i		
S	tudent:	
D	ate:	

Instructor: DONATELLA DANIELLI, Jennifer Hobbs, Pavel Coupek

Course: MA 262-525- Spring 2020

Assignment: Trial Midterm 2

Find the dimensions of the null space and the column space of the given matrix.

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 5 & -4 \\ 0 & 0 & 1 & -6 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4×7 7 unteriowns Nul opace = $1\bar{x}$ of $\mathbb{R}^7 | A\bar{x}' = \bar{0}$ }

3 equs. 7-3=44 free parameters

dun Nul CA1 = 4

duri Col CAI = 3

Let W be the union of the first and third quadrants in the xy-plane. That is, let $W = \begin{cases} x \\ y \end{cases}$: $xy \ge 0$. Complete parts a and b below.

a. If u is in W and c is any scalar, is cu in W? Why?

A. If
$$\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is in W, then the vector $\mathbf{cu} = \mathbf{c} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \mathbf{cx} \\ \mathbf{cy} \end{bmatrix}$ is in W because $\mathbf{cxy} \ge 0$ since $\mathbf{xy} \ge 0$.

OB. If
$$\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is in W, then the vector $\mathbf{c}\mathbf{u} = \mathbf{c} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \mathbf{c}x \\ \mathbf{c}y \end{bmatrix}$ is not in W because $\mathbf{c}\mathbf{x}\mathbf{y} \leq \mathbf{0}$ in some

C. If
$$\mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is in W, then the vector $\mathbf{cu} = \mathbf{c} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \mathbf{cx} \\ \mathbf{cy} \end{bmatrix}$ is in W because $(\mathbf{cx})(\mathbf{cy}) = \mathbf{c}^2(\mathbf{xy}) \ge 0$ since $\mathbf{xy} \ge 0$.

b. Find specific vectors \mathbf{u} and \mathbf{v} in W such that $\mathbf{u} + \mathbf{v}$ is not in W. This is enough to show that W is not a vector space.

Two vectors in W, u and v, for which u + v is not in W are (Use a comma to separate answers as needed.)

$$\begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} -3 \\ +1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

3.	Let A and B be 3×3 matrices, with det $A = -2$ and det $B = 4$. Use properties of determinants to complete parts (a) through (e) below.
	a. Compute det AB. det AB = $\frac{8}{2}$ (Type an integer or a fraction.) alet $\frac{1}{2}$ (AB) = $\frac{1}{2}$ det $\frac{1}$
	b. Compute det 5A. det $5A = 250$ (Type an integer or a fraction.) A 23×3 dut $(5A) = 5^3$ dut (A) c. Compute det B^T .
	$\det B^T = 4$ (Type an integer or a fraction.) $\det (B^T) = \det (B)$
	d. Compute det A^{-1} . det $A^{-1} = \frac{1}{2^{2}} = 1$
	e. Compute det A^3 .
	$\det A^3 = \frac{2^3 - 8}{2^3 - 8}$ (Type an integer or a fraction.) $\det (A^3) = \det (A^3) = \det$
4.	Combine the methods of row reduction and cofactor expansion to compute the determinant.
	-1 4 9 0 4 3 5 0 4 4 6 4 4 2 4 2
	The determinant is (Simplify your answer.)
5.	Let the matrix below act on \mathbb{C}^2 . Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^2 .
	$\begin{bmatrix} 5 & -2 \\ 2 & 5 \end{bmatrix}$
	The eigenvalues of $\begin{bmatrix} 5 & -2 \\ 2 & 5 \end{bmatrix}$ are
	(Type an exact answer, using radicals and i as needed. Use a comma to separate answers as needed.)
	A basis for the eigenspace corresponding to the eigenvalue $a + bi$, where $b > 0$, is (Type an exact answer, using radicals and i as needed.)
	A basis for the eigenspace corresponding to the eigenvalue $a - bi$ where $b > 0$, is (Type an exact answer, using radicals and i as needed.)

$$\begin{vmatrix} 1 & 4 & 9 & 0 \\ 4 & 3 & 5 & 0 \\ 4 & 4 & 2 & 4 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & -4 & -9 & 0 \\ 4 & 4 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & -4 & -9 & 0 \\ 4 & 4 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & -4 & -9 & 0 \\ 19 & 41 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 9 & 0 & 41 & 41 \\ 19 & 41 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 9 & 0 & 41 & 41 \\ 19 & 41 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 9 & 0 & 41 & 41 \\ 19 & 41 & 2 & 4 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 9 & 0 & 41 & 41 \\ 19 & 41 & 41 & 41 & 41 \\ 19 & 41 & 41 & 41 & 41 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 1 & -2 & 41 & 41 \\ 19 & 40 & 2 & 41 & 41 \\ 19 & 40 & 2 & 38 \end{vmatrix}$$

$$= - \begin{vmatrix} 22 & 38 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 22 & 38 & 41 & 41 & 41 \\ 23 & 38 & 41 & 41 & 41 \\ 24 & 4 & 2 & 41 & 41 \\ 25 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 25 & 41 & 41 & 41 & 41 \\ 2$$

$$\begin{bmatrix} 5 & -2 \\ 2 & 5 \end{bmatrix} = A$$

Evalues

$$A - \lambda I = \begin{bmatrix} 5 - \lambda & -2 \\ 2 & 5 - \lambda \end{bmatrix}$$

$$det(A-\lambda I) = (5-\lambda)^{2} + 4 = 0$$

$$5 - \lambda = \pm 2n'$$

$$A = 5 \pm 2i$$

$$\lambda_{1} = 5 + 2n' \qquad -8 - 8 - 2i \qquad -2$$

$$A - (5 + 2i) T = \begin{bmatrix} 2 & 8 - 2i \\ 2 & -1 - 1 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -n' \\ 0 & 1/10 \end{bmatrix}$$

$$\sqrt{1-1}\sqrt{2} = 0$$

$$\sqrt{1} = 1$$

$$\sqrt{1} = 2$$

$$\sqrt{1} = 2$$

$$\sqrt{1} = 2$$

$$\lambda_{2} = 5 - 2i'$$

$$A - \lambda I = \begin{bmatrix} 5 - \lambda & -2 \\ 2 & 5 - \lambda \end{bmatrix}$$

$$A - (5 - 2i') I = \begin{bmatrix} 8 - 8 + 2i' & -2 \\ 2 & 2i' \end{bmatrix}$$

$$\lambda_{1} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{1} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{1} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{2} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{1} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{2} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

$$\lambda_{3} = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$

ì.		[a . /a	l I	_		1
	Is	2+16	an eigenvector of	5	-1	? If so, find the eigenvalue.
		-2		-2	1	

Select the correct choice below and, if necessary, fill in the answer box within your choice.

- Yes, $\begin{vmatrix} 2+\sqrt{6} \\ -2 \end{vmatrix}$ is an eigenvector of $\begin{vmatrix} 5 & -1 \\ -2 & 1 \end{vmatrix}$. The eigenvalue is $\lambda =$ (Type an exact answer, using radicals as needed.)
- \bigcirc B. No, $\begin{bmatrix} 2+\sqrt{6} \\ -2 \end{bmatrix}$ is not an eigenvector of $\begin{bmatrix} 5 & -1 \\ -2 & 1 \end{bmatrix}$.

Use Cramer's rule to compute the solution of the system.

$$x_1 + x_2 = 2$$
 $-3x_1 + 3x_3 = 0$
 $x_2 - 3x_3 = 1$

 $x_1 =$ ____; $x_2 =$ ____; $x_3 =$ _____ (Type integers or simplified fractions.)

Suppose \mathbb{R}^4 = Span $\{v_1,...,v_4\}$. Explain why $\{v_1,...,v_4\}$ is a basis for \mathbb{R}^4 .

Complete the explanation below.

Let $A = [v_1 \ v_2 \ v_3 \ v_4]$. Note that A is a (1) _____ matrix and its columns span (2) _____ Thus, by the

(3) _____ the columns (4) ____ Therefore, the columns of A are a basis for \mathbb{R}^4 because of the

(1)
$$4\times4$$
 (2) \mathbb{R} . 1×4 \mathbb{R}^4 .

- (1) 4×4 (2) \mathbb{R} . (3) Invertible Matrix Theorem, \mathbb{R}^4 . Basis Theorem, \mathbb{R}^4 . definition of a basis, \mathbb{R}^4 definition of linear independence,
 - Rank Theorem,
 - Spanning Set Theorem.
- (4) are linearly dependent. are pivot columns.) span ℝ³. are linearly independent.
- (5) Invertible Matrix Theorem. definition of a basis.
 - Basis Theorem. O definition of a spanning set.
 - Spanning Set Theorem. Rank Theorem.

$$\begin{array}{c} +6 \\ A = \begin{bmatrix} 5 \\ -2 \end{bmatrix} & \vec{v} = \begin{bmatrix} 2+\sqrt{6} \\ -2 \end{bmatrix} \end{array}$$

$$(A - \lambda I) \vec{v} = \vec{6} ?$$

$$[5 - \lambda - 1] [2 + \sqrt{6}]$$

$$[-2 1 - \lambda] [-2]$$

$$= \begin{bmatrix} 10 + 5\sqrt{6} - 2\lambda - \sqrt{6}\lambda + 2 \\ -4 - 2\sqrt{6} - 2 + 2\lambda \end{bmatrix}$$

$$= \begin{bmatrix} 12 + \sqrt{6}(5 - \lambda) - 2\lambda \end{bmatrix} = \begin{bmatrix} 0 \\ -6 - 2\sqrt{6} + 2\lambda \end{bmatrix}$$

$$12 + \sqrt{6}(5 - \lambda) - 2\lambda = 0$$

$$-6 - 2\sqrt{6} + 2\lambda = 0$$

$$2\lambda = 6 + 2\sqrt{6}$$
 $\lambda = 3 + \sqrt{6}$

$$(2)$$
 = $(3+\sqrt{6})$ = $(3+\sqrt{6})$

$$12 + 2\sqrt{6} - 6 - 6 - 2\sqrt{6} = 0$$

$$\det (B_2) = \begin{vmatrix} 1 & 2 & 0 \\ -3 & 0 & 3 \\ 0 & 1 & -3 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 3 \\ 1 & -3 \end{vmatrix} - 2 \begin{vmatrix} -3 & 3 \\ 0 & -3 \end{vmatrix}$$

$$= -3 - 2 \cdot 9 = -21$$

$$x_2 = \frac{\text{dut}(B_2)}{\text{dut}(A)} = \frac{+21}{+12} = +\frac{7}{4}$$

(#7 cout.)

$$x_3 = \frac{\det CB_3}{\det CA_1}$$

$$B_3 = \begin{bmatrix} 1 & 2 \\ -3 & 0 & 0 \end{bmatrix}$$

$$det (B_3) = -(-3) \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} =$$

$$3(-1) = -3$$

$$x_3 = \frac{-3}{-12} = \frac{1}{4}$$

. Determine if the given set is a subspace of \mathbb{P}_8 . Justify your answer.
The set of all polynomials of the form $\mathbf{p}(t) = at^8$, where a is in \mathbb{R} .
Choose the correct answer below.
\bigcirc A. The set is not a subspace of \mathbb{P}_8 . The set does not contain the zero vector of \mathbb{P}_8 .
B. The set is a subspace of \mathbb{P}_8 . The set contains the zero vector of \mathbb{P}_8 , the set is closed under vector addition, and the set is closed under multiplication by scalars.
○ C. The set is a subspace of P ₈ . The set contains the zero vector of P ₈ , the set is closed under vector addition, and the set is closed under multiplication on the left by m×8 matrices where m is any positive integer.
○ D. The set is not a subspace of P ₈ . The set is not closed under multiplication by scalars when the scalar is not an integer.
0. If the null space of a 6×8 matrix is 5-dimensional, find rank A, dim Row A, and dim Col A.
O. If the null space of a 6×8 matrix is 5-dimensional, find rank A, dim Row A, and dim Col A. A. rank A=3, dim Row A=5, dim Col A=5 B. rank A=3, dim Row A=3, dim Col A=5 C. rank A=1, dim Row A=1, dim Col A=1 D. rank A=3, dim Row A=3, dim Col A=3 Tauk (A) = 3 = drive Row (A) Tauk (A) = 3 = drive Row (A) Tauk (A) = 3 = drive Row (A)
1. Let $A = \begin{bmatrix} -16 & -10 & -22 \\ 357 & 200 & 442 \\ 100 & 55 & 124 \end{bmatrix}$. Find the second and third columns of A^{-1} without computing the first column. How can the second and third columns of A^{-1} be found without computing the first column? $\begin{bmatrix} -8 & -5 & -11 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$
How can the second and third columns of A ⁻¹ be found without computing the first column?
\bigcirc A. Solve the equation $Ae_2 = \mathbf{b}$ for e_2 , where e_2 is the second column of I_3 and \mathbf{b} is the second column of A^{-1} . Then similarly solve the equation $Ae_3 = \mathbf{b}$ for e_3 .
Row reduce the augmented matrix [A I ₃].
C. Row reduce the augmented matrix [A e ₂ e ₃], where e ₂ and e ₃ are the second and third columns of I ₃ .
O. Row reduce the augmented matrix $\begin{bmatrix} A \\ e_2 \\ e_3 \end{bmatrix}$, where e_2 and e_3 are the second and third columns
of I ₃ .
The second column of A ⁻¹ is (Type an integer or decimal for each matrix element. Round to four decimal places as needed.)
The third column of A^{-1} is (Type an integer or decimal for each matrix element. Round to four decimal places as needed.)

pct1 = at8 aGR a=0=) pa1=0 V p(t) =0 Closur under adolption $p(t) = at^8$ $q(t) = 5t^8$ (p+9)ct = at + 5t = (a+5)+8 Marie Chopure under scalar multiple cortesie (Gp)(t) = cp(t) = cot

TA di ez ez In I RREF TIn $A = \begin{bmatrix} -8 & -5 & -11 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ -2 0

$$\begin{bmatrix}
-2 & -1 & -2 \\
3 & 0 & -3 \\
2 & 0 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & -2 \\
0 & 2 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & -2 \\
0 & 2 & 5
\end{bmatrix}$$

1.

Find the rank of the matrix

$$A = \begin{pmatrix} 1 & -1 & -2 \\ 3 & 0 & -3 \\ 2 & 0 & 1 \end{pmatrix}.$$

$$rouck(A) = 3$$

2.

If

$$\det \mathbf{A} = \begin{pmatrix} 0 & a & 0 \\ 1 & 2 & 3 \\ 4 & 3 & 6 \end{pmatrix} = 18,$$

b) Compute $\det A^T$. = $\operatorname{old} CA = 18$

3.

Consider the three vectors in \mathbb{R}^3

$$\mathbf{v_1} = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, \quad \mathbf{v_2} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}, \quad \mathbf{v_3} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}.$$

Prove that $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ span \mathbb{R}^3 .

4.

Determine which of the following subsets S is a subspace of the vector space \mathbf{V} . Provide motivation for your answers.

(i)
$$\mathbf{V} = \mathbb{R}^3$$
, $S = \{(x, y, z) \in \mathbb{R}^3 \mid 2(x - 1) - 3(y + 1) + (z + 7) = 2\}$.

(ii)
$$\mathbf{V} = M_{2\times 2}(\mathbb{R}), S = \left\{ \mathbf{A} \in M_{2\times 2}(\mathbb{R}) \mid \mathbf{A} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\}.$$

(iii) $V = C^2(I)$, where I is an interval of the line, $S = \{ f \in C^2(I) \mid f''(x) + 4f'(x) - 3f(x) = 1 \}$.

(iii) (1) 0 property
$$P \in S$$
?
 $P(x) = 0$ $Q \times 1$
 $P'' = 0$ $Q \times 1$
 $Q \times 1$
 $Q \times 2$
 $Q \times 3$
 $Q \times 4$
 $Q \times$

$$(i) \quad 2(x-1) - 3(y+1) + (2+7) = 2$$

$$2x - 2 - 3y - 3 + 2 + 7 = 2$$

$$\Rightarrow 2x - 3y + 2 = 0$$

$$\Rightarrow 2x - 3y + 2$$

$$\Rightarrow 0 = 0$$

$$\Rightarrow x = y = 3 = 0$$

2) Phosure under addition

$$(x,y,x)$$
: $2x - 3y + 2 = 0$ ((x,y,x)): $2u - 3v + w = 0$
 (u,v,w) : $(x+u,y+v,z)$

$$(u, v, w)$$
: $(u, v, w) = (x + u, y + v, z + w)$
 $(x, y, z) + (u, v, w) = (x + u, y + v, z + w)$
 $2(x + u) - 3(y + v) + (z + w) = 0$
 $2(x + u) - 3(y + v) + (z + w) = 0$

$$A = \begin{bmatrix} a & 5 \\ o & c \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in S$$

(2)

$$A + B = \begin{bmatrix} a + x \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} x & y \\ 0 & 2 \end{bmatrix}$$

3

$$kA = \begin{bmatrix} -ka & ks \\ 0 & kc \end{bmatrix}$$

S subspace

