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Abstract: Topological order of a topological phase of matter in two spacial dimensions
is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the
topological phase induces a group symmetry of its corresponding UMC. Gauging is a
well-known theoretical tool to promote a global symmetry to a local gauge symmetry.
We give a mathematical formulation of gauging in terms of higher category formalism.
Roughly, given aUMCwith a symmetry groupG, gauging is a 2-step process: first extend
the UMC to a G-crossed braided fusion category and then take the equivariantization of
the resulting category. Gauging can tell whether or not two enriched topological phases
of matter are different, and also provides a way to construct new UMCs out of old ones.
We derive a formula for the H4-obstruction, prove some properties of gauging, and carry
out gauging for two concrete examples.

1. Introduction

Topological phases of matter are quantum phases of matter represented by equivalence
classes of gapped Hamiltonians. In two spatial dimensions, the bulk topological order
of a topological phase of matter H is encoded by a unitary modular (tensor) category
(UMC)B, also known as an anyonmodel [27]. Conventional symmetries of a topological
phaseHwith topological orderB induce topological symmetries of the UMCB. When a
finite groupG acts on a topological phaseH as topological symmetries, then gauging this
global symmetry, when possible, leads to a topological phase transition fromH to a new
topological phaseHgauged, whose topological order is encoded by a new UMC B×,G
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physical theory of gauging based on G-crossed braided fusion category is developed in
[2].

One reason for the interest in gauging comes from the study of symmetry enriched
topological phases of matter (SETs). Gauging can tell whether or not two SETs are
different. Another motivation is the classification of modular categories, which is inter-
esting for bothmathematics and condensedmatter physics. For ranks up to 5, all modular
categories are closely related to those that can be constructed from quantum groups [4].
There are well-known constructions in conformal field theory that have analogues for
modular category. Gauging is another construction through which we can obtain new
modular categories from old ones with group actions. For example, all group-theoretical
modular categories can be obtained from gauging a global symmetry of a pointed mod-
ular category by Proposition 10 in Sect. 5.

Gauging is a well-known procedure in physics to promote a global symmetry to a
local gauge symmetry. While widely practiced in physics, gauging is hard to define
mathematically. In this paper, we formulate gauging with higher category formalism.
Our definition of gauging is the inverse of the so-called taking a core of a Tannakian
subcategory in amodular category, which is called condensation of anyons in physics [7].
Our conceptual contribution is a formulation of gauging for two dimensional topological
order modeled by an anyon model. Our definition is justified physically and leads to a
studyof the interplay of group symmetry and topological order basedon three intertwined
themes: symmetry fractionalization, defects, and gauging [2]. Our technical new results
include a formula for the notoriously hard to compute H4-obstruction in Proposition 8
in Sect. 5, and a sequentially gauging lemma. As an example, we carry out gauging for
the first non-abelian symmetry S3 of the UMC SO(8)1 and obtain UMCs that have not
appeared elsewhere.

The full symmetry of a set X with n identical elements is the permutation group Sn .
A group G is a symmetry of X if there exists a group homomorphism ρ : G → Sn . The
full global symmetry group of a modular category B is the group Autbr⊗ (B) consisting
of equivalence classes of braided tensor auto-equivalences of B. A group G is a global
symmetry of B if there exists a group homomorphism ρ : G → Autbr⊗ (B). Given a
global symmetry of B for a finite group G, then symmetry defects can be introduced
into the topological phase of matter. Symmetry defects are modelled mathematically by
simple objects in invertible module categories over B. The fundamental isomorphism
�B : Pic(B) → Autbr⊗ (B) establishes a one-one correspondence between symmetries
and defects [10, Theorem 5.2], where Pic(B) is the 1-truncation of the Picard 3-group
Pic(B) of invertible module categories. A relation between defects and symmetries was

studied earlier in [12,14].
Given a global symmetry ρ : G → Autbr⊗ (B) for a finite group G, the first step in

gauging ρ is to add defects to B in a consistent way. But there is an obstruction for
introducing defects so that they form a fusion category. The first obstruction O3(ρ) is a
cohomology class in H3(G; Inv(B)), where Inv(B) is the group of invertible objects ofB.
In higher category formalism, this H3-obstruction is the same as the obstruction to lifting
ρ to a categorical group homomorphism ρ : G → Autbr⊗ (B). When O3(ρ) vanishes,
then we can define consistent fusion rules for defects, but the fusion rules are not unique.
The possible fusion rules are parameterized by cohomology classes α ∈ H2(G; Inv(B)).
For a given fusion rule specified by (ρ, α), the tensor product might not be associative,
which leads to a secondary obstruction O4(ρ, α) ∈ H4(G;U (1)). This H4-obstruction
is the same as the obstruction to lifting the 2-homomorphism ρ : G → Pic(B) to a
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tri-homomorphism ρ : G → Pic(B) when Autbr⊗ (B) is identified with Pic(B) by �B.
When the O4(ρ, α) obstruction vanishes, then we have consistent fusion categories
for the defects, which are parameterized by cohomology classes β ∈ H3(G;U (1)). It
follows that the resulting fusion category B×

G is G-crossed braided with a categorical
action ofG. The second step in gauging is to equivariantize theG-crossed braided fusion
category B×

G . There are no additional obstructions and the resulting modular category

is called the gauged theory, denoted as B×,G
G . Most mathematical results needed for the

above discussion are contained in [10].
For both applications to physics and topology, it is important to compute the H4-

obstruction. A formula for the obstruction O4(ρ, α) in the quasi-trivial case is known
[17].We reduce the computation of O4(ρ, α) for theG-crossed extensionB×

G ofB to the
case of quasi-trivial extension of Z(B)×G . The formula for the H4-obstruction Õ4(ρ, α)

for the quasi-trivial Z(B)×G case can be written in terms of the data of B×
G , and then our

formula for O4(ρ, α) in Proposition 8 follows.
The paper is organized as follows. Section 2 contains preliminaries. In Sect. 3, we

define gauging and collect some general properties of gauging. Section 4 is on a sequen-
tially gauging lemma. In Sect. 5, we derive formulas for both obstructions. Finally,
Sect. 6 contains two explicit examples.

2. Preliminaries

In this sectionwe recall somebasic definitions and standard notions.Much of thematerial
here can be found in [7] and [15]. All our fusion categories are over the complex numbers
C. We will use the following notation in the paper.

C, D fusion categories.
B a braided fusion category.
Autbr⊗ (B), Autbr⊗ (B) the 1-, 2-group of braided tensor auto-equivalences of B.
Pic(B),Pic(B),Pic(B) the 1-, 2-, 3-group of invertible module categories of B.
B×
G a G-crossed braided extension of B.

B×
(ρ,α,β) a G-crossed modular extension of B.

B×,G
G ,B×,G

(ρ,α,β) the gauged B.
ρ 2-group homomorphism.
ρ 3-group homomorphism.

2.1. Unitary fusion categories. A C∗-category D is aC-linear abelian category with an
involutive antilinear contravariant endofunctor †, which is the identity on objects. The
hom-spaces HomD(X,Y ) are Hilbert spaces with norms satisfying

|| f g|| ≤ || f || ||g||, || f † f || = || f ||2,

for all f ∈ HomD(X,Y ), g ∈ HomD(Y, Z), where f † denotes the image of f under
the endofunctor †. A C∗-category is called locally finite dimensional if each hom-space
HomD(X,Y ) is a finite dimensional Hilbert space. In this paper all C∗-categories will
be locally finite dimensional.
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Remark 1. A C∗-structure over a locally finite dimensional complex abelian categoryD
is the same as a positive complex∗-structure, that is, an involutive antilinear contravariant
endofunctor †, which is the identity on objects and such that for each f ∈ HomD(X,Y ),
f † f = 0 implies f = 0, see [23, Proposition 2.1].

Let X and Y be objects in a C∗-category. A morphism u : X → Y is unitary if
uu† = id Y and u†u = id X . A functor F : D → D′ is called unitary is preserves the
∗-structure, that is, if F( f †) = F( f )†, for all f ∈ HomD(X,Y ).

A unitary fusion category (UFC) is a fusion category C, which is a C∗-category
with all constraints unitary, and ( f ⊗ g)† = f † ⊗ g† for every pair of morphisms f, g
in C.

2.2. Unitary braided fusion category and the center construction. If C is a UFC, the
center Z(C) is a unitary braided fusion category (UBFC) and for all (X, c−,X ) ∈ Z(C),
the natural isomorphisms cW,X : W ⊗ X → X ⊗ W are unitary, for all W ∈ C, [24,
Theorem 6.4]. In particular, for every UFC C, every braiding structure on C is unitary
[18, Theorem 3.2].

Since a UFC is always spherical, it follows that a UBFC is a unitary premodular
category, in the sense of [9].

2.3. Unitary modular categories and the symmetric center. Two objects X,Y ∈ C in a
braided fusion category centralize each other if

cY,XcX,Y = id X⊗Y .

The symmetric center C′ (or Müger’s center) is the full subcategory of C consisting of
objects that centralize each object of C. The symmetric center is a symmetric fusion
category.

By [7, Theorem 3.7], a UBFC is a unitary modular category (UMC) if and only if
C′ = Hilb (the category of finite dimensional Hilbert spaces).

2.4. Unitary categorical actions and their equivariantizations. Let C be a UFC.Wewill
denote byAut(M) (respectively, Aut⊗(C)) themonoidal categorywhere objects are uni-
tary auto-equivalences ofM (respectively, unitary tensor auto-equivalence of C), arrows
are unitary natural isomorphisms (respectively, unitary tensor natural isomorphisms) and
the tensor product is the composition of functors.

A unitary action of the group G on C is a monoidal functor ρ : G → Aut⊗(C).
Let G be a group acting unitarily on C via ρ : G → Aut⊗(C), then we have the

following data

• unitary tensor functors (ρ(g), ψ(g)) : C → C for each g ∈ G,
• unitary natural isomorphism φ(g, h) : ρ(gh) → ρ(g) ◦ ρ(h) for all g, h ∈ G.

The G-equivariantization (or category of G-invariant objects) of C, denoted by CG , is
a UFC defined as follows. An object in CG is a pair (V, f ), where V is an object of C
and f is a family of unitary isomorphisms fg : ρ(g)(V ) → V , g ∈ G such that for all
g, h ∈ G,

φ(g, h) fgh = fg ◦ ρ(g)( fh). (2.1)
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A G-equivariant morphism φ : (V, f ) → (V ′, f ′) between G-equivariant objects
(V, f ) and (V ′, f ′) is a morphism u : V → V ′ in C such that f ′

g ◦ ρ(g)(u) = u ◦ fg ,
for all g ∈ G. The C∗-structure of CG is the one inherited from C. The tensor product is
defined by

(V, f ) ⊗ (V ′, f ′) := (V ⊗ V ′, l),
where

lg = fg f
′
gψ(g)∗V,V ′ ,

and unit object (1, id1).

3. Gauging a Global Symmetry

Gauging is an important theoretical tool in physics. As an application to physics, we are
interested in a mathematical formulation of gauging for symmetries of two dimensional
topological phases of matter. Mathematically, we consider gauging as a construction of
new modular categories from old ones with group symmetry.

For application to physics in our situation, all the discussion should be within the
unitary setting. However for the mathematical application and physics elsewhere, non-
unitary is interesting too. We will formulate the theory in the unitary setting, though
most of the theory can be repeated in the non-unitary setting. Throughout the paper, we
need to use the basic notions in the unitary setting such as unitary Picard groups and
the tensor product of unitary bi-module categories, which are defined in [15]. In order
to keep the notation simple, we continue to use the standard notation.

3.1. Global symmetry of unitary modular categories. A quantum system is modelled
by a pair (L , H), where L is the (local) Hilbert space of states (or wave functions)
and H is the Hamiltonian—a Hermitian operator on L . While we will not define the
notion mathematically, we will refer to a class of gapped Hamiltonians without phase
transitions among them as a topological phase of matter. Elementary excitations in a two
dimensional topological phase of matter form an anyon system, which is modelled by a
UMC. Therefore, we will say that the topological order of a two dimensional topological
phase of matter is a UMC.

A group G is a symmetry of a quantum system (L , H) if G acts on L unitarily and
the action commutes with H , i.e., there is a group homomorphism ρ : G → U(L)

such that ρ(g)H = Hρ(g) for all g ∈ G, where U(L) are the unitary operators of
L . When the quantum system (L , H) represents a topological phase of matter whose
topological order is given by a UMC B, then the symmetry (G, ρ) of (L , H) induces a
global symmetry of the UMC B. Let Autbr⊗ (B) be the 1-truncation of Autbr⊗ (B), i.e., the
group of equivalence classes of braided tensor auto-equivalences of B.
Definition 1. Given a group G and a UMC B, a global symmetry of B is a pair (G, ρ),
where ρ : G → Autbr⊗ (B) is a group homomorphism.

Given a UMC B, it is in general difficult to compute Autbr⊗ (B) and Autbr⊗ (B). One

way to obtain interesting symmetries is to consider the n-fold Deligne product B�n of
a UMC B. Then any subgroup G of the permutation group Sn is a global symmetry
of B�n . Such obvious symmetries can also be combined with symmetries of B. For
example, the full global symmetry group of SO(16)1 � SO(16)1 = SO(8)1 � SO(8)1
contains at least S3 × S3, Z2.
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3.2. Symmetry defects. While symmetries are intrinsic properties of a topological phase
of matter, defects are extrinsic objects that are introduced to the topological phase of
matter by modifying the Hamiltonian [2]. For a topological phase of matter with topo-
logical order B, we will model defects by simple objects in indecomposable module
categories over B. We will refer to an indecomposable module category over B as a
defect sector and if it is indexed by a group element g, we will refer to it as a flux sector
with flux g. Simple objects in a defect sector will be called defects.

Given a UFC C, a left module category M over C is a C∗-category which is a
categorical left representation of C compatible with the C∗-structure. Similarly, we can
define right module category and bi-module category over C. The tensor product �C of
C-bimodule categories was defined in [10], see [15] for definition of tensor product in
the unitary setting. With this tensor product, a (C,D)-bimodule category M is called
invertible if there is a (D, C)-bimodule N such that M �D N ∼= C and N �C M ∼=
D as bimodule categories. The Brauer–Picard group BrPic(C) of C is the group of
equivalence classes of invertible C-bimodule categories. This group plays a key role in
the classification of extensions of tensor categories by finite groups [10, Theorem 1.3].
The natural structure for invertible bi-module categories over a fusion category C is
the 3-group BrPic(C), whose 1-truncation is the 2-group BrPic(C). The Brauer–Picard

group BrPic(C) of C is the 2-truncation of BrPic(C).

Note that for a braided fusion category B, a left action induces a compatible right
action via the braiding. In particular, all left B-modules have a canonical B-bimodule
structure. It follows that in the braided case, there is a distinguished 3-subgroup Pic(B) ⊆
BrPic(B) of the Brauer–Picard 3-group, the so-called Picard 3-group Pic(B) of B that

consists of all invertible (left) B-modules.

Definition 2. Given a UMC B, a symmetry defect of B is a simple object in an invertible
module category over B.

LetAutbr⊗ (B)be the 2-groupof braided unitary tensor auto-equivalences of aUBFCB.
There is a monoidal functor � : Pic(B) → Autbr⊗ (B) associated to the alpha-induction
functors α+ and α−, see [10,26] for precise definitions. When B is a UMC, there also
exists a monoidal functor � : Autbr⊗ (B) → Pic(B) such that the functors � and � are

mutually inverse equivalences of Autbr⊗ (B) and Pic(B) as 2-groups [10, Theorem 5.2].

Definition 3. A unitary (faithfully) G-crossed braided fusion category B×
G is a unitary

fusion category B×
G equipped with the following structures:

• a unitary action of G on B×
G ;

• a faithful G-grading B×
G = ⊕

σ∈G Bσ ;
• unitary natural isomorphisms

cX,Y : X ⊗ Y → g(Y ) ⊗ X, g ∈ G, X ∈ Bg,Y ∈ B×
G ,

this unitary morphisms are called the G-braiding.
This data should satisfy the following conditions:
− g(Bh) = Bghg−1 , for all g, h ∈ G,
− g(cX,Y ) = cg(X),g(Y ), for all g ∈ G,
− and some commuting diagrams that guarantee the naturality of c, the consistency

of c with the tensor product, etc. See [7, Definition 4.41].
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A unitary G-crossed braided fusion category B×
G has an extended S-matrix (see [22,

Section 9]).We say a unitaryG-crossed braided fusion category ismodular if its extended
modular S-matrix is non-singular. Verlinde formulas and modular representations can
be generalized [2,22].

Proposition 1 [7]. A unitary G-crossed braided extension B×
G of a UMC B is modular

if and only if B is modular.

A G-crossed braided fusion category B×
G decomposes as a direct sum B×

G =
⊕

g∈G Bg , where each component is an abelian full subcategory of B×
G and the ten-

sor product maps Bg × Bh to Bgh , i.e., B×
G is a G-graded category, equipped with an

action ofG compatible with the grading and aG-braiding. Notice that the trivial compo-
nent Be of the grading is a braided fusion category, each component Bg is an invertible
Be-module category and the functors Mg,h : Bg �Be Bh → Bgh induced from the tensor
product by restriction are Be-module equivalences, by [10, Theorem 6.1].

A G-crossed braided fusion category B×
G = ⊕

g∈G Bg determines and is determined
by the following data:

• a BFC Be = B, a collection of invertible B-module categories Bg, g ∈ G,
• a collection of B-module equivalences Mg,h : Bg �Be Bh → Bgh ,
• natural isomorphisms of B-module functors

αg,h,k : Mg,hk(IdBg �Be Mh,k) → Mgh,k(Mg,h �Be IdBk )

satisfying certain identities.

We are interested in the opposite direction: when a given collection of defect sectors
in Pic(B) would form a G-crossed braided extension of the UMC B? It follows from

[10, Theorem 8.4, 8.8] that a (faithfully graded) G-crossed braided fusion extension of
B exists if and only if a certain tensor product obstruction class in H3(G, Inv(B)) and a
secondary associativity constraint obstruction class in H4(G,U (1)) vanish.

3.3. Definition of gauging. Given a global symmetry (G, ρ) of a quantum system
(L , H), gauging in physics is to couple gauge fields to the Hamiltonian H to promote
the global symmetryG to a local gauge symmetry. There is neither a straightforward nor
unique way to gauge. The common practice in the Hamiltonian formalism is to choose
the so-called minimal coupling by replacing ordinary derivatives with covariant deriv-
atives. The first step in gauging is to add flux sectors of defects into the theory. For a
topological order B, we need to add defects to B to form a G-crossed modular extension
B×
G of B. Such defects are in general confined, so in the second step we equivariantize

the G-crossed extension B×
G , which leads to a new topological order B×,G

G . The first step
has obstructions and ambiguities, while the second step has no further obstructions and
is unique.

The first step of adding defects consistently amounts to a lifting of the global sym-
metry ρ : G → Autbr⊗ (B) to a 2-homomorphism ρ : G → Autbr⊗ (B) in the first stage

and then a further lifting of ρ : G → Autbr⊗ (B) to a tri-homomorphism ρ : G → Pic(B)

in the second stage when Autbr⊗ (B) and Pic(B) identified by �B. This motivates the
following definition:
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Definition 4. Given a global symmetry ρ : G → Autbr⊗ (B) ∼= Pic(B), (G, ρ) can be
gauged if there exists a tri-homomorphism ρ : G → Pic(B) such that ρ is equivalent to

ρ, where (−) : Pic(B) → Pic(B) is the 2-truncation map.

The following theorem, [10, Theorem 7.12], will be used throughout the paper.

Theorem 1 [10]. G-crossed braided extensionsB×
G ofB having a faithful G-grading are

in bijection with tri-homomorphisms ρ : G → Pic(B), or equivalently with homotopy

classes of maps between their classifying spaces BG → BPic(B)

Definition 5. If a global symmetry (G, ρ) of a UMC B can be gauged, then gauging
is the two-step process that firstly B is extended to a unitary G-crossed braided fusion
category B×

G , and secondly B×
G is equivariantized to a UBFC B×,G

G .

Proposition 2 [22]. A unitary G-crossed braided fusion extension B×
G of a UMC B is

modular if and only if B×,G
G is modular.

3.4. Obstructions for gauging and gauging data. By Theorem 1, a global symmetry
can be gauged if the global symmetry can be lifted to a map between classifying spaces
BG → BPic(B). Using homotopy theory, we see that such liftings can have obstructions.

The first lifting from the global symmetry ρ : G → Autbr⊗ (B) to a 2-homomorphism
ρ : G → Autbr⊗ (B) is the promotion of a group action on B to a 2-group action on B by
monoidal functors.Wewill call this categorical action ofG onB a topological symmetry,
i.e., a topological symmetry of B is a pair (G, ρ) such that ρ : G → Autbr⊗ (B). Topo-
logical symmetry in our sense is different from the topological symmetry in [2], where
topological symmetry refers to the full global symmetry group Autbr⊗ (B). A topological
symmetry ρ : G → Autbr⊗ (B) can be gauged if ρ can be lifted to a ρ : G → Pic(B)

when Autbr⊗ (B) is identified with Pic(B)

The 2-group Autbr⊗ (B) has as a complete invariant the triple (Autbr⊗ (B),Aut⊗(IdB),

φ), where φ is a cohomology class in H3(Autbr⊗ (B),Aut⊗(IdB)). Then ρ can be lifted if
and only if the pull-back cohomology class O3(ρ) = ρ∗(φ) ∈ H3(G,Aut⊗(IdB)) van-
ishes.Wewill call this obstruction O3(ρ) the H3-obstruction of ρ. If this H3-obstruction
vanishes, then the possible liftings are parametrized by classes α ∈ H2(G, Inv(B)).
Suppose a lifting specified by (ρ, α) is given, then to lift ρ : G → Autbr⊗ (B) to a tri-

homomorphism ρ : G → Pic(B) has a further obstruction O4(ρ, α) ∈ H4(G,U (1)).

We will call this secondary obstruction the H4-obstruction. If this H4-obstruction van-
ishes, the possible liftings are parametrized by cohomology classes β ∈ H3(G,U (1)).

Definition 6. Given a global symmetry ρ : G → Autbr⊗ (B) that can be gauged and
a fixed gauging, then a gauging data related to the fixed gauging is a pair (α, β) ∈
H2(G, Inv(B)) × H3(G,U (1)), such that O4(ρ, α) vanishes.
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Phrasing Theorems 8.4, 8.8, 8.9 from [10] in the language of gauging, we have the
following proposition.

Proposition 3 [10]. Suppose B is a UMC with a gauging data (ρ, α, β) and B×
(ρ,α,β) is

the extension of the UMC B to a unitary G-crossed fusion category, then B×
(ρ,α,β) has a

canonical G-braiding and categorical G-action that make it into a unitary G-crossed
modular category.

Thus the gauging data is the information required to extend a UMC B to a unitary
G-crossed modular category B×

G uniquely, whose equivariantization is the gauged UMC

Bgauged = B×,G
G .

3.5. General properties.

Proposition 4 [19]. Suppose G acts categorically on B = Z(C)—the Drinfeld center
of a unitary fusion category C. Let C×

G be the G-crossed braided extension of C from the

G-action, then B×,G
G = Z(C×

G ).

Recall a fusion category is weakly integral if its Frobenius–Perron dimension is an
integer. Two modular categories B and B̃ are Witt equivalent if there exist spherical
fusion categories C and C̃ such that B�Z(C) ∼= B̃�Z(C̃) as braided tensor categories,
where Z(C) and Z(C̃) are the Drinfeld centers of C and C̃, respectively.

The following theorem follows from [7] on taking a core, which is the inverse of
gauging, and Corollary 3.30 of [8].

Theorem 2 [7,8]. Let B be a UMC with a gauging data (ρ, α, β), and B×,G
G be its

gauged UMC. Then B ⊗ B×,G
G

∼= Z(B×
(ρ,α,β)).

It follows that

(1) Gauging preserves topological central charge.
(2) dim(B×,G

G ) = |G|2 dim(B).
(3) B is weakly integral if and only if B×,G

G is weakly integral. In particular, if B is

pointed then B×,G
G is weakly integral.

(4) Gauging preserves Witt-equivalence classes.

4. Sequentially Gauging

In this section, we show that if the global symmetry group G of B has a semi-product
structure, i.e., G = N � H , then the gauging process can be done sequentially, that is,
one can first gauge B by the normal subgroup N , and then gauge the resulting B×,N

N
by H . We show that for any ρ : G −→ Pic(B), there exist ρ1 : N −→ Pic(B), ρ2 :
H −→ Pic(B×,N

N ), such that B×,G
G is equivalent to (B×,N

N )
×,H

H .

Remark 2. In [7], the authors gave a similar statement as above, without a proof, that
equivaritization can be done sequentially for a fusion category with a G-action.

By Theorem 1, morphisms ρ : G −→ Pic(B) are in bijection withG-crossed braided

extensions of B, B×
G = ⊕

g∈G
Bg . The action of G on B×

G , denoted by Rρ , is defined as
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follows. Rρ(g) is the equivalence Bg′ −→ Bgg′g−1 , such that the following B-module
functors are isomorphic

• ⊗ X ∼= Rρ(g)(X) ⊗ • : Bg −→ Bgg′ , ∀X ∈ Bg′ (4.1)

Extending it to B×
G linearly, we get a G-action Rρ . Moreover, the isomorphism in

(4.1) gives the G-crossed braiding

cY,X : Y ⊗ X
∼−→ Rρ(g)(X) ⊗ Y, Y ∈ Bg, X ∈ Bg′ .

See [10, Theorem 7.12] for a more detailed explanation.
For h ∈ H , let Ch = ⊕

n∈N
Bhn . Thus we have B×

G = ⊕

h∈H
Ch . Let ρ1 = ρ|N

be the

restriction of ρ on N .

Lemma 1. Letρ, ρ1 be as above, thenCe = ⊕

n∈N
Bn with the N-crossed braided structure

induced from B×
G is the N-extension of B corresponding to ρ1, namely Ce = B×

N .

Proof. Apparently, Ce is an N -extension of B with ρ1(n) = Bn, n ∈ N . We only need

to show the action of N on Ce induced from Rρ is the same as that determined by ρ1,

namely, Rρ(n) = Rρ1(n), but this is clearly true since both actions are determined from
(4.1). �

Now we restrict the action Rρ to the subgroup N . By Lemma 1, Rρ(n)(X) =
Rρ1(n)(X), n ∈ N , X ∈ Ce. If X ∈ Bhn′, h ∈ H , then n X ∈ Bnhn′n−1 . Since
nhn′n−1 = h(h−1nh)n′n−1 ∈ hN , we have n X ∈ Ch . Therefore, the action of N
preserves each Ch .

Nowwe take the equivariantization ofB×
G with respect to the action of N . By the argu-

ment above, the equivariantization preserves each Ch . Thus we have B×,N
G = ⊕

h∈H
CN
h ,

where CN
e = B×,N

N by definition.

Lemma 2. B×,N
G is an H-crossed braided category which is an H-extension of CN

e =
B×,N
N , and thus we get a morphism ρ2 : H −→ Pic(B×,N

N ) corresponding to this

extension.

Proof. Firstly, CN
h1

⊗ CN
h2

⊂ CN
h1h2

. This is direct to check. For (Xi , ϕi ) ∈ CN
hi
, Xi ∈

Bhi ni , i = 1, 2, we have (X1, ϕ1) ⊗ (X2, ϕ2) = (X1 ⊗ X2, ϕ1 ⊗ ϕ2). Then X1 ⊗ X2 ∈
Bh1n1h2n2 = Bh1h2(h

−1
2 n1h2n2)

⊂ CN
h1h2

.

Secondly, we define an H -action on B×,N
G . Recall that for (X, ϕ) ∈ CN

h′ , we have,

for each n ∈ N , an isomorphism n X
ϕn−→ X . For any h ∈ H , we define R(h)(X, ϕ) :=

(h X , ψ), where ψ(n) = hϕh−1nh :nh X −→h X . We also write ψ = hϕh−1•h . For a
morphism f : (X, ϕ) −→ (X ′, ϕ′),define R(h)( f ) :=h f . It is straightforward to check
that R is an action of H on B×,N

G by tensor automorphisms and R(h)(CN
h′ ) ⊂ CN

hh′h−1 .

The H -crossed braiding is given as follows: given (Xh1n1, ϕ) ∈ CN
h1

, (Xh2n2 , ϕ
′) ∈

CN
h2

, where Xhi ni ∈ Bhi ni , i = 1, 2, we have (Xh1n1 , ϕ) ⊗ (Xh2n2 , ϕ
′) = (Xh1n1 ⊗
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Xh2n2 , ϕ⊗ϕ′), and R(h1)(Xh2n2 , ϕ
′)⊗(Xh1n1, ϕ) = (h1Xh2n2⊗Xh1n1,

h1ϕ′
h−1
1 •h1⊗ϕ),

then the crossed braiding is defined as the following compositions:

Xh1n1 ⊗ Xh2n2
c−→ h1n1Xh2n2 ⊗ Xh1n1

h1ϕ′
n1⊗I d−→ h1Xh2n2 ⊗ Xh1n1,

where c is the crossed braiding in B×
G . Again, it is not hard to check this defines an

H -crossed braiding. �
Therefore, by Lemma 2, we can take the equivariantization of B×,N

G with respect to H ,

namely, [B×,N
G ]H = (B×,N

N )
×,H

H .The following theorem proves that [B×,N
G ]H is braided

equivalent to B×,G
G .

Theorem 1. Let ρ : G −→ Pic(B), then there exist ρ1 : N −→ Pic(B), ρ2 : H −→
Pic(B×,N

N ), such that (B×,N
N )

×,H

H is braided equivalent to B×,G
G .

Proof. Let ρ1 = ρ|N
, ρ2 be provided in Lemma 2.

We shall prove the theorem by defining a functor F : (B×,N
N )

×,H

H −→ B×,G
G and its

inverse F−1.
Given ((X, ϕ), ψ) ∈ (B×,N

N )
×,H

H , we have isomorphisms

n X
ϕn−→ X, ∀ n ∈ N (4.2)

(h X , hϕh−1•h)
ψh−→ (X, ϕ), ∀ h ∈ H (4.3)

such that the following diagrams commute:

∀ n1, n2 ∈ N n1n2X
n1ϕn2 ��

ϕn1n2
�����������
n1X

ϕn1

��

X

(4.4)

∀ n ∈ N , h ∈ H nh X
hϕh−1nh��

nψh

��

h X

ψh

��
n X

ϕn �� X

(4.5)

∀ h1, h2 ∈ H h1h2X
h1ψh2 ��

ψh1h2 ����
��

��
��

�
h1X

ψh1
��

X

(4.6)

Define F((X, ϕ), ψ) := (X, τ ), where for any g = nh ∈ G, τg = ψh
hϕh−1nh =

ϕn
nψh (see Diagram (4.5)). For any morphism f : ((X, ϕ), ψ) −→ ((X ′, ϕ′), ψ ′),

define F( f ) := f . We need to show (X, τ ) and F( f ) are in B×,G
G .
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For any g1 = n1h1, g2 = n2h2 ∈ G, we have

τg1
g1τ g2 =ϕn1

n1ψh1
n1h1(ϕn2

n2ψh2)

=ϕn1
n1ψh1

n1h1ϕn2
n1h1n2ψh2

Equ 4.5������ϕn1
n1ϕh1n2h

−1
1

n1h1n2h
−1
1 ψh1

n1h1n2ψh2

Equ 4.4,4.6��������ϕn1h1n2h
−1
1

n1h1n2h
−1
1 ψh1h2

=τg1g2 .

This shows (X, τ ) is an object of B×,G
G . Next, we need to show if f : ((X, ϕ), ψ) −→

((X ′, ϕ′), ψ ′), then f : (X, τ ) −→ (X ′, τ ′) is also a morphism inB×,G
G . This is justified

by the following diagram.

nh X
τnh ��

nh f

��

nψh

����
��

��
��

X

f

��

n X

ϕn

����������

n f
��

n X ′
ϕ′
n

���
��

��
��

�

nh X ′

nψ ′
h

����������

τ ′
nh

�� X ′

(4.7)

In the above diagrams, the two triangles both commute by the definition of τ, τ ′. The
left and right trapezoids commute since f is both an N -equivariant and an H -equivariant
morphism. Therefore, the rectangle commutes which shows that f is a G-equivariant
morphism.

Next we show that F is a tensor functor and preserves the braiding.
For simplicity, we will also write ((X, ϕ), ψ) as (X, ϕ, ψ).

F((X, ϕ, ψ) ⊗ (X ′, ϕ′, ψ ′)) = F(X ⊗ X ′, ϕ ⊗ ϕ′, ψ ⊗ ψ ′)
= (X ⊗ X ′, {(ϕ ⊗ ϕ′)nn(ψ ⊗ ψ ′)h}nh=g∈G)

= (X ⊗ X ′, τg ⊗ τ ′
g)

= F(X, ϕ, ψ) ⊗ F(X ′, ϕ′, ψ ′).

Note that some of “=” signs in the above equations actually represent canonical
isomorphisms, such as h(g X) ∼=hg X . So, there is a canonical isomorphism from
F((X, ϕ, ψ) ⊗ (X ′, ϕ′, ψ ′)) to F(X, ϕ, ψ) ⊗ F(X ′, ϕ′, ψ ′), and it is straightforward
to check this isomorphism preserves the associativity and thus F is a tensor functor.
Recall that the H -crossed braiding on (B×

G )N is given in Lemma 2 as follows: for
(X, ϕ), (X ′, ϕ′) ∈ (B×

G )N , X ∈ Bhn,

X ⊗ X ′ c−→hn
X ′ ⊗ X

hϕ′
n⊗id−→

h

X ′ ⊗ X.
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Therefore, for (X, ϕ, ψ), (X ′, ϕ′, ψ ′) ∈ [B×,N
G ]H , the braiding is givenby the H -crossed

braiding followed by ψ ′
h ⊗ id, and is thus equal to the following compositions:

X ⊗ X ′ c−→hn
X ′ ⊗ X

hϕ′
n⊗id−→

h

X ′ ⊗ X
ψ ′
h⊗id−→ X ′ ⊗ X.

The image of this composition under F is (ψ ′
h
hϕ′

n⊗id)c = (τ ′
hn⊗id)c, which is exactly

the braiding (X, τ ) ⊗ (X ′, τ ′) −→ (X ′, τ ′) ⊗ (X, τ ) in B×,G
G . Therefore, F is a braided

tensor functor.
Conversely, given (X, τ ) ∈ B×,G

G , define K (X, τ ) := ((X, τ|N ), τ|H ). It is clear that

((X, τ|N ), τ|H ) satisfy (4.4), (4.5) and (4.6). Thus K (X, τ ) is an object of (B×,N
N )

×,H

H .
It is routine to check that K is a braided tensor functor and that FK � Id, K F � Id.

�

5. Obstructions

5.1. H3 obstruction. Given a group homomorphism ρ : G → Pic(B) ∼= Autbr⊗ (B) a
necessary condition for the existence of a gauging associated to ρ, is the existence of a
lifting ρ : G → Autbr⊗ (B) of ρ. So in this subsection we will describe some formulas

for the computation of the H3-obstruction associated with a group homomorphism
ρ : G → Aut⊗(B).

Let C be a fusion category and

K̂0(C) = { f : K0(C) → U (1) : f (X ⊗ Y ) = f (X) f (Y ), ∀ X,Y ∈ Irr(B)}.
Thus K̂0(C) is an abelian group and for every tensor autoequivalence F ∈ Aut⊗(C), the
abelian group Aut⊗(IdF ) can be canonically identified with K̂0(C).

Let ρ : G → Aut(C) be a group homomorphism. Note that G acts on K̂0(C) since
G acts on K0(C). Let us fix a representative tensor autoequivalence Fg : C → C for
each g ∈ G and a tensor natural isomorphism θg,h : Fg ◦ Fh → Fgh for each pair
g, h ∈ G, we can assume that Fe = IdC and θg,e = θe,g = IdFg for all g ∈ G. Define

O3(ρ) ∈ Z3(G, K̂0(C)) by the diagram

Fg ◦ Fh ◦ Fl

Fg(θh,l )

��

(θg,h)Fl �� Fgh ◦ Fl

θgh,l

��

Fghl

O3(ρ)(g,h,l)
��

Fg ◦ Fhl
θg,hl

�� Fghl .

(5.1)

The proof of the following proposition is straightforward, see [16, Theorem 5.5].

Proposition 5. Let C be a fusion category and ρ : G → Aut⊗(C) a group morphism.
The cohomology class of the 3-cocycle O3(ρ) defined by the diagram (5.1) only depends
on ρ. The map ρ lifts to an action ρ : G → Aut⊗(C) if and only if 0 = [O3(ρ)] ∈
H3(G, K̂0(C)). In case [O3(ρ)] = 0 the set of equivalence classes of liftings of ρ is a
torsor over H2(G, K̂0(C)). �



1056 S. X. Cui, C. Galindo, J. Y. Plavnik, Z. Wang

Remark 3. An analogous result holds if B is a braided fusion category and ρ : G →
Autbr⊗ (B). In this case there is a third cohomology class O3(ρ) ∈ H3(G, K̂0(B)) and

equivalence classes of liftings of ρ form a torsor over H2(G, K̂0(B)).

5.1.1. Obstruction for pointed braided fusion categories Let B = Vecω,c
A be a braided

pointed fusion category. The map

q : A → U (1)

a �→ c(a, a)

is a quadratic form and the pair (A, q), called a pre-metric group, is a complete invariant
of the equivalence class of B, [7,21]. We will denote by O(A, q) the group of all group
automorphisms of A that fix q.

A braided autoequivalence (ρ, ψ) : B → B is defined by a group isomorphism
ρ : A → A and 2-cochain ψ ∈ C2(A,U (1)) such that

ω(a, b, c)

ω(ρ(a), ρ(b), ρ(c))
= ψ(b, c)ψ(a, bc)

ψ(ab, c)ψ(a, b)
(5.2)

c(a, b)

c(ρ(a), ρ(b))
= ψ(a, b)

ψ(b, a)
(5.3)

for all a, b, c ∈ A. Note that for every braided tensor autoequivalence (ρ, ψ), ρ ∈
O(A, q). Conversely, for every ρ ∈ O(A, q) there is ψ ∈ C2(A,U (1)) such that
(ρ, ψ) is a braided autoequivalence and the tensor functor (ρ, ψ) is unique up to tensor
equivalence, [21].

Given a group homomorphism ρ : G → O(A, q), let us fix for every g ∈ G a
2-cochain ψg ∈ C2(A,U (1)) such that (ρ(g), ψg) ∈ Autbr⊗ (B), that is a map

ψ : G → C2(A,U (1)),

such that ψg satisfies the Eqs. (5.2) and (5.3) for each g ∈ G. For every pair g, h ∈ G
fix a tensor natural isomorphism θ(g, h) : (ρ(g), ψg) ◦ (ρ(h), ψh) → (ρ(gh), ψgh),
that is a map

θ : G × G → C1(A,U (1))

such that

δG(ψ) = δA(θ)−1

Now, define
O3(ρ) := δG(θ), (5.4)

then O3(ρ) ∈ Z3(G,C1(A,U (1))). But since

δA(O3(ρ)) = δA

(
δG(θ)

)

= δG

(
δA(θ)

)

= δG

(
δG(ψ)−1

)
= 1,

thus O3(ρ) ∈ Z3(G, Â). The cohomology class of O3(ρ) is just the cohomology of
Proposition 5.

We summarize the results in the following proposition:
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Proposition 6. Let B be a pointed braided fusion category with associated pre-metric
groups (A, q). Then

• Autbr⊗ (B) = O(A, q).
• A representative 3-cocycle for the H3-obstruction is given by formula (5.4) �
Corollary 1. Let c : A × A → U (1) be a bicharacter and B = VeccA the associated
pointed braided fusion category. Let

O(A, c) = {g ∈ Aut(A) : c(a, b) = c(g(a), g(b)) ∀ a, b,∈ A}.
Then every group homomorphism ρ : G → O(A, c) ⊂ O(A, q) has trivial H3-
obstruction.

Proof. Since ρ(g) ∈ (A, c), then (ρ(g), 1) ∈ Autbr⊗ (VeccA) and θg,h = 1 define a
canonical categorical action ρ : G → Autbr⊗ (B). �
Corollary 2. If A is an abelian group of odd order then for every group homomorphism
ρ : G → O(A, q) the obstruction O3(ρ) vanishes.

Proof. If A has odd order and q is a quadratic form, then there is a symmetric bicharacter
cq : A × A → U (1) such that q(a) = cq(a, a) and O(A, q) = O(A, cq). Thus by
Corollary 1 the H3-obstruction vanishes. �

5.2. H4-obstruction. As we mentioned in Sect. 3, by Theorem 1, faithfully graded G-
crossedbraided fusion categories are in one-one correspondencewith tri-homomorphisms
ρ : G → Pic(B), or equivalently with maps between their classifying spaces BG →
BPic(B). We are interested in the case thatB is modular, so the first truncation of Pic(B),

denoted as Pic(B), is monoidal equivalent to Autbr⊗ (B), [10, Theorem 5.2].

5.3. Obstruction theory for quasi-trivial extensions. A G-graded fusion category C =
⊕g∈GCg is called a quasi-trivial extension of Ce by G, if each homogeneous component
Cg has at least onemultiplicatively invertible object. Let us recall briefly the classification
of quasi-trivial extensions, given in [18]. For a fusion category C, we shall denote by
Out⊗(C) the 3-group of outer autoequivalences:

• objects are tensor autoequivalence of C,
• 1-morphisms are pseudo-natural transformations,
• 2-morphisms are modifications.

The main result of [18] is a one-to-one correspondence between equivalence classes
of quasi-trivial extensions and equivalence classes of homomorphism of 3-groups ρ :
G → Out⊗(C), where G is the discrete 3-category where objects are the elements of G.

Explicitly a datum for a tri-homomorphism corresponds to

• tensor autoequivalences (g∗, ψg) : C → C for all g ∈ G,
• pseudonatural isomorphisms (ω(g, h), χg,h) : g∗ ◦ h∗ → (gh)∗ for all g, h ∈ G,
• invertible modifications ηg,h,l : χg,hl◦(id g∗⊗χh,l) → χgh,l◦(χg,h⊗id l∗) for all

g, h, l ∈ G.
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g∗(ωh,kωhk,l)ωg,hkl

[g∗(h∗(ωk,l)ωh,kl))]ωg,hkl [g∗(ωh,k)g∗(ωhk,l)]ωg,hkl

[g∗(h∗(ωk,l))g∗(ωh,kl)]ωg,hkl g∗(ωg,h)[g∗(ωhk,l)ωg,hkl]

g∗(h∗(ωk,l))[g∗(ωh,kl)ωg,hkl] g∗(ωh,k)[ωg,hkωghk,l]

g∗(h∗(ωk,l))[ωg,hωgh,kl [] g∗(ωh,k)ωg,hk]ωghk,l

[g∗(h∗(ωk,l))ωg,h]ωgh,kl [ωg,hωgh,k]ωghk,l

[ωg,h(gh)∗(ωk,l)]ωgh,kl ωg,h[ωgh,kωghk,l]

ωg,h[(gh)∗(ωk,l)ωgh,kl]

ψg
ωh,k,ωhk,l

id ωg,hkl

ψg
h∗(ωk,l),ωh,kl

id ωg,hkl

g∗(ηh,k,l)id ωg,hkl

αg∗(ωh,k),g∗(ωhk,l),ωg,hkl

αg∗(h∗(ωk,l)),g∗(ωh,kl),ωg,hkl id g∗(ωg,h)ηg,hk,l

id g∗(h∗(ωk,l))
ηg,h,kl α−1

g∗(ωh,k),ωg,hk,ωghk,l

α−1
g∗(h∗(ωk,l)),ωg,h,ωgh,kl

ηg,h,kid ωghk,l

χg,h(ωk,l)id ωgh,kl
αωg,h,ωgh,k,ωghk,l

αωg,h,(gh)∗(ωk,l),ωgh,kl

id ωg,h
ηgh,k,l

Fig. 1. coherence for tri-homomorphism

such that the diagram in Fig. 1 commutes for all g, h, k, l ∈ G (where tensor symbols
among objects and arrows have been omitted).

Let ρ : G → Out⊗(C) be a monoidal functor, the obstruction to the existence of a

lifting ρ : G → Out⊗(C) is an element in H4(G,U (1)), defined by the next formula:

O4(ρ)(g1, g2, g3, g4) =χg1,g2(ωg3,g4)

ψ
g1
(g2)∗(ωg3,g4 ),ωg2,g3g4

(ψg1
ωg2,g3 ,ωg2g3,g4

)−1

α(g1)∗((g2)∗(ωg3,g4 )),(g1)∗(ωg2,g3g4 ),ωg1,g2g3g4

α−1
(g1)∗((g2)∗(ωg3,g4 )),ωg1,g2 ,ωg1g2,g3g4

αωg1,g2 ,(g1g2)∗(ωg3,g4 ),ωg1g2,g3g4

α−1
ωg1,g2 ,ωg1g2,g3 ,ωg1g2g3,g4

α(g1)∗(ωg2,g3 ),ωg1,g2g3 ,ωg1g2g3,g4

α−1
(g1)∗(ωg2,g3 ),(g1)∗(ωg2g3,g4 ),ωg1,g2g3g4

(5.5)
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The function O4(ρ) : G×4 → U (1) is a 4-cocycle and its cohomology class only
depends on the equivalence class of ρ : G → Out⊗(C).

5.4. Quasi-trivial extension of a group by a braided fusion category.

Definition 7. Following [7], we say that a quasi-trivialG-extensionB is a braided quasi-
trivial extension of G if Be is a BFC and for each g ∈ G, the tensor autoequivalence

AdXg : Be → Be

W �→ (Xg ⊗ W ) ⊗ X∗
g

is a braided equivalence for all invertible objects in Bg and all g ∈ G.

If B is a braided tensor category every inner tensor autoequivalence is naturally
isomorphic to the identity functor, so every monoidal functor G → Out⊗(B), defines
a unique monoidal functor G → Aut⊗(B). A monidal functor ρ : G → Out⊗(B) is a
lifting of τ : G → Aut⊗(B) if τ is the functor obtained from ρ.

Although π1(Aut⊗(B)) = π1(Out⊗(B)), they are different categorical groups since
π2(Aut⊗(B)) = Aut(IdB) and π2(Out⊗(B)) = Inv(Z(B)).

Since (B, c) is braided, the inclusion

Inv(B) → Inv(Z(B))

V �→ (V, c−,V ),

is a splitting of the exact sequence

0 → Aut⊗(I dB) → Inv(Z(B)) → Inv(B) → 0,

so Inv(Z(B)) = Aut⊗(IdB)⊕Inv(B).Moreover, the action ofAutbr⊗ (B) on Inv(Z(B)) =
Aut⊗(IdB) ⊕ Inv(B) is compatible with the direct sum, that is

Inv(Z(B)) = Aut⊗(IdB) ⊕ Inv(B)

as Autbr⊗ (B)-module.
Summarizing the above discussion, we have:

Proposition 7. There is a bijective correspondence between equivalence classes of lift-
ings G → Outbr⊗ (B) of a fix monoidal functor ρ : G → Autbr⊗ (B) and elements in

H2(G, Inv(B)). �
Proposition 8. Given a categorical action ρ = (g∗, ψg, θg,h) : G → Autbr⊗ (B) and

a 2-cocycle ω ∈ Z2(G, Inv(B)), a representative 4-cocycle for the H4-obstruction is
given by

O4(ρ, ω)(g1, g2, g3, g4) =θg1,g2(ωg3,g4)

c(g1g2)∗(ωg3,g4 ),ωg1,g2

ψ
g1
(g2)∗(ωg3,g4 ),ωg2,g3g4

(ψg1
ωg2,g3 ,ωg2g3,g4

)−1

α(g1)∗((g2)∗(ωg3,g4 )),(g1)∗(ωg2,g3g4 ),ωg1,g2g3g4
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α−1
(g1)∗((g2)∗(ωg3,g4 )),ωg1,g2 ,ωg1g2,g3g4

αωg1,g2 ,(g1g2)∗(ωg3,g4 ),ωg1g2,g3g4

α−1
ωg1,g2 ,ωg1g2,g3 ,ωg1g2g3,g4

α(g1)∗(ωg2,g3 ),ωg1,g2g3 ,ωg1g2g3,g4

α−1
(g1)∗(ωg2,g3 ),(g1)∗(ωg2g3,g4 ),ωg1,g2g3g4

(5.6)

Proof. The pseudo-natural transformation associated to ω ∈ Z2(G, Inv(B)) is
(ω(g1, g2), χg1,g2) : (g1)∗ ◦ (g2)∗ → (g1g2)∗ defined by

χg1,g2(V ) := c(g1g2)∗(V ),ω(g1,g2) ◦ (θg1,g2(V ) ⊗ idω(g1,g2)),

for all V ∈ C, g1, g2 ∈ G.
Hence replacing (ω(g1, g2), χg1,g2) in formula (5.5), we get the new formula of the

4-cocycle. �

5.5. H4 obstruction to G-crossed braided fusion categories. Let (B, c) be a BFC.
Suppose a categorical action (g∗, ψg, θg,h)(g,h∈G) : G → Autbr⊗ (B) admits a gaug-
ing ρ : G → Pic(B). Then the equivalence classes of homomorphism of 2-groups

G → Pic(B) with associated topological symmetry (g∗, ψg, θg,h)(g,h∈G) is a tor-
sor over H2

ρ (G, Inv(B)). Given an element ω ∈ Z2
ρ(G, Inv(B))), we shall denote by

(ω � ρ) : G → Pic(B), the associated homomorphism of 2-groups.

Proposition 9. The homomorphism (ω � ρ) : G → Pic(B) can be gauged if and only
if the 4-cocycle O4(ρ, ω), defined in Eq. (5.6), is cohomologically trivial.

Proof. The obstruction O4(ρ, ω) is a concrete formula for the Pontryagin-Whitehead
quadratic function defined in [10, Section 8.7], so the proposition follows from [10,
Proposition 8.15]. �
Corollary 3. Let t : G → Autbr⊗ (B) be the trivial homomorphism and ω ∈
Z2(G, Inv(B)). The homomorphism (ω � t) : G → Pic(B) can be gauged if and
only if the cohomology class of the 4-cocycle

O4(g1, g2, g3, g4) = c(ωg3,g4 , ωg1,g2)

αωg3,g4 ,ωg2,g3g4 ,ωg1,g2g3g4

α−1
ωg3,g4 ,ωg1,g2 ,ωg1g2,g3g4

αωg1,g2 ,ωg3,g4 ,ωg1g2,g3g4

α−1
ωg1,g2 ,ωg1,g2g3 ,ωg1g2g3,g4

αωg2,g3 ,ωg1,g2g3 ,ωg1g2g3,g4

α−1
ωg2,g2 ,ωg2g3,g4 ,ωg1,g2g3g4

,

vanishes.
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The same formula in this case was derived in [2].
If the topological symmetry (ω�t) : G → Autbr⊗ (B) can be gauged the associatedG-

crossed braided fusion categories are quasi-trivial extensions. Conversely, every quasi-
trivial G-crossed braided fusion category is the gauging of a topological symmetry
(ω � t) : G → Autbr⊗ (B).

Despite the simplicity of the topological symmetry (ω � t) : G → Autbr⊗ (B), the
following proposition said that an interesting family of UMCs can be obtained as gaug-
ings.

Proposition 10. Every group-theoretical modular tensor category is the gauging of a
topological symmetry (ω � t) : G → Autbr⊗ (B), where B is a pointed modular tensor
category.

Proof. Recall that an equivariantization of a G-crossed braided fusion category B is
modular if and only if the G-grading is faithful and Be is modular.

By [25, Theorem 5.3] every braided group-theoretical fusion category B can be
obtained as a gauging of a pointed G-crossed braided fusion category C. The pair
(G, Inv(C)) is an ordinary crossed module, where the G-action on X is induced by
the G-action on C and the morphism ∂ : X → G is defined by the G-grading.

Since B is modular, ∂ is surjective, so X is a central extension G by A = Inv(Ce)
and Ce is a pointed modular category. If ω ∈ Z2(G, A) is a 2-cocycle corresponding to
the central extension X , then B is a gauging of the topological symmetry (∗, ω) : G →
Autbr⊗ (Ce). �
Remark 4. • Every integral modular tensor category of Frobenius-Perron dimension

pn , with p a primer number, is group-theoretical, [6, Theorem 1.5], [9, Theorem
8.28]. Every fusion category of dimension pn with p odd is automatically integral
[20].

• Using Proposition 10 and Corollary 3 we can reduce the classification of group-
theoretical modular categories to a pure problem in group cohomology.

6. Examples

Anextensive list of examples in the spin-network formalism is given in [2].Herewe focus
on two examples: the Z2-symmetry of the Deligne product of the Fibonacci category
with itself, and the first non-abelian S3 symmetry of the 3-fermion theory SO(8)1. It
would be interesting to compare our computation with related work in the future [13,14].

6.1. Fib�2 with Z2 symmetry. The modular category Fib � Fib has a Z2 symmetry
which swaps the two Fib factors. Denote the simple objects (anyons) in Fib � Fib by
{1 = (1, 1), (1, τ ), (τ, 1), (τ, τ )}. In the Z2-crossed braided extension (Fib � Fib)×

Z2
,

the sector labelled by the non-trivial element ofZ2 contains two defects (simple objects),
which are denoted by X1, Xτ . Number all the anyons in both sectors in the order {1 =
(1, 1), (1, τ ), (τ, 1), (τ, τ ), X1, Xτ } by {1, 2, 3, 4, 5, 6}. Below we give part of the data
associated to (Fib � Fib)×

Z2
, and the rest of the data can be found in Appendix A of the

arXiv version of our paper.
The quantum dimensions are:

{

1,
1

2

(
1 +

√
5
)

,
1

2

(
1 +

√
5
)

,
1

2

(
3 +

√
5
)

,

√
1

2

(
5 +

√
5
)
,

√

5 + 2
√
5

}
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Thus the total quantum dimension is D =
√
10+5

√
2

2 .
The Frobenius–Shur indicators are {1, 1, 1, 1,−1,−1}. So the two defects have non-

trivial Frobenius–Shur indicators.
For the group action, g swaps 2 with 3, and fixes all other simple objects.
From the group actions, we deduce that the fusion rules are symmetric, namely

a ⊗ b = b ⊗ a. But the category is not braided. We omit the fusion rules of the
subcategory Fib � Fib and those of the trivial object since they are rather simple. Note
that some of the fusion rules have multiplicity more than 1.

• 2 ⊗ 5 = 6
• 2 ⊗ 6 = 5 + 6
• 3 ⊗ 5 = 6
• 3 ⊗ 6 = 5 + 6
• 4 ⊗ 5 = 5 + 6
• 4 ⊗ 6 = 5 + 6 + 6
• 5 ⊗ 5 = 1 + 4
• 5 ⊗ 6 = 2 + 3 + 4
• 6 ⊗ 6 = 1 + 2 + 3 + 4 + 4

AppendixAof the arXiv version of our paper contains a complete list of the remaining
data including F-matrices, R-matrices, etc.

Gauging the Z2 symmetry of Fib � Fib results in the gauged theory SU(2)8, i.e.,
(Fib � Fib)×,Z2

Z2
= SU(2)8. The data associated to SU(2)8 can be found in a number

of reference, e.g [3]. One can verify SU(2)8 is indeed the correct outcome for gauging
by computing the inverse process, which is called taking the core [7]. Actually, the
data for (Fib � Fib)×

Z2
, F-matrices, R-matrices, etc, is obtained from computing the

de-equivariantization of SU(2)8.

6.2. SO(8)1 with the non-abelian S3 symmetry. The SO(8)1 theory, also called the 3-
fermion theory, has threemutually fermionic anyons,which are denoted by {ψ1, ψ2, ψ3}.
The fusion rules of the three fermions and the vacuum 1 form the group Z2 × Z2. Any
permutation of the three fermions leaves the theory invariant, thusSO(8)1 has a symmetry
group S3, which is a non-abelian symmetry. Since S3 = Z3 � Z2, by Theorem 1, in
order to gauge the whole symmetry group S3, we can first gauge Z3, and then gauge Z2.
By [2], gauging Z3 results in the theory SU(3)3, whose data can be found in [1].

The theory SU(3)3 has 10 anyon types, which are denoted by
{1, a, a′, X,Y, X ′, aX, aX ′, a′X, a′X ′}. We arrange the anyons in the order as shown
in Fig. 2, then the Z2 symmetry is simply a reflection along the height of the vertical
edge of the triangle. The Z2 extension (SU(3)3)

×
Z2

of SU(3)3 contains one defect sector,
as well as the trivial sector SU(3)3. The defector sector contains two defects {X+, X−}.
For the fusion rules of (SU(3)3)

×
Z2

involving the defects, see [2].

By [5], we can compute the fusion rules of (SU(3)3)
×,Z2
Z2

from those of (SU(3)3)
×
Z2

and some cohomology data.
We denote the anyon types by

{1, (1,−1), a, (Y, 1), (Y,−1), X, aX, aX ′, (X+, 1), (X+,−1), (X−, 1), (X−,−1)}.
Their quantumdimensions are respectively {1, 1, 2, 3, 3, 4, 4, 4, 3√2, 3

√
2, 3

√
2, 3

√
2}.
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1

a

a

X

Y

X

aX

aX

a X

a X

Fig. 2. Symmetry for SU(3)3

In Appendix B of the arXiv version of our paper, two versions of (SU(3)3)
×,Z2
Z2

are
presented. But it turns out that these two versions are equivalent by a swap (Y, 1) ↔
(Y,−1), so they are actually the same theory. One can also find the fusion rules there.

The T -matrix (the twist) of the anyons is given by

diag =
(
1, 1, 1,−1,−1, e

2π i
9 , e

8π i
9 , e− 4π i

9 , e
π i
8 , e− 7π i

8 , e
7π i
8 , e− π i

8

)

The S-matrix is given by:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 2 3 3 4 4 4 3
√
2 3

√
2 3

√
2 3

√
2

1 1 2 3 3 4 4 4 −3
√
2 −3

√
2 −3

√
2 −3

√
2

2 2 4 6 6 −4 −4 −4 0 0 0 0
3 3 6 −3 −3 0 0 0 −3

√
2 −3

√
2 3

√
2 3

√
2

3 3 6 −3 −3 0 0 0 3
√
2 3

√
2 −3

√
2 −3

√
2

4 4 −4 0 0 b c a 0 0 0 0
4 4 −4 0 0 c a b 0 0 0 0
4 4 −4 0 0 a b c 0 0 0 0

3
√
2 −3

√
2 0 −3

√
2 3

√
2 0 0 0 0 0 6 −6

3
√
2 −3

√
2 0 −3

√
2 3

√
2 0 0 0 0 0 −6 6

3
√
2 −3

√
2 0 3

√
2 −3

√
2 0 0 0 6 −6 0 0

3
√
2 −3

√
2 0 3

√
2 −3

√
2 0 0 0 −6 6 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where a = −8 cos( 2π9 ), b = 4
√
3 sin

(
π
9

)−4 cos
(

π
9

)
, c = 8 cos

(
π
9

)
are the three roots

of −64 − 48x + x3.
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