Problem set 1- due September 9. Write clear and complete solutions for each problem. You may send them to the grader Gavin Glenn (email: glenng at purdue dot edu) and cc me (preferred method), or hand it to me in class. Please make your writing clearly legible.

1a) Denote by \mathbb{R} the set of real numbers. An open interval is a subset $D \subset \mathbb{R}$ such that there exists $a, b \in \mathbb{R}, a<b$, and

$$
D=(a, b)=\{y \in \mathbb{R} \mid a<y<b\} .
$$

In a one-variable calculus course continuity is usually defined as follows:
Let D be an open interval. A function $f: D \rightarrow \mathbb{R}$ is said to be continuous at $c \in D$ if for any given real number $\epsilon>0$ there exists a real number $\delta>0$ such that $x \in D$ and $|x-c|<\delta$ implies $|f(x)-f(c)|<\epsilon$. We say f is continuous if it is continuous at all $c \in D$.

If D is an open interval and $f: D \rightarrow \mathbb{R}$ a function, prove the following are equivalent:
i) f is continuous at $c \in D$
ii) For any open interval $(a, b) \subset \mathbb{R}$ containing $f(c)$ there exists another open interval $\left(a^{\prime}, b^{\prime}\right) \subset D$ containing c such that $f\left(\left(a^{\prime}, b^{\prime}\right)\right) \subset(a, b)$.
iii) For any open interval $(a, b) \subset \mathbb{R}$ containing $f(c)$, there exists some open interval $\left(a^{\prime}, b^{\prime}\right) \subset$ $f^{-1}((a, b))$ containing c.

1b) Let \mathcal{T} be the standard topology on \mathbb{R}. Prove that $f: D \rightarrow \mathbb{R}$ is continuous if and only if for any open set $U \in \mathcal{T}$ we have $f^{-1}(U) \in \mathcal{T}$.

2a) Suppose X is a set and $\left\{\mathcal{T}_{\alpha}\right\}_{\alpha \in J}$ is a collection of topologies on X indexed by some set J. Is the intersection

$$
\bigcap_{\alpha \in J} \mathcal{T}_{\alpha}
$$

a topology on X ? If yes, explain with a proof, if not give a counterexample.
2b) Suppose \mathcal{T} and \mathcal{T}^{\prime} are two topologies on a set X. Is the union $\mathcal{T} \cup \mathcal{T}^{\prime}$ a topology on X ? If yes, explain with a proof, if not give a counterexample.

Exercises from Munkres: 13.1, 13.3, 13.8, 16.1, 16.3, 16.4, 16.6, 16.9, 16.10.

