it turns out that
QMF(Gl,Cl,Lz) =4 = QMC(Gl,Cl).

Example 4.4. Denote the graph, the capacity function, and the local ordering by G», ¢, and L3,
respectively, in Figure 9. Then by a similar proof as that in Example 4.2, we have QMF(G», ¢, L3) =
6 < 8 = QMC(G3,c,). However, since the capacity on each edge is 2, by Theorem 3.8, the first
version of quantum max-flow min-cut theorem holds: QMF(G», c;) = QMC(G»,¢;) = 8.

The examples above showed that even in the case where all edges have the same capacity
(dimension), the quantum max-flow/min-cut equality can still fail to hold, and the local orderings
also affect the equality.

The following proposition states that one can, for each valence type B, fix a tensor 7, such that
for all graphs G, when assigned the tensors {73 : B € B(G,c, L)}, the resulting B(G,c,L; T ) has
the maximum rank.

Proposition 4.5. Let B be the countable set of finite sequences of positive integers and let

70 = {‘7;0 :BeB}e BHB I8 have the property that the entries of all 7;30 ’s are algebraically inde-
E(
pendent from each other over the rational field Q. Then for any graph G with a capacity function ¢

and a local ordering L, the assignment v ‘7;;1 yields a linear map B8(G,c,L; ‘7|'GO) of maximum rank
QMF(G,c,L).

Proof. By the proof in Proposition 3.9, for a graph G with a general assignment 7~ of tensors,
the condition that 8(G,c,L;7 ) does not have the maximum rank is equivalent to the vanishing
condition of a set of polynomial equations in the entries of 7 . None of these polynomials are, for
each G, identically 0, since there are tensors which realize the maximum rank and thus those tensors

FIG. 9. (Ga,c2 L3).
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do not satisfy these polynomial equations. Hence the value of these polynomials at 7 is not 0
because the entries of all the ‘7;;0 ’s are algebraically independent from each other, which implies
that for each G, the maximum rank is achieved. |

V. ENTANGLEMENT ENTROPY

In this section, we explore the quantum max-flow min-cut theorem in the context of quantum
entanglement entropy, and we will only consider Version I of the tensor networks. Let us first review
the following.

Let p be the density matrix of a mixed state in a quantum system with the Hilbert space
H = C4, then the von Neumann entropy,”® S(p), of p is defined to be

S(p) = -Tr(plog p). (5.1)
Let A;,i = 1,...,d be the eigenvalues of p. If we use the convention 0log 0 = 0, then we have
d
S(p) = - Z A;log ;. (5.2)
i=1

For a composite system with the Hilbert space H = H4 ® Hp, and a pure state ) € H, the
(von Neumann) entanglement entropy, which we denote by EE(|y)), of /) is S(pa(l¥))), where
pa(Jr)) is the reduced density matrix of |y) on A. By Schmidt decomposition theorem, p(|/)) has
the same set of nonzero eigenvalues as pg(|/)), thus EE(|y)) is also equal to S(pg(|y))).

The entanglement entropy of a state in a bipartite system measures the entanglement between
the subsystems. When |¢) = |y)4 ® |y)p is a product state, then EE(|/)) = 0, which is the mini-
mum value of EE; when the reduced density matrix p4 or pp is maximally mixed, EE(|y)) achieves
its maximum min{log d4,log dg}, where d,dp are the dimensions of the subsystems H4, Hp,
respectively.

Recall from Section III that for a finite graph G = (V,E) with input S, output 7, the ca-
pacity function ¢, and a tensor assignment 7 = {7, : v € V}, we have the associated linear map
B(G,c;T) € Hom(Vs,Vr) = Vg ® Vr. Now identifying V¢ with Vs using the chosen basis in Vg,
this determines an element a(G,c; 7 ) € Vs ® Vr (which is exactly the a(G,c;7) introduced in
Section III). More explicitly, if we denote the basis of Vs, Vp by {li)g:i=1,2,...}, {|lj)r:Jj=
1,2,...}, and let the matrix of 8(G,c; 7 ) under this basis be C, then we have

@(G,e;T) = )" Ciflidslidr- (53)
iJ

Since Tr(CCY) = 3 |C;jl?, 2EST) s a normalized state in Vs ® Vi The reduced density
i,

\Tr(CCh

matrix p s(&%) equals % Define the entanglement entropy between S and T for a given
tensor assignment 7,
a(G,c;T) cct
EE(G,c;T) = EE(——=) = S(——— 5.4
(i) = BR(22) = Sl ) (54
Tr(CC'log(CC* N
_ _TrCCog(CC) |y oirr(ccty). (5.5)

Tr(CCY)

Let MEE(G, ¢) be the maximum value of EE(G,c; 7") over all 7’ s. The following lemma shows the
logarithm of the quantum min-cut naturally provides an upper bound for the MEE(G, ¢), which is
well known in the literature. See for instance Ref. 23.

Lemma 5.1. Let (G, c) be as above, then MEE(G, ¢) < log QMC(G,¢).

Proof. For any tensor assignment 7, let the rank of 8(G,c;7 ) be r, namely, the rank of C is

r with the notations introduced above. Then the rank of pg = is at most r. Let Aq,...,Ax

cc
Tr(CcCY)
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k
be the non-zero eigenvalues of pg, where k < r and Tr(ps) = >, 4; = 1. Then EE(G,c;7) =
i=1

k
- ; Ailog A; < logk < logr < log QMF(G,c¢), with the first “=" holds if and only if A; = % for

all i. Thus MEE(G,¢) < log QMF(G,¢) < log QMC(G,¢), where the last inequality is given by
Corollary 3.7. O

We show that for the graphs considered in Theorem 3.8, the inequality in Lemma 5.1 is
saturated.

Theorem 5.2. For (G,c), such that the capacity on each edge is a power of d, for some fixed
integer d, then MEE(G, ¢) = log QMC(G,c).

Proof. In the proof of Theorem 3.8, a particular linear map B(G,c; 7) is produced which real-
izes the maximum rank QMF(G, ¢) = QMC(G, c¢). Moreover, the matrix of B(G,c;7 ) under some
appropriate orthogonal basis of Vs and V7 is given by that in Equation (3.1). Therefore, the matrix of
BT is diagonal, of rank QMC(G, c), with either 1 or 0 on the diagonal. It follows that EE(G,c; T") =
log QMC(G, ¢). Combining with Lemma 5.1, we have MEE(G, c¢) = log QMC(G, ¢). O

VI. QUANTUM MAX-FLOW AND QUANTUM SATISFIABILITY

The quantum max-flow is related to the quantum satisfiability problem, Qsar, introduced by
Bravyi.® gsar is the following problem: you are given a hypergraph G = (V,E), a labeling of the
vertices which we interpret as qudits dimensions d : V — N, v — d,, ranks labeling for hyperedges
r:E—-N, e >r, and a (classical description of) projectors Il : ¢ — II, where each projector
I1, acts only on the qudits in e (i.e., I, : ®U€e Cdv — ®v€e C49v) and has rank r,. We define the
Hamiltonian

H= Z e @ e, 6.1)
ecE

The task is to decide whether ker(H) is non-trivial, i.e., whether there exists a state /) # 0 such
that H|y) = 0. (Since all the terms in the Hamiltonian H are positive semidefinite, 0 is the smallest
possible eigenvalue.)2 What is the minimal value dim ker(H) can take when G,d,r are held fixed?
By the rank-nullity theorem, this is equivalent (up to an additive factor) to the following question:
what is the maximal value rank(H) can take? Perhaps not surprisingly, the answer is the same
as Proposition 3.9: a generic choice for the projectors gives a distinct value almost surely (with
respect to the random choice of projectors), and this value minimizes dim ker(H) among all possible
choices for the projectors [Ref. 19, Section 3.3.1].

We define the function Gen — QSAT(G,d,r) where G,d,r are as before, but the projectors are
not given explicitly, and this function is dimker(H) (see Eq. (6.1)) for a generic choice for the
projectors. Note that the appropriate instance is generically unsatisfiable if and only if this function
is 0. A lower-bound on Gen — QSAT is given in Ref. 26, and several other papers have studied when
QsAT is generically satisfiable (or, in our terminology, when Gen — QSAT is strictly positive).”!$:229

We do not know whether there is a polynomial time reduction between QMEF(-) and
Gen — QSAT(-). Nevertheless, there are specific cases where these problems are equivalent.

Claim 6.1. Gen — QSAT(G,,d,r) = d3(d1d — r1) — QMF(G3,¢) where (G,,d,r) is depicted in
Fig. 10 and (G3,¢) is depicted in Fig. 11.

Proof. Observe the cut depicted in Fig. 12. By choosing the top tensor 7| appropriately, the
image of the tensor network until this cut is the set of states which satisfy the first constraint acting

dy T dy T2 d3

FIG. 10. A Gen—QSAT instance with 3 qudits (vertices) and 2 projectors (edges). The dimensions of the qudits and the
ranks of the projectors are parametrized by d1, d», d3 and ry, o, respectively.
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7—’
d1d2 -7 ! d1
Input do Output
d 72
° T
FIG. 11. (G3,¢).
T
didy — 11 - | dy
Input do \ Output
d | ro
3 : 7—2
|

FIG. 12. A specific cut of the tensor network which is used in the proof of Claim 6.1.

5 3
MF =3(3-2—1)— Gen-QSAT ( 3 1 2 5 3
Q <3 2 5) ( ) — Gen-QSAT ( )

:12+3(3-2—5)—Gen—QSAT(3 5 02 1 3)

1 3
=12+ QMF
(1Y)
3
=124+ QMF 2
awr(, o[ ")

= 14.

FIG. 13. First proof of rank = 14.
Gen-QSAT(3 1 2 5 3)=1
o —o
FIG. 14. Gen—QSAT=1.

on qudits 1 and 2. We can choose the bottom tensor 7, so that its kernel is the allowed subspace of
the second projector acting on qudits 2 and 3. In this way, the dimension of the kernel of this entire
tensor network is precisely the dimension of the satisfying subspace. By the rank-nullity theorem,
the nullity is equal to d3(dd, — r1) minus its rank. |

Let us focus on the special case d; = d; = 3,d, =2,r; = 1,r, = 5. It can easily be checked
that the quantum min-cut of the network is 15. We will give two different proofs that the quantum
max-flow is 14. From now on, we will use the convention for tensor networks that inputs are on the
left and outputs are on the right. The first proof is given in Figure 13. Here we used Claim 6.1 in the
first and the third step.

In the second proof, we show the identity in Figure 14 directly. Fix a generic choice for the
projectors. Since there is a 5-dimensional constraint on qudits 2 and 3 (which have dimension 2
and 3, respectively), there exists a unique state (up to a phase) |¢) such that II¢) = 0. Since
I1; has rank-1, we can always write it as ITj = |¢){(¢|. We can use the Schmidt decomposition
to express |p) = Z%:l AV ® Iﬂi)(z). (Note that the sum goes from 1 to min(dy,d3) = 2 and
not 3.) The states {|a),|@z)} can be completed to an orthonormal basis by some state |a3). The
state |Q) = |3}V ® ) > satisfies Hil’z) Q@ IP|Q) = H§2’3) ® IM|Q) = 0. It can also be shown that
this is the only state in the kernel (for generic choices), which proves that Gen — QSAT(G,,d =
(3,2,3),r =(1,5)) = 1.
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Gen-QSAT ( dy 71 dy T2 d3 73 dy ) = (dyds — 71)(d3dy — 13)
—eo —0o o
didy — le dy
— QMF T2
dzdy — 13 & dy
FIG. 15. A relation between Gen—QSAT and QMF.

Gen—QSAT(2 12 2 2 1 2):2.
@ L L L J

FIG. 16. Gen—QSAT =2.

Claim 6.2. The identity in Figure 15 holds.

The proof follows the same steps as of Claim 6.1 and is thus omitted. This claim allows
us to give an alternative proof that the quantum max-flow of Example 3.15 is indeed 7. The
network in Fig. 5 is a special case of the tensor network in the above claim when we choose
di=dy=d3=ds=2, ry=r3=1, rp, =2, and switch the roles of the inputs and outputs (which
has no effect on the quantum max-flow, see Remark 3.5).

By Claim 6.2, we only need to show the identity in Figure 16. For a generic choice of the
projectors, there always exists an invertible operator P = P; ® P, ® P3 ® P4 so that

(P1® P)ILI(P]' ® P;Y) = (P3® PyI(P;' @ PY) = |y My |
and

(P2® PPy ® P31) = [ )y | + "X,
where |y*) = %IOl) +(10), I1; is the projector acting on the two leftmost qubits, IT, on the two
center qubits, and I1; on the two rightmost qubits. This is achieved by using P, and P; to “fix” II,
(note that the rank of II, is 2), P; to “fix” I1;, and P4 to “fix” Il; using the simple transformation
described in Refs. 18 and 6. It is easy to check that ker(PHP~') = span{|0000),|1111)}, which
implies that dim ker(H) = 2.

An open question. Ref. 26 gives a lowerbound on Gen — QSAT and they conjecture that their
lowerbound is tight in some appropriate limit. An analogous conjecture in our setting might be

VG,c, lim QMF(G,nc) = QMC(G, nc), (6.2)

where nc means multiplying all the capacities by n. One can interpret a result as the above equation
as saying that a quantum phenomenon (QMF(-) # QMC(-)) disappears in a large system. We do not
know whether Eq. (6.2) implies the tightness conjecture of Ref. 26 or vice versa.
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APPENDIX: PROOFS
We prove Lemma 3.13 and the result in Example 4.2 in Appendix A 1 and A 2, respectively.

1. Proof of Lemma 3.13

Lemma A.1 (Ref. 10). Let U,V,W be vector spaces isomorphic to C2. Then the set of linear
maps @ : U — V ® W, which can be written in the form |1);; = [1)y @ |Dw, [2)y — 12)v ® 2)w
under appropriate bases of U, V, and W, is an open dense subset of Hom(U,V ® W).
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Proof. For a matrix A € M,(C), denote the i-th row, the j-th column, and the (i, j)-entry of A by
A(i,-), A(-,j), and A(i, j), respectively.

Fix an arbitrary basis {|1),]2)} of U,V, and W. Then any linear map ® : U — V ® W has the
form

I1) > AL D11 + A(1,2)[12) + A2, D|21) + A(2,2)[22),
12) > B(1,D|11) + B(1,2)[12) + B(2, 1)|21) + B(2,2)|22). (Al)

Let Ap = (A(, j))1<i,j<2. Bo = (B(i, j))1<i,j<2 € Ma(C), then Hom(U,V ® W) is isomorphic to
M;(C) x M,(C) with each map @ corresponding to (Ag, Bo).
Let A ¢ My(C) X M,(C) contain all the pairs (A, B) which satisfy (1)-(3).

1. det(A) #0;
2. A7'Bhas two distinct eigenvalues, or equivalently, (tr(A~'B))? — 4 det(A™'B) # 0;
3. (A7'B)(1,2) # 0,(A7'B)(2,1) # 0.

A direct consequence of (3) is that A, B are linearly independent in M,(C). It is clear that the
complement of A is a proper subvariety of M»(C) X M,(C). By Ref. 16, A is an open dense subset
of M,(C) x M,(C). We prove that each pair (A, B) € A gives a linear map O satisfying the property
in the statement of the lemma.

Let 11,1, be the two distinct eigenvalues of A~'B, and define D; = A;1 — A~'B,i = 1,2. Then
D1, D, are both non-zero matrices of rank 1,

D - Li—-(A"'B)y —(A'B)n
l —(A7'B)y 4= (AT'B)n)’

Thus there are non-zero column vectors uy,u, and non-zero row vectors vy, v, such that D; = uj.v;
and D = u,.v;. Moreover, noting that D;(1,2) = —(A'B)(1,2) # 0,D;(2,1) = —(A'B)(2,1) # 0,
we have that u; is proportional to D;(-, 1) and v; is proportional to D;(1,-).

Since A; # A5 and (A7'B)(1,2) # 0,(A"'B)(2,1) # 0, Dy(-,1), D5(-, 1) are linearly independent
and Di(1,-), Dy(1,-) are linearly independent. Therefore, {u1,u,} and {v1,v,} are each a basis of C2.
Since A is invertible, {A.u;, A.u,} is also a basis of C2.

Now we define a linear map @ : U — V ® W by the pair (A, B) according to Equation (Al).
Then the coordinate of ®(1;|1) — |2)), written in the matrix form under the basis {|j)|k) : 1 < j,k <2}
of Ve W,is ;A— B = A(1; — A7'B) = Au;.v;,i = 1,2. Let |i)y, € V be the vector with coordinate
A.u;, |y € W be the vector with coordinate v;, and let i), = A;|1) — |2) € U, then {|1)y,]2)y},
{Dv.120v}, {|Dw. 2)w} are basis of U, V, W, respectively, and O(|i);;) = |i)y ® [i)w- O

2. Proof of QMF(G, ¢4, L) < 3in Example 4.2

We prove that the tensor network (Gi,ci,L;) in Example 4.2 has maximal rank at most
3. See also Figure 17. It is shown below that for a generic choice of tensor 7-, the resulting
linear map B(Gy,c1,L1; 7 ) has rank at most 3. It can be proved in the same way as Proposi-
tion 3.9 that the set of tensors which realize QMF(G,cy,L;) is an open dense subset. Therefore,
QMF(Gy,c1, L) <3 < QMC(Gy, ¢y).

T T

FIG. 17. (G1,c1,Ly).
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<

FIG. 18. Tensors 7 and S.

A § B C § A

L

A § B C § A

FIG. 19. (Gy,c1,Ly).

Let 7 ={Tjjx :i,j,k = 0,1} be a generic tensor, by Corollary 3.14, there exist invertible
tensors A = {A;; :i,j =0,1},B ={B;;:1,j =0,1},C = {C;; : i,j = 0,1}, such that the equality in
Figure 3 holds, where S = {S;jx : i,j,k = 0,1} € (C?)®3 is the tensor such that S;jx = 1 ifi=j =
k, and S;jx = 0 otherwise. For the readers’ convenience, we display the equality in Figure 18.

With this equality, the network in Figure 17 with a generic tensor 7~ is equal to the left network
shown in Figure 19, which produces the map B8(G1,c¢1,L1; 7). Let D be the tensor D = {D;; : D;; =
2. BixCji,i,j = 0,1}. Since the tensor A is an invertible matrix, the rank of 8(Gy,c1,L1;7) is not
k

changed when the A’s on the two ends of the left network in Figure 19 are removed, which results
in the right network shown in Figure 19. Denote by ® the linear map produced by the resulting
network. It is straightforward that, when viewed as a linear map from C> ® C? to C?> ® C?, ®|i, ) =
Z F(i,j;k,0)|k,l), where F(i,j; k,l) = DixDy;jDj;Dy;. One can check directly that F(i,j; k,l) =

F(] i;k,l), forany k,l = 0,1. Thus, ®|0,1) = ®|1,0), and hence rank(®) = rank(B(G1,c1,L1;T)) is
at most 3, which implies that QMF(Gy, ¢, L) < 3.
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