Problem set 5- due November 4. Write clear and complete solutions for each problem. You may send them to the grader Gavin Glenn (email: glenng at purdue dot edu) and cc me (preferred method), or hand it to me in class. Please make your writing clearly legible.

1) Show \mathbb{R} is homeomorphic to $(0,+\infty)$. Show \mathbb{R} is not homeomorphic to $[0,+\infty)$.

Hint: For the latter, see what happens if you remove a point from each of these spaces.
2) Let $S^{1}=\left\{x \times y \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ be the circle with subspace topology.
a) Prove S^{1} is not homeomorphic to an open interval.
b) Prove S^{1} is not homeomorphic to a closed interval.
3) Use the intermediate value theorem to show that if $f: S^{1} \rightarrow \mathbb{R}$ is a continuous map then there exists a point $x \in S^{1}$ such that $f(x)=f(-x)$. In other words, there will be always two antipodal points in the equator of the earth with the same temperature :)

Exercise 23.3, 23.5, 23.6, 23.7

