Clarifying the Wronskian

Recall that
$$\omega(y_1, y_2, y_3) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \end{vmatrix}$$
.

By its definition, if y_1, y_2, y_3 are functions of x, then $\omega(y_1, y_2, y_3)$ is also a function of x

We saw this in an example with 2 funcs.:

$$\omega(e^{x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{3x} \\ e^{x} & 3e^{3x} \end{vmatrix} = 3e^{4x} - e^{4x}$$
$$= 2e^{4x},$$

which is certainly a function of x. Thus, sometimes we might write $\omega(e^x, e^{3x})(x)$

to emphasize this dependence on a.

Similarly, with 3 functions we can write either $\omega(y_1, y_2, y_3)$ or $\omega(y_1, y_2, y_3)(x)$

The following is a good test-style question: If $f_1 = e^{3x}$, $f_2 = xe^{3x}$, $f_3 = x^2e^{3x}$, compute $W(f_1, f_2, f_3)(0)$.

For this, we want to evaluate $W(e^{3x}, xe^{3x}, x^2e^{3x})$ at the input x=0, so we first "setup" the Wronskian. $(x^2e^{3x})'=2xe^{3x}+3x^2e^{3x}=(2x+3x^2)e^{3x}$ $(x^2e^{3x})''=(2+6x)e^{3x}+(6x+9x^2)e^{3x}$ $=(2+|2x+9x^2)e^{3x}$

 $\omega(e^{3x}, \pi e^{3x}, \pi^{2}e^{3x})$ $= \begin{vmatrix} e^{3x} & xe^{3x} & x^{2}e^{3x} \\ 3e^{3x} & (1+3x)e^{3x} & (2x+3x^{2})e^{3x} \\ 9e^{3x} & (6+9x)e^{3x} & (2+12x+9x^{2})e^{3x} \end{vmatrix}$

Now, it would be quite tedious to expand this entire determinant, but in fact we don't exactly:

Because we only want the determinant at x=0, we plug in x=0, then compute the determinant.

So
$$e^{3x}$$
 xe^{3x} x^2e^{3x}
 $3e^{3x}$ $(1+3x)e^{3x}$ $(2x+3x^2)e^{3x}$
 $9e^{3x}$ $(6+9x)e^{3x}$ $(2+12x+9x^2)e^{3x}$

becomes

(expand along row 1)
$$3 \quad 1 \quad 0 = 1 \cdot \begin{vmatrix} 1 & 0 \\ 6 & 2 \end{vmatrix} + 0 \dots$$

$$=(2-0)=2$$

In total,

$$W(e^{3x}, xe^{3x}, xe^{3x})(0) = 2$$

The Wronskian and linear independence

The following theorem contains the core idea/fact about the Wronskian

Thm: Let I be some interval (e.g. $(0,\infty)$) $(-\frac{\pi}{2},\frac{\pi}{2})$, $(-\infty,\infty)$, etc.) and let y_1 , y_2 , y_3 be functions of x defined on said interval I.

1

The Wronskian W(ynyznyz), a.k.a.

function of x, also defined on I.

Case 1: If this resulting function $\omega(y_1, y_2, y_3)$ is the "0-function on I"," then y_1, y_2, y_3 are linearly dependent.

Case 2: If $\omega(y_1,y_2,y_3)$ (aka. $\omega(y_1,y_2,y_3)(x)$) is not the constant o function on $I_{,}^{**}$ then y_1,y_2,y_3 are linearly independent

* that is, the function with domain I and constant range O.

** to not be the constant \varnothing function on I, all you need is some x-value $x_o \in I$ for which $W(y_1, y_2, y_3)(x_o) \neq 0$

Naturally, the theorem holds similarly if you have

just two funcs. y 1, y 2, or four y 1, y 2, y 3, y 4, or five, etc... provided that you use the proper size/shape Wronskian. Ex: for four y 1, y 2, y 3, y 4, you use

y,	42	43	44			
	42	43	yá "	, and	so on	
yí'	42	43	44			
4"	42"	43"	44			