These few pages collect much of the vocabulary we have seen around linear dependence
and independence.

Linear dependence (3 vectors)
Let u, v, and w be vectors all of the same size, and let
A= [u \% w}.

Definition: u, v, and w are linearly dependent if at least one of them is a linear combi-
nation of the others.

The following statements are all equivalent expressions of the idea/definition of linear de-
pendence:

(1) The set {u,v,w} is a “linearly dependent set”.

(2) At least one of u, v, and w is in the span of the other two. (ex: u € span{v,w},
or v € span{u, w}, etc..)

(3) There are scalars (a, b, c) # (0,0,0), such that the linear combination
au+bv 4+ cw = 0.
(4) The vector equation Ax = 0,

I 0
a.k.a. [u A W} x| = (0],
T3 0

has some solution x = (x1, z3, x3) other than the trivial solution x = (0,0,0) = 0.

(5) The set {u,v,w} is not a basis for span{u, v,w}. [Note: By definition, {u,v,w} is a
spanning set for span{u, v, w}; they don’t make a basis because they are lin. depen.]

(6) The dimension dim(span{u,v,w}) < 3.

(7) Because u, v, w make up the columns of A, one has dim(col(A)) < 3. This is the
same as saying rank(A) < 3.

(8) {u,v,w} is not a basis for the set col(A).
(9%) The determinant det([u v w]) = 0.

[Linear independence on next page]

*Only works if [u v w] is a square matrix (so, in this case a 3 x 3).
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Linear independence (3 vectors)
Let u, v, and w be vectors all of the same size, and let
A= [u v w}.

Definition: u, v, and w are linearly independent if no one of them is a linear combination
of the others.

The following statements are all equivalent to the idea of linear independence, and are all
essentially “negations” of the above “dependence statements”:

(1) The set {u,v,w} is a “linearly independent set”.
(2) No one of u, v, and w is in the span of the other two.
(3) The only tuple of scalars (a, b, ¢) which makes the linear combination
au+bv+cw =0
is the tuple (a,b,c) = (0,0,0).
(4) The only solution to the vector equation Ax = 0,

I 0
a.k.a. [u v w} ro| = (0],
T3 0

is the trivial solution x = (0,0,0) = 0.
(5) The set {u,v,w} is a basis for span{u, v, w}.

(6) The dimension dim(span{u, v,w}) = 3 (because {u,v,w} makes a basis for the span, and
all bases of a given set must be have equal size).

(7) Because u,v,w make up the columns of A, one has dim(col(A)) = 3. This is the
same as saying rank(A) = 3.

(8) {u,v,w} is a basis for the set col(A).
(9%) The determinant det([u v w]) # 0.

[Linear dependence for more vectors on next page]

*Only works if [u v w] is a square matrix (so, in this case a 3 x 3).



Linear dependence (any number of vectors)

Let vyq,..., v be vectors all of the same size (say n x 1, so they are in R™), and let
A= [Vl Vk}.
Definition: v, ..., v, are linearly dependent if at least one of them is a linear combination

of the others.

(1) The set {vy,...,vg} is a “linearly dependent set”.

(2) At least one of vy,..., vy is in the span of the others. (ex: vo € span{vy,vs}, or
vy € span{vy,...,Vg}, etc..)

(3) There is a tuple of scalars (z1,...,xx) # (0,...,0) (k-many 0s), such that the linear
combination

v+ -+ apve = 0.

(4) The vector equation Ax = 0,

T 0
a.k.a. [Vl Vk} = (A, xr and Xjx1 means 0 is n x 1)
Ty 0
has some solution x = (x4, ..., xy) other than the trivial solution x = (0,...,0) = 0.
(5) The set {vy,..., vy} is not a basis for span{vy,...,vi}. [By definition, {vi,...,vg} is
a spanning set for span{vy,...,v}; they don’t make a basis because they are lin. depen.]

(6) The dimension dim(span{vy,...,vg}) < k.

(7) Because vy, ..., v, make up the columns of A, one has dim(col(A)) < k. This is
the same as saying rank(A) < k.

(8) {v1,..., vk} is not a basis for the set col(A).
(9%) The determinant det([v1 --- wvi]) =0.

[Linear independence on next page]

*Only works if [vl e vk} is a square matrix.
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Linear independence (any number of vectors)

Let vyq,..., v be vectors all of the same size (say n x 1, so they are in R™), and let
A= [Vl Vk}.
Definition: vq,...,v; are linearly independent if no one of them is a linear combination

of the others.

The following are all equivalent to the idea of linear independence, and are all essentially
“negations” of the above “dependence statements”:

(1) The set {vy,...,vi} is a “linearly independent set”.
(2) No one of vyq,..., vy is in the span of the others.
(3) The only tuple of scalars (x1,...,x;) which makes the linear combination
Tivi+ -+ apvi =0
is the tuple (x1,...,25) = (0,...,0) (k-many Os).
(4) The only solution to the vector equation Ax = 0,
T 0
a.k.a. [vl vk} = (A, xr and Xgx1 means 0 is n x 1)
Ty 0

is the trivial solution x = (0,...,0) = 0.

(5) The set {vy,...,vi} is a basis for span{vy,...,vi}.

(6) The dimension dim(span{vy,...,vi}) = k (because {vi,...,v;} makes a basis for the
span, and all bases of a given set must be have equal size).

(7) Because vy,..., v, make up the columns of A, one has dim(col(A)) = k. This is
the same as saying rank(A) = k.

(8) {v1,..., vk} is a basis for the set col(A).
(9%) The determinant det([vy --- vi]) #0.

*Only works if [vl e vk} is a square matrix.
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