These few pages collect much of the vocabulary we have seen around linear dependence and independence.

Linear dependence (3 vectors)

Let **u**, **v**, and **w** be vectors all of the same size, and let

$$A = \begin{bmatrix} u & v & w \end{bmatrix}.$$

Definition: \mathbf{u} , \mathbf{v} , and \mathbf{w} are <u>linearly dependent</u> if *at least one* of them is a linear combination of the others.

The following statements are all equivalent expressions of the idea/definition of linear dependence:

- (1) The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a "linearly dependent set".
- (2) At least one of \mathbf{u} , \mathbf{v} , and \mathbf{w} is in the span of the other two. (ex: $\mathbf{u} \in \text{span}\{\mathbf{v}, \mathbf{w}\}$, or $\mathbf{v} \in \text{span}\{\mathbf{u}, \mathbf{w}\}$, etc..)
- (3) There are scalars $(a, b, c) \neq (0, 0, 0)$, such that the linear combination

$$a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}.$$

(4) The vector equation $\mathbf{A}\mathbf{x} = \mathbf{0}$,

$$a.k.a.$$
 $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$

has some solution $\mathbf{x} = (x_1, x_2, x_3)$ other than the <u>trivial solution</u> $\mathbf{x} = (0, 0, 0) = \mathbf{0}$.

- (5) The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is <u>not</u> a *basis* for span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$. [Note: By definition, $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$; they don't make a basis because they are lin. depen.]
- (6) The dimension $\dim(\operatorname{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}) < 3$.
- (7) Because $\mathbf{u}, \mathbf{v}, \mathbf{w}$ make up the columns of \mathbf{A} , one has $\dim(\operatorname{col}(\mathbf{A})) < 3$. This is the same as saying $\operatorname{rank}(\mathbf{A}) < 3$.
- (8) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is *not* a basis for the set $col(\mathbf{A})$.
- (9*) The determinant $\det(\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}) = 0$.

[Linear independence on next page]

^{*}Only works if $[\mathbf{u} \quad \mathbf{v} \quad \mathbf{w}]$ is a square matrix (so, in this case a 3×3).

Linear independence (3 vectors)

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors all of the same size, and let

$$A = \begin{bmatrix} u & v & w \end{bmatrix}$$
.

Definition: \mathbf{u} , \mathbf{v} , and \mathbf{w} are <u>linearly independent</u> if *no one* of them is a linear combination of the others.

The following statements are all equivalent to the idea of linear independence, and are all essentially "negations" of the above "dependence statements":

- (1) The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a "linearly independent set".
- (2) No one of \mathbf{u} , \mathbf{v} , and \mathbf{w} is in the span of the other two.
- (3) The *only* tuple of scalars (a, b, c) which makes the linear combination

$$a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$$

is the tuple (a, b, c) = (0, 0, 0).

(4) The *only* solution to the vector equation $\mathbf{A}\mathbf{x} = \mathbf{0}$,

$$a.k.a.$$
 $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$

is the trivial solution $\mathbf{x} = (0, 0, 0) = \mathbf{0}$.

- (5) The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
- (6) The dimension $\dim(\text{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}) = 3$ (because $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ makes a basis for the span, and all bases of a given set must be have equal size).
- (7) Because $\mathbf{u}, \mathbf{v}, \mathbf{w}$ make up the columns of \mathbf{A} , one has $\dim(\operatorname{col}(\mathbf{A})) = 3$. This is the same as saying $\operatorname{rank}(\mathbf{A}) = 3$.
- (8) $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}\ is$ a basis for the set $col(\mathbf{A})$.
- (9*) The determinant $\det([\mathbf{u} \ \mathbf{v} \ \mathbf{w}]) \neq 0$.

[Linear dependence for more vectors on next page]

^{*}Only works if $\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$ is a square matrix (so, in this case a 3×3).

Linear dependence (any number of vectors)

Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be vectors all of the same size (say $n \times 1$, so they are in \mathbb{R}^n), and let

$$\mathbf{A} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}.$$

Definition: $\mathbf{v}_1, \dots, \mathbf{v}_k$ are <u>linearly dependent</u> if at least one of them is a linear combination of the others.

- (1) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a "linearly dependent set".
- (2) At least one of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is in the span of the others. (ex: $\mathbf{v}_2 \in \text{span}\{\mathbf{v}_1, \mathbf{v}_5\}$, or $\mathbf{v}_1 \in \text{span}\{\mathbf{v}_2, \dots, \mathbf{v}_k\}$, etc..)
- (3) There is a tuple of scalars $(x_1, \ldots, x_k) \neq (0, \ldots, 0)$ (k-many 0s), such that the linear combination

$$x_1\mathbf{v}_1 + \dots + x_k\mathbf{v}_k = \mathbf{0}.$$

(4) The vector equation $\mathbf{A}\mathbf{x} = \mathbf{0}$,

$$a.k.a.$$
 $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ $(\mathbf{A}_{n \times k} \text{ and } \mathbf{x}_{k \times 1} \text{ means } \mathbf{0} \text{ is } n \times 1)$

has some solution $\mathbf{x} = (x_1, \dots, x_k)$ other than the <u>trivial solution</u> $\mathbf{x} = (0, \dots, 0) = \mathbf{0}$.

- (5) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is <u>not</u> a basis for span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. [By definition, $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a spanning set for span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$; they don't make a basis because they are lin. depen.]
- (6) The dimension $\dim(\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}) < k$.
- (7) Because $\mathbf{v}_1, \dots, \mathbf{v}_k$ make up the columns of \mathbf{A} , one has $\dim(\operatorname{col}(\mathbf{A})) < k$. This is the same as saying $\operatorname{rank}(\mathbf{A}) < k$.
- (8) $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is *not* a basis for the set $\operatorname{col}(\mathbf{A})$.
- (9*) The determinant $\det(\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}) = 0.$

[Linear independence on next page]

^{*}Only works if $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$ is a square matrix.

Linear independence (any number of vectors)

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors all of the same size (say $n \times 1$, so they are in \mathbb{R}^n), and let

$$\mathbf{A} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}.$$

Definition: $\mathbf{v}_1, \dots, \mathbf{v}_k$ are <u>linearly independent</u> if *no one* of them is a linear combination of the others.

The following are all equivalent to the idea of linear independence, and are all essentially "negations" of the above "dependence statements":

- (1) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a "linearly independent set".
- (2) No one of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is in the span of the others.
- (3) The only tuple of scalars (x_1, \ldots, x_k) which makes the linear combination

$$x_1\mathbf{v}_1 + \dots + x_k\mathbf{v}_k = \mathbf{0}$$

is the tuple $(x_1, ..., x_k) = (0, ..., 0)$ (k-many 0s).

(4) The *only* solution to the vector equation $\mathbf{A}\mathbf{x} = \mathbf{0}$,

$$a.k.a.$$
 $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ $(\mathbf{A}_{n \times k} \text{ and } \mathbf{x}_{k \times 1} \text{ means } \mathbf{0} \text{ is } n \times 1)$

is the <u>trivial solution</u> $\mathbf{x} = (0, \dots, 0) = \mathbf{0}$.

- (5) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis for span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.
- (6) The dimension $\dim(\text{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}) = k$ (because $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ makes a basis for the span, and all bases of a given set must be have equal size).
- (7) Because $\mathbf{v}_1, \dots, \mathbf{v}_k$ make up the columns of \mathbf{A} , one has $\dim(\operatorname{col}(\mathbf{A})) = k$. This is the same as saying $\operatorname{rank}(\mathbf{A}) = k$.
- (8) $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ is a basis for the set $\operatorname{col}(\mathbf{A})$.
- (9*) The determinant $\det(\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}) \neq 0$.

^{*}Only works if $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$ is a square matrix.