Problem set 7- This assignment will not be collected, but its content will be on the final.

1) Let X be a space and $x_{0} \in X$ a point. The underlying set of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ can be understood as the set of basepoint-preserving homotopy classes of maps of $\left(S^{1}, b\right) \rightarrow\left(X, x_{0}\right)$ from the circle S^{1} with basepoint $b=(1,0)$ into $\left(X, x_{0}\right)$. Consider the set $\left[S^{1}, X\right]$ of homotopy classes of maps $S^{1} \rightarrow X$ with no restrictions on basepoints. There is a natural map

$$
\psi: \pi_{1}\left(X, x_{0}\right) \rightarrow\left[S^{1}, X\right] .
$$

Prove that if X is path-connected then
a) ψ is surjective
b) for all loops α and β in X based at $x_{0}, \psi([\alpha])=\psi([\beta])$ is and only of $[\alpha]$ and $[\beta]$ are conjugate in $\pi_{1}\left(X, x_{0}\right)$ (i.e. there exists some $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$ such that $[\alpha]=[\gamma]^{-1} *[\beta] *[\gamma]$.)
2) Prove that for any space X the following conditions are equivalent:
a) Every map from the circle S^{1} into X is homotopic to a constant map
b) Every map from the circle S^{1} into X extends to a map from the disk D^{2} into X
c) $\pi_{1}\left(X, x_{0}\right)=0$ for all $x_{0} \in X$.
3) Prove that for any homomorphism of groups $\phi: \pi_{1}\left(S^{1}, b\right) \rightarrow \pi_{1}\left(S^{1}, b\right)$ you can find a continuous map $f:\left(S^{1}, b\right) \rightarrow\left(S^{1}, b\right)$ such that ϕ is induced by f, i.e. $f_{*}=\phi$.
4) Let X be a space, $A \subset X$ a subspace and $x_{0} \in A$.
a) Give an example of some X and A such that the inclusion map $i: A \rightarrow X$ induces a map $\pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ which is not injective.
b) Recall that a retraction from a space X into a subspace $A \subset X$ is a map $r: X \rightarrow A$ such that the restriction $\left.r\right|_{A}: A \rightarrow A$ is the identity map. Prove that if there is a retraction $r: X \rightarrow A$ then the inclusion map $i: A \rightarrow X$ induces an injective map $\pi_{1}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$.
c) Prove there are no retractions $r: X \rightarrow A$ when:
i) $X=\mathbb{R}^{3}$ and A is any subspace homeomorphic to S^{1}.
ii) $X=S^{1} \times D^{2}$ (the solid torus) and $A=S^{1} \times S^{1}$ (the boundary surface of the solid torus)
5) Suppose E is a path connected space and B is a simply connected space. Prove that any covering map $p: E \rightarrow B$ is a homeomorphism.
6) a) Construct a deformation retract from $\mathbb{R}^{n}-\mathbf{0}$ to $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$. Compute $\pi_{1}\left(\mathbb{R}^{n}-\mathbf{0}\right)$.
b) Let p_{1} and p_{2} be two distinct points in \mathbb{R}^{3}. Argue why $\mathbb{R}^{3}-\left\{p_{1}, p_{2}\right\}$ is simply connected.
c) Let n be a positive integer and p_{1}, \ldots, p_{n} a sequence of n distinct points on the 2 -sphere S^{2}. Let $X=S^{2}-\left\{p_{1}, \ldots, p_{n}\right\}$. Calculate $\pi_{1}(X, x)$ for a choice of basepoint $x \in X$.

