Research Statement

Taylor Daniels

1 Introduction

The theory of integer partitions is classical and well developed, but is still an active area of research with a large number of open questions. Indeed, this basic notion of counting ways to write natural numbers n as sums of smaller natural numbers introduces a bevy of questions whose answers, both full and partial, have required tools such as modular forms, probability, and the Hardy-Littlewood method.

Explicitly, partitions of $n \in \mathbb{N}$ are tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $a_{1} \geq a_{2} \geq \ldots \geq a_{k}$ and $a_{1}+a_{2}+\cdots+a_{k}=n$. Using $\Pi[n]$ to denote the set of such partitions, the quantities $\mathfrak{p}(n):=\operatorname{card}(\Pi[n])$ are the (ordinary) partition numbers. Modern partition theory essentially originated in 1918 with Hardy and Ramanujan's famous asymptotic formulae for $\mathfrak{p}(n)$ as $n \rightarrow \infty$. Namely, in [14] they establish (in addition to stronger results) that

$$
\begin{equation*}
\log \mathfrak{p}(n) \sim \kappa \sqrt{n}, \quad \text { where } \kappa:=\pi \sqrt{2 / 3} \tag{1.1}
\end{equation*}
$$

and the relation $a(n) \sim b(n)$ indicates that $\lim _{n \rightarrow \infty} a(n) / b(n)=1$. At nearly the same time, the striking "Ramanujan congruences" were established. Namely, for all $n \geq 0$

$$
\mathfrak{p}(5 n+4) \equiv 0(\bmod 5), \quad \mathfrak{p}(7 n+5) \equiv 0(\bmod 7), \quad \text { and } \quad \mathfrak{p}(11 n+6) \equiv 0(\bmod 11)
$$

Recent years have seen a surge of interest in partition theory led by researchers including B. Berndt, A. Malik, R. C. Vaughan, and A. Zaharescu (see, e.g., [2, 9, 22, 23]). Here we discuss our work on both arithmetic and analytic aspects of the novel class of "signed" partition enumerations involving multiplicative $f: \mathbb{N} \rightarrow\{0, \pm 1\}$. Following this we discuss a few problems toward developing more general results on some families of signed partition numbers.

2 Past Work

Let $f: \mathbb{N} \rightarrow\{0, \pm 1\}$, and for $n \in \mathbb{N}$ and any partition $\pi=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \Pi[n]$ let

$$
f(\pi):=f\left(a_{1}\right) f\left(a_{2}\right) \cdots f\left(a_{k}\right)
$$

With this we define the signed partition numbers

$$
\begin{equation*}
\mathfrak{p}(n, f)=\sum_{\pi \in \Pi[n]} f(\pi) \tag{2.1}
\end{equation*}
$$

Definition (2.1) generalizes several classical partition-related quantities, e.g., with the constant function 1 one has $\mathfrak{p}(n)=\mathfrak{p}(n, 1)$, and with the indicator function $\mathbf{1}_{A}$ for $A \subset \mathbb{N}$, the quantities $\mathfrak{p}\left(n, \mathbf{1}_{A}\right)$ are the A-restricted partition numbers. Many examples and families of restricted partitions numbers are well studied (see, e.g., [1, 11]).

2.1 Arithmetic work; q-series and periodic vanishings

A sequence $\left(a_{n}\right)_{\mathbb{N}}$ vanishes on an arithmetic progression (or has a periodic vanishing) if one has $a_{m j+r}=0$ for some $m \in \mathbb{N}$, some $0 \leq r<m$, and all $j \geq 0$. In such a case we may say that a_{n} "vanishes for $n \equiv r(\bmod m)$ ". The past two decades have seen a boom of work on periodic vanishings in the coefficients of various q-series; we note $[3,4,17,18,20]$ as only a small portion of the extant literature.

Very recently I discovered and established two 10-periodic vanishings in sequences $(\mathfrak{p}(n, f))_{\mathbb{N}}$ related to the Legendre symbol $\chi_{5}(n):=\left(\frac{n}{5}\right)$; namely $\chi_{5}(n)$ is 1 (or -1$)$ when n is (or is not) a quadratic residue modulo 5 , and $\chi_{5}(n)$ is 0 when $5 \mid n$. In addition, for $n \in \mathbb{N}$ and any partition $\pi=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of n let

$$
\chi_{5}^{\dagger}(\pi)=(-1)^{k} \chi_{5}\left(a_{1}\right) \chi_{5}\left(a_{2}\right) \cdots \chi_{5}\left(a_{k}\right) .
$$

The primary result of [8] establishes the following 10-periodic vanishings in $\left(\mathfrak{p}\left(n, \chi_{5}\right)\right)_{\mathbb{N}}$ and $\left(\mathfrak{p}\left(n, \chi_{5}^{\dagger}\right)\right)_{\mathbb{N}}$.
Theorem 2.1. One has $\mathfrak{p}\left(10 j+2, \chi_{5}\right)=0$ and $\mathfrak{p}\left(10 j+6, \chi_{5}^{\dagger}\right)=0$ for all $j \geq 0$.
Two further relations on the above sequences are also demonstrated in [8].
Theorem 2.2. One has $\mathfrak{p}\left(10 j, \chi_{5}^{\dagger}\right)=\mathfrak{p}\left(10 j, \chi_{5}\right)$ and $\mathfrak{p}\left(10 j+8, \chi_{5}^{\dagger}\right)=-\mathfrak{p}\left(10 j+8, \chi_{5}\right)$ for all $j \geq 0$.

In [8], Theorems 2.1 and 2.2 are proven using the theory of q-series identities and extensive symbolic manipulations. To assist any readers, a Mathematica notebook further documenting and implementing these computations is available on our personal webpage. A heuristic explanation of the periodic vanishing demonstrated by the sequence $\left(\mathfrak{p}\left(n, \chi_{5}\right)\right)_{\mathbb{N}}$ is provided by the following asymptotic formula for $\mathfrak{p}\left(n, \chi_{5}\right)$.
Theorem 2.3 ([7, Thm. 1.7]). As $n \rightarrow \infty$ one has

$$
\begin{equation*}
\mathfrak{p}\left(n, \chi_{5}\right)=\mathfrak{a}_{5} n^{-3 / 4} \exp \left(\frac{1}{2} \kappa \sqrt{\frac{4}{5} n}\right)\left[1+(-1)^{n} \mathfrak{b}_{5}+\mathfrak{d}_{5} \cos \left(\frac{2 \pi}{5} n-\frac{\pi}{10}\right)+O\left(n^{-1 / 5}\right)\right] \tag{2.2}
\end{equation*}
$$

where

$$
\kappa=\pi \sqrt{\frac{2}{3}}, \quad \mathfrak{a}_{5}=\left(\frac{3+\sqrt{5}}{960}\right)^{1 / 4}, \quad \mathfrak{b}_{5}=\frac{3-\sqrt{5}}{2}, \quad \text { and } \quad \mathfrak{d}_{5}=\sqrt{2(5-\sqrt{5})} .
$$

In particular, ignoring the error term $O\left(n^{-1 / 5}\right)$ in (2.2) and considering the 10-periodic "signed" term

$$
\mathfrak{S}(n):=1+(-1)^{n}\left(\frac{3-\sqrt{5}}{2}\right)+\sqrt{2(5-\sqrt{5})} \cos \left(\frac{2 \pi}{5} n-\frac{\pi}{10}\right)
$$

it is surprising to find that

$$
\mathfrak{S}(2)=0 \quad \text { and } \quad \mathfrak{S}(n) \neq 0 \quad \text { for } 1 \leq n \leq 10 \text { with } n \neq 2
$$

This provides a soft explanation for the periodic vanishing seen in $\left(\mathfrak{p}\left(n, \chi_{5}\right)\right)_{\mathbb{N}}$. The surprising nature of this periodic vanishing is amplified by the following further result.
Theorem 2.4 ([7, Thm. 1.10]). For odd primes p, let $\chi_{p}(n)$ denote the Legendre symbol $\left(\frac{n}{p}\right)$. If $p \neq 5$ and $p \not \equiv 1(\bmod 8)$, then the sequence $\left(\mathfrak{p}\left(n, \chi_{p}\right)\right)_{\mathbb{N}}$ does not vanish on any arithmetic progression.

2.2 Asymptotic results on some $\mathfrak{p}(n, f)$

When f assumes both positive and negative values one expects these signs to cause cancellations in the sums $\mathfrak{p}(n, f)$. We recall the Möbius μ and Liouville λ functions from prime number theory: If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ with distinct primes p_{i} and all $a_{i} \geq 1$, then

$$
\lambda(n):=(-1)^{a_{1}+\cdots+a_{r}} \quad \text { and } \quad \mu(n):= \begin{cases}(-1)^{r} & \text { if all } a_{i}=1 \\ 0 & \text { otherwise }\end{cases}
$$

The following result is an immediate corollary of the main results of [6].
Theorem 2.5. For all $\varepsilon>0$, as $n \rightarrow \infty$ one has

$$
\begin{equation*}
\mathfrak{p}(n, \mu)=O\left(e^{(1+\varepsilon) \sqrt{n}}\right) \quad \text { and } \quad \mathfrak{p}(n, \lambda)=O\left(e^{\left(\frac{1}{2}+\varepsilon\right) \kappa \sqrt{n}}\right), \tag{2.3}
\end{equation*}
$$

where $\kappa=\pi \sqrt{2 / 3}$. In addition, for positive integer k, as $k \rightarrow \infty$ one has

$$
\begin{equation*}
\log \mathfrak{p}(2 k, \mu) \sim \sqrt{2 k} \quad \text { and } \quad \log \mathfrak{p}(2 k, \lambda) \sim \frac{1}{2} \kappa \sqrt{2 k} . \tag{2.4}
\end{equation*}
$$

Given the relations of (2.4), it is natural to consider to what extent those relations "extend" to odd n. In [5] this question is answered under mild assumptions on the zeros of the Riemann zeta function $\zeta(s)$. Let $\Theta:=\sup \{\operatorname{Re}(\rho): \zeta(\rho)=0\}$. It is well known that $\frac{1}{2} \leq \Theta \leq 1$; the assertion that $\Theta=\frac{1}{2}$ is the Riemann Hypothesis (RH).

Again for odd primes p let $\chi_{p}(n)$ denote the Legendre symbol $\left(\frac{n}{p}\right)$. In [7], asymptotic formulae for different families of Legendre-signed partition numbers $\mathfrak{p}\left(n, \chi_{p}\right)$ are established, where primes are separated by their residue modulo 8 . Such formulae are largely similar in structure to the formula for $\mathfrak{p}\left(n, \chi_{5}\right)$ in Theorem 2.3, but the general constants \mathfrak{a}_{p} and \mathfrak{b}_{p} corresponding to \mathfrak{a}_{5} and \mathfrak{b}_{5} often have unwieldy formulae. Thus, here we only include the asymptotic formulae for $p \equiv 1(\bmod 4)$ and $p \neq 5$.

Theorem 2.6 ([7, Thm. 1.3]). Let p be an odd prime such that $p \neq 5$ and $p \equiv 1(\bmod 4)$, and let $L\left(s, \chi_{p}\right)$ be the Dirichlet L-function for χ_{p}. As $n \rightarrow \infty$ one has

$$
\mathfrak{p}\left(n, \chi_{p}\right)=\mathfrak{a}_{p} n^{-3 / 4} \exp \left(\frac{1}{2} \kappa \sqrt{\left(1-\frac{1}{p}\right) n}\right)\left[1+(-1)^{n} \mathfrak{b}_{p}+O\left(n^{-1 / 5}\right)\right]
$$

where

$$
\kappa=\pi \sqrt{2 / 3}, \quad \mathfrak{a}_{p}=2^{-7 / 4} 3^{-1 / 4}\left(p^{-1}-p^{-2}\right)^{1 / 4} \exp \left(\frac{1}{4} \sqrt{p} L\left(1, \chi_{p}\right)\right)
$$

and

$$
\mathfrak{b}_{p}= \begin{cases}1 & p \equiv 1(\bmod 8) \\ \exp \left(-\sqrt{p} L\left(1, \chi_{p}\right)\right) & p \equiv 5(\bmod 8) \text { and } p \neq 5\end{cases}
$$

3 Proposed research

The novelty of the results of Theorems 2.3 and 2.4 indicate that sequences $\mathfrak{p}\left(n, \chi_{p}\right)_{\mathbb{N}}$ involving primes $p \equiv 1(\bmod 8)$ should be further explored. Basic empirical computations have been done, but these computations further indicate that the periodic vanishing of $\mathfrak{p}\left(n, \chi_{5}\right)$ is indeed quite rare.

Problem 3.1. Establish the presence of periodic vanishings, or lack thereof, in sequences $\left(\mathfrak{p}\left(n, \chi_{p}\right)\right)_{\mathbb{N}}$ where $p \equiv 1(\bmod 8)$.

A function $f: \mathbb{N} \rightarrow\{ \pm 1\}$ is totally multiplicative if $f(a b)=f(a) f(b)$ for all $a, b \in \mathbb{N}$; clearly such f are completely determined by their values $f(p)$ on primes. Among totally multiplicative f, the constant function 1 and the Liouville function λ are the "most positive" and "most negative", respectively, since one has $1(p)=1$ and $\lambda(p)=-1$ for all primes p. The relation (1.1) and Theorem 2.5 show that the "exponential factor" for $\mathfrak{p}(n, \lambda)$ is, in essence, one half of that for $\mathfrak{p}(n, 1)$. It is thus natural to investigate the following problem.

Problem 3.2. Suppose that $f: \mathbb{N} \rightarrow\{ \pm 1\}$ is totally multiplicative, and for all real x let $\log _{0} x:=\max \{\log x, 0\}$. Determine if

$$
\begin{equation*}
\frac{1}{2} \leq \limsup _{n \rightarrow \infty}\left|\frac{\log _{0} \mathfrak{p}(n, f)}{\log \mathfrak{p}(n, 1)}\right| \leq 1 \tag{3.1}
\end{equation*}
$$

We briefly describe how sequences $(\mathfrak{p}(n, f))_{\mathbb{N}}$ are often analyzed using the HardyLittlewood method. First, for $f: \mathbb{N} \rightarrow\{0, \pm 1\}$ one defines

$$
\begin{equation*}
\Phi(z, f)=\prod_{n=1}^{\infty}\left(1-f(n) z^{n}\right)^{-1} \quad \text { and } \quad \Psi(z, f)=\sum_{k, n=1}^{\infty} \frac{f^{k}(n)}{k} z^{n k} \quad(|z|<1) . \tag{3.2}
\end{equation*}
$$

In addition, let $e(\alpha):=\exp (2 \pi i \alpha)$. By Cauchy's theorem, for $\rho \in(0,1)$ one has

$$
\begin{equation*}
\mathfrak{p}(n, f)=\frac{1}{2 \pi i} \int_{|z|=\rho} \Phi(z) z^{-n-1} d z=\rho^{-n} \int_{0}^{1} \Phi(\rho e(\alpha)) e(-n \alpha) d \alpha . \tag{3.3}
\end{equation*}
$$

As $\Phi(z)=\exp \Psi(z)$, integrals (3.3) are analyzed via $\Psi(z)$ rather than $\Phi(z)$. Specifically, one considers $\Psi(\rho e(\alpha), f)$ when α is in different connected subsets of $[0,1)$, namely the arcs of the Hardy-Littlewood method. The major arcs are intervals centered on reduced rationals $a / q \in[0,1]$ with denominator bounded by some chosen $Q \geq 1$, and the minor arcs are the connected components of the $[0,1)$-complement of the major arcs. One may specially designate the major arcs about 0 and 1 the principal arcs.

In [12], Gafni describes information on a general $A \subset \mathbb{N}$ necessary for a successful application of the Hardy-Littlewood method to the integrals (3.3). Here we give a similar description of three sums involving $f(n)$ used to apply the Hardy-Littlewood method to analyze $\Psi(\rho e(\alpha), f)$. Specifically, one requires good estimates on: (1) the Dirichlet series $\sum_{n=1}^{\infty} f(n) n^{-s} ;(2)$ sums $\sum_{n \leq x} f(n q+r)$ where $0 \leq r<q$; and (3) sums $\sum_{n \leq x} f(n) e(n \alpha)$. Estimates on these three sums facilitate the analyses of $\Psi_{f}(\rho e(\alpha))$ for α in the principal, major, and minor arcs, respectively.

In analyzing different $(\mathfrak{p}(n, f))_{\mathbb{N}}$, the series $\sum_{n=1}^{\infty} f(n) n^{-s}$ and the integrals (3.3) for α in the principal arcs are often the easiest of the three arcs to analyze, and a number of results on sequences $(\mathfrak{p}(n, f))_{\mathbb{N}}$ with certain general Dirichlet series already exist, e.g., $[19,21]$. In [7] we establish the following lemma concerning a general family of $\Psi_{f}(\rho e(\alpha))$ with α in certain minor arcs of $[0,1)$.

Lemma 3.3. Let f be multiplicative with $|f| \leq 1$, let $X>0$ be sufficiently large, and let $\alpha \in[0,1)$ have the property that: If $(a, q)=1$ and $|q \alpha-a| \leq X^{-2 / 3}$, then $q>X^{1 / 3}$. Then

$$
\Psi(\rho e(\alpha), f) \ll X / \log X
$$

Results on sums $\sum_{n \leq x} f(n) e(n \alpha)$ with multiplicative f and α near to small denominator a / q have been recently established in a work of de la Bretèche and Granville [10] (building on work of Granville, Harper, and Soundararajan [13]). Although these results are not immediately useable for results on general $\Psi_{f}(\rho e(\alpha))$, minor modifications or specializations of the results in [10] are highly likely to yield the required results on Ψ_{f}.

Probabilistic questions.

We now motivate investigations into randomly signed partition numbers, which replace the function f in (2.1) with a random function from \mathbb{N} to $\{0, \pm 1\}$. We first follow Harper's [16] succinct description of a Rademacher random multiplicative function (rmf.). A Rademacher rmf. is built by letting $(f(p))_{p \in \mathbb{P}}$ be independent Rademacher random variables, i.e., taking values ± 1 each with probability $1 / 2$, and setting $f(n):=\prod_{p \mid n} f(p)$ for all squarefree n, and $f(n)=0$ when n is not squarefree. Rademacher rmfs. were introduced by Wintner [24] to model the Möbius μ function, and are thus natural candidates for generalizing our results on $(\mathfrak{p}(n, \mu))_{\mathbb{N}}$ to a probabilistic setting.

Next, we recall that a set $A \subset \mathbb{N}$ has density δ_{A} if the ratio $|A \cap\{1,2, \ldots, N\}| / N$ tends to δ_{A} as $N \rightarrow \infty$. A remarkable theorem of Erdős [11] then states that: If $A \subset \mathbb{N}$ and $\operatorname{gcd}(A)=1$, then A has density $\delta_{A}>0$ if and only if

$$
\begin{equation*}
\log \mathfrak{p}\left(n, \mathbf{1}_{A}\right) \sim \kappa \sqrt{\delta_{A} n} \tag{3.4}
\end{equation*}
$$

From a probabilistic point of view, the density δ_{A} of a set $A \subset \mathbb{N}$ may be thought of as the probability that a random $n \in \mathbb{N}$ is an element of A. Considering the above discussions together with the results of the previous section, we consider the following problem.

Problem 3.4. Let $f(n)$ be a Rademacher rmf.. Determine Δ_{f} such that

$$
\limsup _{n \rightarrow \infty}\left|\frac{\operatorname{logsc} \mathfrak{p}(n, f)}{\log \mathfrak{p}(n, 1)}\right| \leq \Delta_{f}
$$

Toward resolving Problem 3.4 in a manner like that of Problem 3.2, a number of usable results already exist. For instance, results on Dirichlet series $\sum f(n) n^{-s}$ associated to Rademacher rmfs. are found in [24], and Lemma 3.3 above already provides certain bounds on functions $\Psi_{f}(z)$, regardless of the random nature of $f(n)$.

For the case of the major arcs of the Hardy-Littlewood method as described above, an adaptation of the results of [10] is likely to provide the required bounds for $\Psi_{f}(z)$ by leveraging results on the summatory functions $\sum_{n \leq x} f(n)$ of Rademacher rmfs.. In particular, a number of results regarding these sums have been recently established, notable among which is Harper's result [15] that $\mathbb{E}\left|\sum_{n \leq x} f(n)\right| \asymp \sqrt{x} /(\log \log x)^{1 / 4}$. This and other ongoing work in the community on similar bounds are likely to provide additional tools toward results concerning $\Psi_{f}(z)$ if the results of $[10,15]$ require additional specialization.

References

[1] G. E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.
[2] B. C. Berndt, A. Malik, and A. Zaharescu, Partitions into k th powers of terms in an arithmetic progression, Math. Z. 290 (2018), no. 3-4, 1277-1307.
[3] S. H. Chan, Dissections of quotients of theta-functions, Bull. Austral. Math. Soc. 69 (2004), no. 1, 19-24.
[4] S. Chern and D. Tang, Vanishing coefficients in quotients of theta functions of modulus five, Bull. Aust. Math. Soc. 102 (2020), no. 3, 387-398.
[5] T. Daniels, Biasymptotics of the Möbius- and Liouville-signed partition numbers, submitted; arXiv preprint arXiv:2310.10617, 38pp.
[6] T. Daniels, Bounds on the Möbius-signed partition numbers, submitted; arXiv preprint arXiv:2310.10609, 35pp.
[7] T. Daniels, Legendre-signed partition numbers, In preparation.
[8] T. Daniels, Vanishing coefficients in two q-series related to Legendre-signed partitions, submitted; arXiv preprint arXiv:2401.07956, 10pp.
[9] M. Das, N. Robles, A. Zaharescu, and D. Zeindler, Partitions into semiprimes, arXiv preprint arXiv:2212.12489.
[10] R. de la Bretèche and A. Granville, Exponential sums with multiplicative coefficients and applications, Trans. Amer. Math. Soc. 375 (2022), no. 10, 6875-6901.
[11] P. Erdős, On an elementary proof of some asymptotic formulas in the theory of partitions, Ann. of Math. (2) 43 (1942), 437-450.
[12] A. Gafni, Partitions into prime powers, Mathematika 67 (2021), no. 2, 468-488.
[13] A. Granville, A. J. Harper, and K. Soundararajan, A new proof of Halász's theorem, and its consequences, Compos. Math. 155 (2019), no. 1, 126-163.
[14] G. H. Hardy and S. Ramanujan, Asymptotic Formulae in Combinatory Analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115.
[15] A. J. Harper, Moments of random multiplicative functions, I: Low moments, better than squareroot cancellation, and critical multiplicative chaos, Forum Math. Pi 8 (2020), e1, 95.
[16] A. J. Harper, Almost sure large fluctuations of random multiplicative functions, Int. Math. Res. Not. IMRN 3 (2023), 2095-2138.
[17] M. D. Hirschhorn, Two remarkable q-series expansions, Ramanujan J. 49 (2019), no. 2, 451-463.
[18] J. Mc Laughlin, New infinite q-product expansions with vanishing coefficients, Ramanujan J. 55 (2021), no. 2, 733-760.
[19] G. Meinardus, Asymptotische aussagen über Partitionen, Math. Z. 59 (1954), 388-398.
[20] D. D. Somashekara and M. B. Thulasi, Results on vanishing coefficients in certain infinite q-series expansions, Ramanujan J. 60 (2023), no. 2, 355-369.
[21] G. Tenenbaum, J. Wu, and Y.-L. Li, Power partitions and saddle-point method, J. Number Theory 204 (2019), 435-445.
[22] R. C. Vaughan, On the number of partitions into primes, Ramanujan J. 15 (2008), no. 1, 109-121.
[23] R. C. Vaughan, Squares: additive questions and partitions, Int. J. Number Theory 11 (2015), no. 5, 1367-1409.
[24] A. Wintner, Random factorizations and Riemann's hypothesis, Duke Math. J. 11 (1944), 267-275.

