Complex numbers basics

Solving the equation $x^2 + 1 = 0$, we see that $x = \pm \sqrt{-1}$. Since $\sqrt{-1}$ isn't well-defined as a "real" number, we define the "imaginary number"

$$i = \sqrt{-1}$$
,

so that the roots of $x^2 + 1 = 0$ are $x = \pm i$. With this, we can actually factor

$$x^{2} + 1 = (x - i)(x + i).$$

Remark. Some engineering and physics texts use $j = \sqrt{-1}$ instead of i.

Definition. Complex numbers, usually denoted with z or w, are numbers of the form

$$z = a + bi$$
 (and/or $z = x + yi$), where $a, b \in \mathbb{R}$ (or $x, y \in \mathbb{R}$).

If z = a + bi, we say that a and b are the real part (of z) and the imaginary part of z, respectively. Symbollically these are written with

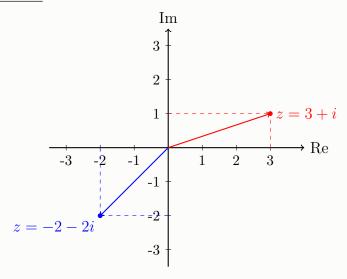
$$z = a + bi \implies \operatorname{Re}(z) = a \text{ and } \operatorname{Im}(z) = b.$$

Frequently you may see "gothic" letters used instead, i.e., writing

$$\Re(z) = \operatorname{Re}(z)$$
 and $\Im(z) = \operatorname{Im}(z)$.

Naturally, the complex number 0 + 0i is usually just written as "0".

We associate real numbers to points on a line, and complex numbers to points on a plane, called the Complex Plane:



Operations with complex numbers:

$$a_1 + b_1 i = a_2 + b_2 i \iff a_1 = a_2 \text{ and } b_1 = b_2.$$

Ex:
$$2 + 3i = 2 + 3i$$
, $1 + 2i \neq 1 + 5i$.

(2) (Addition) Done "componentwise":

$$a_1 + b_1 i + a_2 + b_2 i = (a_1 + a_2) + (b_1 + b_2)i.$$

 $(3+7i) + (2+5i) = 5+12i,$
 $(1-\sqrt{3}i) + (2+\sqrt{2}i) = 3 + (\sqrt{2}-\sqrt{3})i.$

(3) (Multiplication) This is essentially just "foil-ing" using $i^2 = -1$:

$$(a_1 + b_1 i)(a_2 + b_2 i) = a_1 a_2 + (a_1 b_2 + a_2 b_1)i + b_1 b_2 i^2$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i.$$

$$(2 + 3i)(1 + i) = 2 + 2i + 3i + 3i^2 = -1 + 5i,$$

$$(1 + \sqrt{3}i)(1 - \sqrt{3}i) = 1 - (\sqrt{3})^2 i^2 = 4.$$

(4) (Absolute value) Sometimes called the "<u>norm</u>"; this is the same as the vector length from (0,0) to (a,b):

$$z = a + bi \implies |z| \stackrel{\text{DEF}}{=} \sqrt{a^2 + b^2}$$

- (5) (Conjugation) If z = a + bi, then $\bar{z} \stackrel{\text{DEF}}{=} a bi$ is the conjugate of z.
 - $\overline{\text{(a) When speaking we might say "z-bar" for } \bar{z}$.
 - (b) In essence, conjugation flips $i \to -i$, which flips numbers across the x-axis.

$$z = -2 + 3i \implies \bar{z} = -2 - 3i, \qquad z = 3 + i \implies \bar{z} = 3 - i.$$

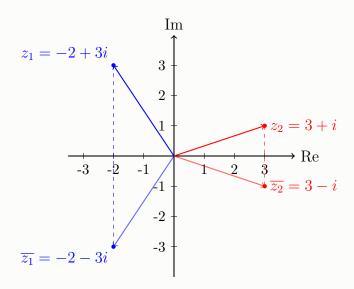


FIGURE 1. Conjugates

(6) (Division, by example) Generally we don't like to have imaginary numbers in denominators, so we can convert something like z = 1/(3+4i) back into a usual complex number. If α, β make

$$\frac{1}{3+4i} = \alpha + \beta i$$
, then $(3+4i)(\alpha + \beta i) = (3+4i)\frac{1}{3+4i} = 1+0i$.

Then, expanding $(3+4i)(\alpha+\beta i)$, we have

$$(3+4i)(\alpha+\beta i) = 1+0i \implies (3\alpha-4\beta) + (3\beta+4\alpha)i = 1+0i$$

$$\Longrightarrow \begin{cases} 3\alpha-4\beta=1\\ 4\alpha+3\beta=0 \end{cases} \implies \cdots \implies \begin{cases} \alpha=\frac{3}{25}\\ \beta=-\frac{4}{25} \end{cases}.$$

Thus, in total we have

$$\frac{1}{3+4i} = \frac{3}{25} - \frac{4}{25}i.$$

It would be tedious to do this each time; thankfully there is a general formula:

$$\frac{1}{a+bi} = \left(\frac{a}{a^2+b^2}\right) + \left(\frac{-b}{a^2+b^2}\right)i = \frac{a-bi}{a^2+b^2}.$$

(7) (A very useful formula): Looking at the formula for $\frac{1}{a+bi}$ just above, we see

$$z = a + bi$$
 \Longrightarrow $\frac{1}{z} = \frac{1}{a + bi} = \frac{a - bi}{a^2 + b^2} = \frac{\overline{z}}{|z|^2}.$

This fact that $1/z = \bar{z}/|z|^2$ is a super useful formula for complex numbers, and is used frequently in many contexts/applications.

We could verify it another way "directly":

$$z = a + bi \implies z\bar{z} = (a + bi)(a - bi) = a^2 + (ab - ab)i - b^2i^2$$
$$= a^2 + b^2$$
$$= |z|^2.$$

Thus

$$z\bar{z} = |z|^2$$
, which means that $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$.