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Separate variables and use partial fractions to solve the initial value problem. Use either the exact solution or
a computer-generated slope field to sketch the graphs of several solutions of the given differential equation, and

highlight the indicated particular solution.
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Consider a rabbit population P(t) satisfying the logistic equation gt = aP- bP where|B =aP is the time rate at which

births bcur andiD = bP2 is the rate at which deaths nchalf the initial population is 240 rabbits and there are g births

per month and 12 deaths per month occurring at time t=0, how many months does it take for P(t) to reach 110% of -the
limiting population M?
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