Equations can fall into multiple categories of the above. For example, though <u>linear</u> eqs aren't listed above, since we didn't solve them via substitution, we see that an equation like $y' + \frac{2\pi}{\pi^2 + 1} y = 2\pi$

is a linear equation, and is a Bernoulli equation (with n=0, so that $y^n=1$) 2) Similarly, it is quite possible to have an equation that is both Bernoulli and homogeneous. For example: $y' - \frac{3}{2}y = \frac{y'}{x^2}$ On the one hand, we see that this is $y' + P(gx) = Q(x) y^{2} \begin{pmatrix} \underline{P}(x) = -\frac{3}{2} \\ Q(x) = \frac{1}{2} \end{pmatrix},$ So it is <u>Bernoulli</u> (n=2). On the other hand, we have $y' = 3(\frac{4}{2}) + (\frac{4}{2})^{2}$, $:= F(\frac{4}{2}),$ where $F(\cdot) = 3(\cdot) + (\cdot)^2$, so this is also a homogeneous equation. (in this case, either substitution $V = y' - \overline{n} = y^{-1}$ or V= Y/x will work and get you the same answer). 3) Remember, that you can check if an equation

is homogeneous by checking to see if the <u>degrees</u> of all terms match on both sides (remember that we ignore dy this, since it has degree 0)

1.6 Problems

Find general solutions of the differential equations in Problems 1 through 30. Primes denote derivatives with respect to x throughout. **1.** (x + y)y' = x - y **2.** $2xyy' = x^2 + 2y^2$ **3.** $xy' = y + 2\sqrt{yy}$ **4.** (x - y)y' = x + y

45 47

49 51

1.	(x + y)y - x - y	2. $2xyy = x + 2y$	
3.	$xy' = y + 2\sqrt{xy}$	4. $(x - y)y' = x + y$	53
5.	x(x+y)y' = y(x-y)	6. $(x+2y)y' = y$	55
7.	$xy^2y' = x^3 + y^3$	8. $x^2y' = xy + x^2e^{y/x}$	
9.	$x^2y' = xy + y^2$	10. $xyy' = x^2 + 3y^2$	56
11.	$(x^2 - y^2)y' = 2xy$		50
12.	$xyy' = y^2 + x\sqrt{4x^2 + y^2}$		
13.	$xy' = y + \sqrt{x^2 + y^2}$		
14.	$yy' + x = \sqrt{x^2 + y^2}$		
15.	x(x + y)y' + y(3x + y) = 0		
16.	$y' = \sqrt{x + y + 1}$	17. $y' = (4x + y)^2$	57
18.	(x+y)y'=1	19. $x^2y' + 2xy = 5y^3$	
20.	$y^2y' + 2xy^3 = 6x$	21. $y' = y + y^3$	50
22.	$x^2y' + 2xy = 5y^4$	23. $xy' + 6y = 3xy^{4/3}$	29
24.	$2xy' + y^3e^{-2x} = 2xy$		
25.	$y^{2}(xy' + y)(1 + x^{4})^{1/2} = x$		
26.	$3y^2y' + y^3 = e^{-x}$		59
27.	$3xy^2y' = 3x^4 + y^3$		
28.	$xe^y y' = 2(e^y + x^3 e^{2x})$		
29.	$(2x\sin y\cos y)y' = 4x^2 + \sin y$	$n^2 y$	
30.	$(x+e^y)y'=xe^{-y}-1$		

1)
$$(x+y)y' = x-y$$

 $y' = \frac{x-y}{x+y} = \frac{x(1-\frac{y}{x})}{x(1+\frac{y}{x})} = \frac{1-\frac{y}{x}}{1+\frac{y}{x}},$
so this is homogeneous. It's not Bernoulli
since we can't split the fraction to make
 $y' + P(x)y = Q(x)y^{N}$

2)
$$2 \times y \ y' = \chi^2 + 2y^2$$

 $y' = \frac{\chi^2 + 2y^2}{2 \times y} \leftarrow degree 2$
 $= \frac{\chi^2 (1 + 2y^2/\chi^2)}{\chi^2 (2y/\chi)}$
 $= \frac{1 + 2(y/\chi)^2}{2(y/\chi)} = F(y/\chi),$

So this is homogeneous. On the other hand

$$y' = \frac{x^{2} + 2y^{2}}{2xy} = \frac{x}{2y} + \frac{y}{x} = \frac{1}{2}xy^{-1} + \frac{1}{x}y$$

$$\Rightarrow y' - \frac{1}{x}y = \frac{1}{2}xy^{-1},$$
So $y' + P(x)y = Q(x)y^{n}$ $\begin{pmatrix} P(x) = -\frac{1}{x} \\ Q(x) = \frac{x}{2} \end{pmatrix}$
So this is Bernoulli too. again, eithe
Aubstitutron $v = \frac{y}{x}$ or $v = \frac{y^{1-n} = y^{2}}{y^{2}}$ will work.
3) $xy' = \frac{y}{y} + 2\sqrt{xy}$.
 $y' = \frac{y}{x} + 2\sqrt{xy}$
 $y' = \frac{y}{x} + 2\sqrt{\frac{xy}{x^{2}}}$
 $y' = \frac{y}{x} + 2\sqrt{\frac{y}{x}}$
 $y' = \frac{y}{x} + 2\sqrt{\frac{y}{x^{2}}}$
 $y' = \frac{y}{x} + 2\sqrt{\frac{y}{x^{2}}}$
 $y' = \frac{y}{x} + 2\sqrt{\frac{y}{x}}$
 y'

J