When we did homogeneous linear ODEs,
if we got a complex conjugate root pair

$$r = p \pm qi$$
, then originally we thought to use sol.
 $x(t) = c_1 e^{(p+qi)t} + c_2 e^{(p-qi)t}$
as a general solution. However, we
then expanded
 $x(t) = c_1 e^{(p+qi)t} + c_2 e^{(p-qi)t}$
 $= c_1 e^{pt} (\cos(qt) + i\sin(qt))$
 $+ c_2 e^{pt} (\cos(qt) - i\sin(qt))$
 $= (c_1 + c_2) e^{pt} \cos(qt) + i(c_1 - c_2) e^{pt} \sin(qt),$
 $= :\lambda$
and then later just jump to solution
 $x(t) = A e^{pt} \cos(qt) + B e^{pt} \sin(qt).$
Idea: with conjugate root pair $p \pm qi$,
we can get the same general solution
by using the real and imaginary parts
of the single "solution" $e^{(p+qi)t}$
complex number $\lambda = (P + Qi)$
 $real imaginary parts
 $real imaginary part$$

So, going back to conjugate root pair $p \pm qi$, we can get the same general solution as before as follows: Start with single solution $\tilde{x}(t) = e^{(p+qi)t} = 2$ $c = e^{pt} cos(qt) + ie^{pt} sin(qt)$ $x_1(t) := Re[\tilde{x}(t)]$ $x_2(t) := Im[\tilde{x}(t)]$.

Then linear combinations

$$A \times_1(t) + B \times_2(t)$$

= $A e^{Pt} \cos(qt) + B e^{Pt} \sin(qt)$
produce the same general solutions as
when we combined

$$c_1 e^{(p+q_i)t} + c_2 e^{(p-q_i)t}$$

Starting point: Find solutions to the
system
$$\int x_1' = 4x_1 - 3x_2$$
 $\underline{x}' = A\underline{x}$
 $\begin{pmatrix} x_2' = 3x_1 + 4x_2 & A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$
1) $|A - AI| = 0 \implies \begin{bmatrix} 4 - \lambda & -3 \\ 3 & 4 - \lambda \end{bmatrix} = (4 - \lambda)^2 + 9 = 0$
 $\implies A = 4 \pm 3i$.
2) Eigenvector for $\lambda = 4 + 3i$:
Solve $(A - (4 + 3i)I) \begin{bmatrix} b \\ a \end{bmatrix} = 0$
 $\begin{bmatrix} -3i & -3 \\ 3 & -3i \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$
 $R_2 \rightarrow R_2 + (-i)R_1 \begin{bmatrix} -3i & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$
 $-3ia + -3b = 0$
 $a = ib$,
so solutions are $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ib \\ b \end{bmatrix} = b \begin{bmatrix} i \\ i \end{bmatrix}$,
so choose $\underline{v}_1 = \begin{bmatrix} i \\ a \end{bmatrix}$ as eigenvector for $\underline{\lambda} = 4 + 3i = \overline{\lambda}$,
we know an eigenvalue is $4 - 3i = \overline{4} + 3i = \overline{\lambda}$,
we know an eigenvector for $\overline{\lambda}$ will be \overline{v}_1 ,
i.e. $\underline{v}_2 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.
Unstead of combining solutions
 $e^{(4 + 3i)t} \begin{bmatrix} i \\ 1 \end{bmatrix} + e^{(4 - 3i)t} \begin{bmatrix} -i \\ -i \end{bmatrix}$,
we can get the same general solution

using the Re and Im parts of the
single solution
$$e^{(4+3i)t}\begin{bmatrix}i\\1\end{bmatrix} =: \tilde{I}(t)$$

 $\tilde{I}(t) = e^{4t}(\cos(3t) + i\sin(3t))\begin{bmatrix}i\\1\end{bmatrix}$
 $= e^{4t}\begin{bmatrix}i\cos(9t) - \sin(3t)\\\cos(3t) + i\sin(3t)\end{bmatrix}$
 $\tilde{X}(t) = e^{4t}\begin{bmatrix}-\sin(3t)\\\cos(3t)\end{bmatrix} + ie^{4t}\begin{bmatrix}\cos(3t)\\\sin(3t)\end{bmatrix}$
 $X_1 := Re[\tilde{X}(t)]$
 $X_2 := Im[\tilde{X}(t)]$
General solutron for $X' = \begin{bmatrix}4 - 3\\3 + \end{bmatrix}X$
will be
 $X(t) = c_1 X_1(t) + c_2 X_2(t)$
 $= c_1 e^{4t}\begin{bmatrix}-\sin(3t)\\\cos(3t)\end{bmatrix} + c_2 e^{4t}\begin{bmatrix}\cos(3t)\\\sin(3t)\end{bmatrix}$
 $= \begin{bmatrix}-c_1 e^{4t}\sin(3t) + c_2 e^{4t}\cos(3t)\\c_1 e^{4t}\cos(3t) + c_2 e^{4t}\sin(3t)\end{bmatrix}$
 $X_1(t) = \begin{bmatrix}-e^{4t}\sin(3t) + c_2 e^{4t}\sin(3t)\\c_1 e^{4t}\cos(3t)\end{bmatrix} + X_2(t) = \begin{bmatrix}e^{4t}\cos(3t)\\e^{4t}\sin(3t)\end{bmatrix}$

are the real-valued solutions for the system.

