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1 Introduction

The theory of integer partitions is classical and well developed, but is still an active area
of research with a large number of open questions. Indeed, this basic notion of counting
ways to write natural numbers n as sums of smaller natural numbers introduces a bevy
of questions whose answers, both full and partial, have required tools such as modular
forms, probability, and the Hardy-Littlewood method.

Explicitly, partitions of n ∈ N are tuples of positive integers (a1, a2, . . . , ak) such that
a1 ≥ a2 ≥ . . . ≥ ak and a1 + a2 + · · · + ak = n. Using Π[n] to denote the set of such
partitions, the quantities p(n) := card(Π[n]) are the (ordinary) partition numbers. Mod-
ern partition theory essentially originated in 1918 with Hardy and Ramanujan’s famous
asymptotic formulae for p(n) as n → ∞. Namely, in [14] they establish (in addition to
stronger results) that

log p(n) ∼ κ
√
n, where κ := π

√
2/3 (1.1)

and the relation a(n) ∼ b(n) indicates that limn→∞ a(n)/b(n) = 1. At nearly the same
time, the striking “Ramanujan congruences” were established. Namely, for all n ≥ 0

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), and p(11n+ 6) ≡ 0 (mod 11).

Recent years have seen a surge of interest in partition theory led by researchers in-
cluding B. Berndt, A. Malik, R. C. Vaughan, and A. Zaharescu (see, e.g., [2, 9, 22, 23]).
Here we discuss our work on both arithmetic and analytic aspects of the novel class of
“signed” partition enumerations involving multiplicative f : N → {0,±1}. Following this
we discuss a few problems toward developing more general results on some families of
signed partition numbers.

2 Past Work

Let f : N → {0,±1}, and for n ∈ N and any partition π = (a1, a2, . . . , ak) ∈ Π[n] let

f(π) := f(a1)f(a2) · · · f(ak).

With this we define the signed partition numbers

p(n, f) =
∑

π∈Π[n]

f(π). (2.1)

Definition (2.1) generalizes several classical partition-related quantities, e.g., with the
constant function 1 one has p(n) = p(n, 1), and with the indicator function 1A for A ⊂ N,
the quantities p(n,1A) are the A-restricted partition numbers. Many examples and families
of restricted partitions numbers are well studied (see, e.g., [1, 11]).
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2.1 Arithmetic work; q-series and periodic vanishings

A sequence (an)N vanishes on an arithmetic progression (or has a periodic vanishing) if
one has amj+r = 0 for some m ∈ N, some 0 ≤ r < m, and all j ≥ 0. In such a case we may
say that an “vanishes for n ≡ r (mod m)”. The past two decades have seen a boom of
work on periodic vanishings in the coefficients of various q-series; we note [3, 4, 17, 18, 20]
as only a small portion of the extant literature.

Very recently I discovered and established two 10-periodic vanishings in sequences
(p(n, f))N related to the Legendre symbol χ5(n) := (n

5
); namely χ5(n) is 1 (or −1) when

n is (or is not) a quadratic residue modulo 5, and χ5(n) is 0 when 5 | n. In addition, for
n ∈ N and any partition π = (a1, a2, . . . , ak) of n let

χ†
5(π) = (−1)kχ5(a1)χ5(a2) · · ·χ5(ak).

The primary result of [8] establishes the following 10-periodic vanishings in (p(n, χ5))N
and (p(n, χ†

5))N.

Theorem 2.1. One has p(10j + 2, χ5) = 0 and p(10j + 6, χ†
5) = 0 for all j ≥ 0.

Two further relations on the above sequences are also demonstrated in [8].

Theorem 2.2. One has p(10j, χ†
5) = p(10j, χ5) and p(10j + 8, χ†

5) = −p(10j + 8, χ5) for
all j ≥ 0.

In [8], Theorems 2.1 and 2.2 are proven using the theory of q-series identities and
extensive symbolic manipulations. To assist any readers, a Mathematica notebook further
documenting and implementing these computations is available on our personal webpage.
A heuristic explanation of the periodic vanishing demonstrated by the sequence (p(n, χ5))N
is provided by the following asymptotic formula for p(n, χ5).

Theorem 2.3 ([7, Thm. 1.7]). As n → ∞ one has

p(n, χ5) = a5n
−3/4 exp

(
1
2
κ
√

4
5
n
)[

1 + (−1)nb5 + d5 cos
(
2π
5
n− π

10

)
+O(n−1/5)

]
, (2.2)

where

κ = π
√

2
3
, a5 =

(
3 +

√
5

960

)1/4

, b5 =
3−

√
5

2
, and d5 =

√
2(5−

√
5).

In particular, ignoring the error term O(n−1/5) in (2.2) and considering the 10-periodic
“signed” term

S(n) := 1 + (−1)n
(
3−

√
5

2

)
+

√
2(5−

√
5) cos

(
2π
5
n− π

10

)
,

it is surprising to find that

S(2) = 0 and S(n) ̸= 0 for 1 ≤ n ≤ 10 with n ̸= 2.

This provides a soft explanation for the periodic vanishing seen in (p(n, χ5))N. The sur-
prising nature of this periodic vanishing is amplified by the following further result.

Theorem 2.4 ([7, Thm. 1.10]). For odd primes p, let χp(n) denote the Legendre symbol
(n
p
). If p ̸= 5 and p ̸≡ 1 (mod 8), then the sequence (p(n, χp))N does not vanish on any

arithmetic progression.
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2.2 Asymptotic results on some p(n, f)

When f assumes both positive and negative values one expects these signs to cause
cancellations in the sums p(n, f). We recall the Möbius µ and Liouville λ functions from
prime number theory: If n = pa11 pa22 · · · parr with distinct primes pi and all ai ≥ 1, then

λ(n) := (−1)a1+···+ar and µ(n) :=

{
(−1)r if all ai = 1,

0 otherwise.

The following result is an immediate corollary of the main results of [6].

Theorem 2.5. For all ε > 0, as n → ∞ one has

p(n, µ) = O
(
e(1+ε)

√
n
)

and p(n, λ) = O
(
e(

1
2
+ε)κ

√
n
)
, (2.3)

where κ = π
√
2/3. In addition, for positive integer k, as k → ∞ one has

log p(2k, µ) ∼
√
2k and log p(2k, λ) ∼ 1

2
κ
√
2k. (2.4)

Given the relations of (2.4), it is natural to consider to what extent those relations
“extend” to odd n. In [5] this question is answered under mild assumptions on the zeros
of the Riemann zeta function ζ(s). Let Θ := sup{Re(ρ) : ζ(ρ) = 0}. It is well known that
1
2
≤ Θ ≤ 1; the assertion that Θ = 1

2
is the Riemann Hypothesis (RH).

Again for odd primes p let χp(n) denote the Legendre symbol (n
p
). In [7], asymptotic

formulae for different families of Legendre-signed partition numbers p(n, χp) are estab-
lished, where primes are separated by their residue modulo 8. Such formulae are largely
similar in structure to the formula for p(n, χ5) in Theorem 2.3, but the general constants
ap and bp corresponding to a5 and b5 often have unwieldy formulae. Thus, here we only
include the asymptotic formulae for p ≡ 1 (mod 4) and p ̸= 5.

Theorem 2.6 ([7, Thm. 1.3]). Let p be an odd prime such that p ̸= 5 and p ≡ 1 (mod 4),
and let L(s, χp) be the Dirichlet L-function for χp. As n → ∞ one has

p(n, χp) = apn
−3/4 exp

(
1
2
κ
√

(1− 1
p
)n

)[
1 + (−1)nbp +O(n−1/5)

]
,

where
κ = π

√
2/3, ap = 2−7/43−1/4(p−1 − p−2)1/4 exp(1

4

√
pL(1, χp))

and

bp =

{
1 p ≡ 1 (mod 8),

exp(−√
pL(1, χp)) p ≡ 5 (mod 8) and p ̸= 5.

3 Proposed research

The novelty of the results of Theorems 2.3 and 2.4 indicate that sequences p(n, χp)N
involving primes p ≡ 1 (mod 8) should be further explored. Basic empirical computations
have been done, but these computations further indicate that the periodic vanishing of
p(n, χ5) is indeed quite rare.
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Problem 3.1. Establish the presence of periodic vanishings, or lack thereof, in sequences
(p(n, χp))N where p ≡ 1 (mod 8).

A function f : N → {±1} is totally multiplicative if f(ab) = f(a)f(b) for all a, b ∈ N;
clearly such f are completely determined by their values f(p) on primes. Among totally
multiplicative f , the constant function 1 and the Liouville function λ are the “most
positive” and “most negative”, respectively, since one has 1(p) = 1 and λ(p) = −1 for
all primes p. The relation (1.1) and Theorem 2.5 show that the “exponential factor” for
p(n, λ) is, in essence, one half of that for p(n, 1). It is thus natural to investigate the
following problem.

Problem 3.2. Suppose that f : N → {±1} is totally multiplicative, and for all real x let
log0 x := max{log x, 0}. Determine if

1
2
≤ lim sup

n→∞

∣∣∣∣ log0 p(n, f)log p(n, 1)

∣∣∣∣ ≤ 1. (3.1)

We briefly describe how sequences (p(n, f))N are often analyzed using the Hardy-
Littlewood method. First, for f : N → {0,±1} one defines

Φ(z, f) =
∞∏
n=1

(1− f(n)zn)−1 and Ψ(z, f) =
∞∑

k,n=1

fk(n)

k
znk (|z| < 1). (3.2)

In addition, let e(α) := exp(2πiα). By Cauchy’s theorem, for ρ ∈ (0, 1) one has

p(n, f) =
1

2πi

∫
|z|=ρ

Φ(z)z−n−1 dz = ρ−n

∫ 1

0

Φ(ρe(α))e(−nα) dα. (3.3)

As Φ(z) = expΨ(z), integrals (3.3) are analyzed via Ψ(z) rather than Φ(z). Specifically,
one considers Ψ(ρe(α), f) when α is in different connected subsets of [0, 1), namely the
arcs of the Hardy-Littlewood method. The major arcs are intervals centered on reduced
rationals a/q ∈ [0, 1] with denominator bounded by some chosen Q ≥ 1, and the minor
arcs are the connected components of the [0, 1)-complement of the major arcs. One may
specially designate the major arcs about 0 and 1 the principal arcs.

In [12], Gafni describes information on a general A ⊂ N necessary for a successful
application of the Hardy-Littlewood method to the integrals (3.3). Here we give a similar
description of three sums involving f(n) used to apply the Hardy-Littlewood method to
analyze Ψ(ρe(α), f). Specifically, one requires good estimates on: (1) the Dirichlet series∑∞

n=1 f(n)n
−s; (2) sums

∑
n≤x f(nq+ r) where 0 ≤ r < q; and (3) sums

∑
n≤x f(n)e(nα).

Estimates on these three sums facilitate the analyses of Ψf (ρe(α)) for α in the principal,
major, and minor arcs, respectively.

In analyzing different (p(n, f))N, the series
∑∞

n=1 f(n)n
−s and the integrals (3.3) for

α in the principal arcs are often the easiest of the three arcs to analyze, and a number
of results on sequences (p(n, f))N with certain general Dirichlet series already exist, e.g.,
[19,21]. In [7] we establish the following lemma concerning a general family of Ψf (ρe(α))
with α in certain minor arcs of [0, 1).
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Lemma 3.3. Let f be multiplicative with |f | ≤ 1, let X > 0 be sufficiently large, and let
α ∈ [0, 1) have the property that: If (a, q) = 1 and |qα−a| ≤ X−2/3, then q > X1/3. Then

Ψ(ρe(α), f) ≪ X/ logX.

Results on sums
∑

n≤x f(n)e(nα) with multiplicative f and α near to small denomi-
nator a/q have been recently established in a work of de la Bretèche and Granville [10]
(building on work of Granville, Harper, and Soundararajan [13]). Although these results
are not immediately useable for results on general Ψf (ρe(α)), minor modifications or
specializations of the results in [10] are highly likely to yield the required results on Ψf .

Probabilistic questions.

We now motivate investigations into randomly signed partition numbers, which replace
the function f in (2.1) with a random function from N to {0,±1}. We first follow
Harper’s [16] succinct description of a Rademacher random multiplicative function (rmf.).
A Rademacher rmf. is built by letting (f(p))p∈P be independent Rademacher random vari-
ables, i.e., taking values ±1 each with probability 1/2, and setting f(n) :=

∏
p|n f(p) for

all squarefree n, and f(n) = 0 when n is not squarefree. Rademacher rmfs. were intro-
duced by Wintner [24] to model the Möbius µ function, and are thus natural candidates
for generalizing our results on (p(n, µ))N to a probabilistic setting.

Next, we recall that a set A ⊂ N has density δA if the ratio |A ∩ {1, 2, . . . , N}|/N
tends to δA as N → ∞. A remarkable theorem of Erdős [11] then states that: If A ⊂ N
and gcd(A) = 1, then A has density δA > 0 if and only if

log p(n,1A) ∼ κ
√

δAn. (3.4)

From a probabilistic point of view, the density δA of a set A ⊂ N may be thought of as the
probability that a random n ∈ N is an element of A. Considering the above discussions
together with the results of the previous section, we consider the following problem.

Problem 3.4. Let f(n) be a Rademacher rmf.. Determine ∆f such that

lim sup
n→∞

∣∣∣∣ logsc p(n, f)log p(n, 1)

∣∣∣∣ ≤ ∆f .

Toward resolving Problem 3.4 in a manner like that of Problem 3.2, a number of
usable results already exist. For instance, results on Dirichlet series

∑
f(n)n−s associated

to Rademacher rmfs. are found in [24], and Lemma 3.3 above already provides certain
bounds on functions Ψf (z), regardless of the random nature of f(n).

For the case of the major arcs of the Hardy-Littlewood method as described above,
an adaptation of the results of [10] is likely to provide the required bounds for Ψf (z)
by leveraging results on the summatory functions

∑
n≤x f(n) of Rademacher rmfs.. In

particular, a number of results regarding these sums have been recently established, no-
table among which is Harper’s result [15] that E|

∑
n≤x f(n)| ≍

√
x/(log log x)1/4. This

and other ongoing work in the community on similar bounds are likely to provide addi-
tional tools toward results concerning Ψf (z) if the results of [10, 15] require additional
specialization.
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[10] R. de la Bretèche and A. Granville, Exponential sums with multiplicative coefficients and applications,
Trans. Amer. Math. Soc. 375 (2022), no. 10, 6875–6901.
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